GaN/AlGaN多量子阱薄膜微结构与光电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
GaN基多量子阱薄膜在紫外和红外探测领域有着重要的应用前景,同时其探测性能又在很大程度上受制于外延薄膜的晶体质量,所以对外延薄膜的晶体质量和缺陷展开研究具有重要的意义。本文设计生长了基于GaN/AlGaN多量子阱的外延薄膜,研究了不同中间层生长工艺对外延薄膜的形貌、缺陷和界面结构的影响,同时对多量子阱薄膜的光学和电学性能进行了表征,获得了基于量子阱子带能级跃迁的中波红外吸收,并综合分析了薄膜的微观缺陷对量子阱子带间跃迁的影响。论文的主要研究内容包括:
     利用薛定谔方程和泊松方程自洽求解的方法计算了不同工艺条件下量子阱中的导带和子能级的分布特性。当量子阱阱层掺杂浓度在10~(19)-10~(20)cm-3范围时将显著改变子带能级的分布,引起子带间跃迁能级的偏移;盖层Al组分的增加改变了极化电场,使得子带间吸收波长发生蓝移;当多量子阱薄膜的位错密度低于10~(10)cm~(-2)时,位错密度的变化不能改变量子阱子带的能级分布;在相同厚度和等效Al组分情况下,GaN/AlN短周期超晶格中间层比AlGaN中间层所需的弛豫厚度大,受此影响的量子阱层周期厚度波动范围加大,由此降低了量子阱能级的对称性,从而降低了子带间吸收的强度。
     利用金属有机物化学气相沉积方法生长了具有不同中间层结构的GaN/AlGaN多量子阱薄膜,通过光学显微镜和扫描电镜对表面裂纹进行分析后发现,裂纹主要沿<11-20>方向,中间层的插入在一定程度上释放了应变,降低了裂纹密度。原子力显微镜观察证明了表面的台阶流生长模式,同时观察到螺位错导致的六方形螺旋小丘表面。
     通过高分辨X射线衍射和高分辨透射电镜对样品的晶体质量和界面结构进行了分析,发现外延薄膜各层与衬底间属于赝晶生长,插入AlGaN中间层的样品其量子阱周期性良好,界面平直且陡峭,通过Z衬度像对量子阱层各层成分进行分析后发现各层成分分布均匀,GaN层和AlGaN层间没有Al元素的扩散。
     利用高分辨透射电镜和傅立叶变换处理技术对各层界面微结构进行了分析。发现GaN缓冲层与α-Al_2O_3衬底界面处存在大量的位错和层错等缺陷,很好的释放了失配应力;AlGaN中间层的引入阻挡了来自于GaN缓冲层的位错,同时又产生了新的失配位错,但均被限制在界面处,从而提高了量子阱功能层的晶体质量;GaN/AlN短周期超晶格中间层的引入并没有对位错传播和膜层应力状态产生明显影响;分析了V型缺陷和位错类型之间的关系。
     通过弱束暗场技术对位错分布、密度和类型进行了分析,发现位错以刃型位错为主,位错密度在10~8-10~9cm~(-2)范围内,穿透位错起源于GaN缓冲层与α-Al_2O_3衬底界面,并向上传播,在不同界面处受到一定程度的阻挡。表征了四种位错反应类型;利用几何相位分析技术分析了界面处应力场的变化,通过明暗衬度确定了位错的应变状态。
     利用阴极荧光和扫描电镜技术,研究了表面裂纹、V型坑和位错对多量子阱薄膜发光特性的影响。研究表明多量子阱薄膜的发光谱中峰值波长在550nm的发光峰来源于杂质原子和点缺陷等形成的缺陷能级辐射复合发光所致;表面位错作为非辐射复合中心,表面V型坑不发光,但降低了载流子浓度和迁移率,进而降低了子带间吸收的强度。
     利用傅立叶红外光谱技术,研究了GaN/AlGaN多量子阱薄膜的红外吸收特性。测试结果显示插入AlGaN中间层的样品存在峰值波长在3.75μm的中波红外吸收,分析认为其对应于量子阱1、2子能级的跃迁。综合分析后认为高的位错密度和量子阱周期厚度的不均匀引起的极化电场减弱和载流子浓度降低是导致子带间跃迁消失的主要原因。
     通过对GaN/AlGaN多量子阱薄膜显微结构的深入分析,揭示了显微缺陷与薄膜制备工艺之间的关联规律,并在“能带工程”基础上进一步分析了显微结构与薄膜的光学和电学性能之间的内在关系,为基于GaN/AlGaN多量子阱材料实现中波红外探测奠定了基础。
Nowadays, GaN-based Multiple Quantum Well (MQW) films have beenattracted much attention as a candidate for photodetector which could be used inultraviolet and infrared region. Detector performance is highly influenced by thecrystal quality of epitaxial films, therefore, the study on the crystal quality anddefects of epitaxial MQW films is very important. In this letter, GaN/AlGaN MQWfilms are designed, the influence of different intermediate layers on the properties ofepitaxial thin film morphology, defects and interface structures are investigatived.The optical and electrical properties of MQW films are characterized, themid-infrared absorption of MQW films have been obtained. The impact ofmicroscopic defects was researched on the intersubband transition in MQW films.The main content of this thesis including:
     The energy levels of GaN/AlGaN MQW are calculated through self-consistentsolutions of Schr dinger equation and Poisson equation. When the doping density ofwell layers was between10~(19)cm-3and10~(20)cm-3,the energy level of MQW areobviously varied, which will caused the change of intersubband absorption. Thechanging of Al content of cap layer on the top will lead to blue-shifted ofintersubband absorption wavelength. When the dislocation density was lower than10~(10)cm~(-2), the intersubband energy level will not vary with the change of dislocationdensity. With the same thickness and Al content, the affected thickness ofGaN/AlGaN MQW films with the AlGaN intermediate layer is thicker than the onewhich with the GaN/AlN short period superlattice intermediate layer. Therefore, itwill decrease the symmetry of quantum well energy levels, and then reduce theintensity of intersubband absorption.
     We have grown GaN/AlGaN MQW films with different intermediate layers byMetal-Organic Chemical Vapor Deposition (MOCVD). Surface cracks wereinvestigated through optical microscope and scanning electron microscopy. Cracksmainly along the <11-20> direction, distribution of cracks are not correlation withsurface dislocations, the inserting of intermediate layer release the strain in a certainextent and reduce the crack density. The step flow growth mode was proved throughatomic force microscope, at the same time hexagonal spiral hillocks arised fromscrew dislocations were observed.
     The crystal quality and interface structure of films were analyzed byhigh-resolution X-ray diffraction and high-resolution transmission electronmicroscopy, it is observed that the growth of epitaxial layers and substrates wasbelong to pseudomorphic growth. The film with the AlGaN intermediate layer shown well periodicity, straight and sharp interface. Z-contrast image analysisindicated that compositions were uniform. No diffusion of Aluminum element wasfound between the GaN layer and the AlGaN layer.
     Interface microstructures of different layers were examined by high-resolutiontransmission electron microscopy and Fourier transform processing technology. It isfound that a large number of dislocations existed at the interface between the GaNbuffer layer and the α-Al_2O_3substrate, which play a key role to release misfit stress.The AlGaN intermediate layer blocked threading dislocations which origined fromthe GaN buffer layer, however, new misfit dislocations generated at the interface.Misfit dislocations were confined at the interface. So the crystal quality of quantumwell layers was improved, the introduction of GaN/AlN short period superlatticeintermediate layer did not affect dislocation distribution and films stress state.Furthermore, the relationship between V-typed defects and dislocations wasanalyzed.
     Dislocation density, distribution, and types were investigated through weakbeam dark field image. It is found that dislocations are mainly edged-typedislocations, with a density between10~8cm~(-2)and10~9cm~(-2). Threading dislocationsorigined at the interface between the GaN buffer layer and the α-Al_2O_3substrate,and then spreaded upwards. Dislocations were blocked at different interfaces. Fourtypes of dislocation reaction were mannered. Stress field changes were analyzed bygeometric phase analysis technique,strain state of dislocations were recongnizedthrough the light and dark contrast.
     The effect of Surface cracks, V-typed pits and dislocations on luminescenceproperties of MQW films have been studied by cathodoluminescence spectra andscanning electron microscopy. It is shown that the peak located at550nm originedfrom radiative recombination, which resulted from the defect state caused byabsorpation of donor and point defects. The surface dislocation and V-typed defectsacted as non-radiative recombination centers, decreased the carrier density, and thenreduced the rate of intersubband transition.
     Infrared absorption properties of GaN/AlGaN MQW films were studied byFourier transform infrared spectroscopy. The result shown the sample with AlGaNmiddle layer had an infrared absorption with a peak wavelength corresponding to3.75μm, it is believe that the absorption arised from the transition between first andsecond subband level. The disappearance of intersubband transition in sample2wasdue to high defect density and reduced polar field caused by nonuniform thicknessof quantum wells.
     Through the analysis of microstructure of MQW films, the association wasshown between microscopic defects and film growth. According to the furtheranalysis of the intrinsic relationship between the microstructure and the optical-electrical properties of films, some improvement was maded on GaN/AlGaNMQW films to achieve the mid-wave infrared detection.
引文
[1] I. Vurgaftman, J. R. Meyer, L. R. Ram-Mohan. Band parameters for III–Vcompound semiconductors and their alloys[J]. J. Appl. Phys,2001,89(11):5815.
    [2] N. G. Toledo, D. J. Friedman, R. M. Farrell, et al. Design of integratedIII-nitride/non-III-nitride tandem photovoltaic devices[J]. J. Appl. Phys,2012,111(5):054503.
    [3] D. Jena, J. Simon, A. Wang, et al. Polarization-engineering in groupIII-nitride heterostructures: New opportunities for device design[J]. Phys.Status Solidi a-Applications and Materials Science,2011,208(7):1511-1516.
    [4] T. Mizutani, H. Yamada, S. Kishimoto, et al. Normally off AlGaN/GaN highelectron mobility transistors with p-InGaN cap layer[J]. J. Appl. Phys,2013,113(3):034502.
    [5] Nidhi, D. F. Brown, S. Keller, et al. Very Low Ohmic Contact Resistancethrough an AlGaN Etch-Stop in Nitrogen-Polar GaN-Based High ElectronMobility Transistors[J]. J. J. Appl. Phys,2010,49(2):021005.
    [6] S. Sakr, E. Giraud, A. Dussaigne, et al. Two-color GaN/AlGaN quantumcascade detector at short infrared wavelengths of1and1.7μm[J]. Appl. Phys.Lett,2012,100(18):181103.
    [7] F. F. Sudradjat, W. Zhang, J. Woodward, et al. Far-infrared intersubbandphotodetectors based on double-step III-nitride quantum wells[J]. Appl. Phys.Lett,2012,100(24):241113.
    [8] M. Tchernycheva, F. H. Julien, E. Monroy, Review of nitride infraredintersubband devices[C], in Gallium Nitride Materials and Devices V, J.I.Chyi, et al. Editors. Bellingham: Spie-Int Soc Optical Engineering.2010:76021A-12.
    [9] V.V. Buniatyan, V.M. Aroutiounian. Wide gap semiconductor microwavedevices[J]. J. Phys. D-Applied Physics.2007,40(20):6355-6385.
    [10] K.H. Lee, P.C. Chang, S.J. Chang, et al. GaN-based Schottky barrierultraviolet photodetector with a5-pair AlGaN-GaN intermediate layer[J].Phys. Status Solidi a-Applications and Materials Science,2012,209(3):579-584.
    [11] H. Yoshida, M. Kuwabara, Y. Yamashita, et al. The current status ofultraviolet laser diodes[J]. Phys. Status Solidi a-Applications and MaterialsScience,2011,208(7):1586-1589.
    [12] W. C. Johnson, J. B. Parson, M. C. Crew. Nitrogen Compounds of Gallium.III[J]. J. Phys. Chem,1932,36(10):2651-2654.
    [13] J. I. Pankove, E. A. Miller, D. Richman, et al. Electroluminescence in GaN[J].Journal of Luminescence,1971,4(1):63-66.
    [14] H. Amano, N. Sawaki, I. Akasaki, et al. Metalorganic vapor phase epitaxialgrowth of a high quality GaN film using an AlN buffer layer[J]. Appl. Phys.Lett,1986,48(5):353.
    [15] H. Amano, M. Kito, K. Hiramatsu, et al. P-Type Conduction in Mg-DopedGan Treated with Low-Energy Electron-Beam Irradiation (Leebi)[J]. J. J.Appl. Phys Part2-Letters,1989,28(12): L2112-L2114.
    [16] S. Nakamura, T. Mukai, M. Senoh. High-Power GaN P-N-JunctionBlue-Light-Emitting Diodes[J]. J. J. Appl. Phys Part2-Letters,1991,30(12A): L1998-L2001.
    [17] M. Meneghini, A. Tazzoli, G. Mura, et al. A Review on the PhysicalMechanisms That Limit the Reliability of GaN-Based LEDs[J]. IEEETransactions on Electron Devices,2010,57(1):108-118.
    [18] S. Nakamura. First III-V-nitride-based violet laser diodes[J]. J.Cryst.Growth,1997,170(1-4):11-15.
    [19] S. Nakamura, M. Senoh, S. Nagahama, et al. Room-temperaturecontinuous-wave operation of InGaN multi-quantum-well structure laserdiodes[J]. Appl. Phys. Lett,1996,69(26):4056-4058.
    [20] T. Takeuchi, T. Detchprohm, M. Iwaya, et al. Nitride-based laser diodes usingthick n-AlGaN layers[J]. J. Electron. Mater,,2000,29(3):302-305
    [21] S. Nakamura, M. Senoh, S. Nagahama, et al. InGaN/GaN/AlGaN-based laserdiodes with modulation-doped strained-layer superlattices[J]. J. J. Appl. PhysPart2-Letters,1997,36(12A): L1568-L1571
    [22] S. Nakamura, M. Senoh, S. Nagahama, et al. InGaN/GaN/AlGaN-based laserdiodes with modulation-doped strained-layer superlattices grown on anepitaxially laterally overgrown GaN substrate[J]. Appl. Phys. Lett,1998,72(2):211-213
    [23] M. Razeghi, A. Rogalski. Semiconductor ultraviolet detectors[J]. J. Appl.Phys,1996,79(10):7433-7473
    [24] J. D. Brown, Z. H. Yu, J. Matthews, et al. Visible-blind UV digital camerabased on a32x32array of GaN/AlGaN p-i-n photodiodes[J]. Mrs InternetJournal of Nitride Semiconductor Research,1999,4(9): art. no.-9.
    [25] J.D. Brown, J. Matthews, S. Harney, et al. High-sensitivity visible-blindAlGaN photodiodes and photodiode arrays[J]. Mrs Internet Journal of NitrideSemiconductor Research,2000,5: art. no.-W1.9
    [26] R. Mcclintock, K. Mayes, A. Yasan, et al.320x256solar-blind focal planearrays based on AlxGa1-xN[J]. Appl. Phys. Lett,2005,86(1):011117-3.
    [27]李雪,亢勇,徐运华,等. GaN基p-i-n紫外探测器[C].中国光学学会2004年学术大会会议论文集.中国光学学会2004:4.
    [28]龚海梅,李向阳,亢勇,等. Ⅲ族氮化物紫外探测器及其研究进展[J].激光与红外,2005(11):17-21.
    [29]丁嘉欣,成彩晶,张向锋,等.背入射AlxGa1-xN64×1线列焦平面太阳光盲探测器[J].激光与红外,2009, v.39(02):187-189.
    [30]颜廷静,种明,赵德刚,等.246nm p-i-n型背照AlGaN太阳盲紫外探测器的研制[J].红外与激光工程,2011,40(01):32-35.
    [31] P. Xu, Y. Jiang, Y. Chen, et al. Analyses of2-DEG characteristics in GaNHEMT with AlN/GaN super-lattice as barrier layer grown by MOCVD[J].Nanoscale Res. Lett,2012,7(1):141.
    [32] O. Ambacher, J. Majewski, C. Miskys, et al. Pyroelectric properties ofAl(In)GaN/GaN hetero-and quantum well structures[J]. J. Phys.-CondensedMatter,2002,14(13):3399-3434.
    [33] S. C. Jain, M. Willander, J. Narayan, et al. III-nitrides: Growth,characterization, and properties[J]. J. Appl. Phys,2000,87(3):965-1006.
    [34] H. Morkoc. Handbook of Nitride Semiconductors and Devices[M].2008:142
    [35] M. Tchernycheva, L. Nevou, L. Doyennette, et al. Systematic experimentaland theoretical investigation of intersubband absorption in GaN AlN quantumwells[J]. Phys. Rev. B,2006,73(12):125347
    [36] H. Amano, M. Kitoh, K. Hiramatsu, et al. UV and Blue Electroluminescencefrom Al/GaN-Mg/GaN LED Treated with Low-Energy Electron-BeamIrradiation (Leebi)[J]. Institute of Physics Conference Series,1990(106):725-730.
    [37] J. Han, M. H. Crawford, MOCVD growth of AlGaN UV LEDs, inOptoelectronic Materials and Devices[C], M. Osinski and Y.K. Su, Editors.Bellingham: Spie-Int Soc Optical Engineering,1998:46-50.
    [38] Y. Taniyasu, M. Kasu, T. Makimoto. An aluminium nitride light-emittingdiode with a wavelength of210nanometres[J]. Nature,2006,441(7091):325-8.
    [39] H. Hirayama, T. Yatabe, N. Noguchi, et al. Development of230-270nmAlGaN-Based Deep-UV LEDs[J]. Electronics and Communications in Japan,2010,93(3):24-33.
    [40] K. P. Korona, A. Drabinska, P. Caban, et al. Tunable GaN/AlGaN ultravioletdetectors with built-in electric field[J]. J. Appl. Phys,2009,105(8):083712.
    [41] A. Asgari, E. Ahmadi, M. Kalafi. AlxGa1-xN/GaN multi-quantum-wellultraviolet detector based on p-i-n heterostructures[J]. MicroelectronicsJournal,2009,40(1):104-107.
    [42] P. Ruteranna, M. Albrecht, J. Neugebauer, Nitride Semiconductors-Handbookon Materials and Devices[M]. WILEY-VCH.2003:817.
    [43] M. Leszczynski, T. Suski, H. Teisseyre, et al. Thermal-Expansion of GalliumNitride[J]. J. Appl. Phys,1994,76(8):4909-4911.
    [44] S. Keller, S. Heikman, L. Shen, et al. GaN-GaN junctions with ultrathin AlNinterlayers: Expanding heterojunction design[J]. Appl. Phys. Lett,2002,80(23):4387-4389.
    [45] M. Imura, N. Fujimoto, N. Okada, et al. Annihilation mechanism of threadingdislocations in AlN grown by growth form modification, method using V/IIIratio[C].1st International Symposium on Growth of Nitrides, Linkoping,SWEDEN: Elsevier Science Bv.2006:136-140.
    [46] J. Han, M.H. Crawford, R.J. Shul, et al. Monitoring and controlling of strainduring MOCVD of AlGaN for UV optoelectronics[J]. Mrs Internet Journal ofNitride Semiconductor Research,1999,4: art. no.-G7.
    [47] S. Nicolay, E. Feltin, J. F. Carlin, et al. Indium surfactant effect on AlN/GaNheterostructures grown by metal-organic vapor-phase epitaxy: Applicationsto intersubband transitions[J]. Appl. Phys. Lett,2006,88(15):151902.
    [48] L. Esaki, R. Tsu. Superlattice and Negative Differential Conductivity inSemiconductors. IBM Journal of Research and Development,1970,14(1):61-65
    [49] L. C. West, S. J. Eglash.1st Observation of an Extremely Large-DipoleInfrared Transition within the Conduction-Band of a GaAs Quantum Well[J].Appl. Phys. Lett,1985,46(12):1156-1158.
    [50] B. F. Levine. Quantum-well infrared photodetectors[J]. J. Appl. Phys,1993,74(8): R1-R81.
    [51] N. Suzuki, N. Iizuka. Feasibility study on ultrafast nonlinear opticalproperties of1.55μm intersubband transition in AlGaN/GaN quantumwells[J]. J. J. Appl. Phys, Part2-Letters,1997,36(8A): L1006-L1008.
    [52] N. Iizuka, K. Kaneko, N. Suzuki, et al. Ultrafast intersubband relaxation(<150fs) in AlGaN/GaN multiple quantum wells[J]. Appl. Phys. Lett,2000,77(5):648-650.
    [53] K. T. Tsen, J. D. Heber, C. F. Gmachl, et al. Ultrafast intersubband transitionsin GaN/AlGaN heterostructures at1.55μm wavelength[C]. Proceedings ofSPIE Vol.5352.2004,5352:134-143.
    [54] D. Hofstetter, S. S. Schad, H. Wu, et al. GaN/AlN-based quantum-wellinfrared photodetector for1.55μm[J]. Appl. Phys. Lett,2003,83(3):572.
    [55] E. Baumann, F. R. Giorgetta, D. Hofstetter, et al. Intersubbandphotoconductivity at1.6μm using a strain-compensated AlN/GaNsuperlattice[J]. Appl. Phys. Lett,2005,87(19):191102.
    [56] P. Holmstrom. Electroabsorption modulator using intersubband transitions inGaN-AlGaN-AlN step quantum wells[J]. IEEE Journal of QuantumElectronics,2006,42(7-8):810-819.
    [57] C. Gmachl, H. M. Ng, A. Y. Cho. Intersubband absorption in GaN-AlGaNmultiple quantum wells in the wavelength range of1.75–4.2μm[J]. Appl.Phys. Lett,2000,77:334-336.
    [58] M. P. Halsall, B. Sherliker, P. Harrison, et al. Electronic Raman scatteringfrom intersubband transitions in GaN/AlGaN quantum wells[C].5thInternational Conference on Nitride Semiconductors (Icns-5), Proceedings.2003,0(7):2662-2665.
    [59] E. Monroy, F. Guillot, B. Gayral, et al. Observation of hot luminescence andslow intersubband relaxation in Si-doped GaN/AlxGa1-xN (x=0.11,0.25)multi-quantum-well structures[J]. J. Appl. Phys,2006,99(9):093513.
    [60] Y. Kotsar, B. Doisneau, E. Bellet-Amalric, et al. Strain relaxation inGaN/AlxGa1-xN superlattices grown by plasma-assisted molecular-beamepitaxy[J]. J. Appl. Phys,2011,110(3):033501.
    [61] P. K. Kandaswamy, C. Bougerol, D. Jalabert, et al. Strain relaxation inshort-period polar GaN/AlN superlattices[J]. J. Appl. Phys,2009,106(1):013526.
    [62] P. K. Kandaswamy, H. Machhadani, C. Bougerol, et al. Midinfraredintersubband absorption in GaN/AlGaN superlattices on Si(111) templates[J].Appl. Phys. Lett,2009,95(14):141911.
    [63] P. K. Kandaswamy, H. Machhadani, Y. Kotsar, et al. Effect of doping on themid-infrared intersubband absorption in GaN/AlGaN superlattices grown onSi(111) templates[J]. Appl. Phys. Lett,2010,96(14):141903.
    [64] C. Bayram. High-quality AlGaN/GaN superlattices for near-and mid-infraredintersubband transitions. J. Appl. Phys,2012,111(1):013514.
    [65] R. J. Molnar, W. Gotz, L.T. Romano, et al. Growth of gallium nitride byhydride vapor-phase epitaxy[J]. J.Cryst.Growth,1997,178(1-2):147-156.
    [66] Y. Kumagai, T. Yamane, T. Miyaji, et al. Hydride vapor phase epitaxy of AlN:thermodynamic analysis of aluminum source and its application to growth[C].5th International Conference on Nitride Semiconductors (Icns-5),Proceedings.2003,0(7):2498-2501.
    [67] C. Hemmingsson, P. P. Paskova, G. Pozina, et al. Growth of bulk GaN in avertical hydride vapour phase epitaxy reactor[J]. Superlattices andMicrostructures,2006,40(4-6):205-213.
    [68] S. Nakamura, Y. Harada, M. Seno. Novel Metalorganic ChemicalVapor-Deposition System for GaN Growth[J]. Appl. Phys. Lett,1991,58(18):2021-2023.
    [69] B. C. Joshi, M. Mathew, D. Kumar, et al. Characterization of GaN/AlGaNepitaxial layers grown by metalorganic chemical vapour deposition for highelectron mobility transistor applications[J]. Pramana-Journal of Physics,2010,74(1):135-141.
    [70] D. D. Koleske, A. E. Wickenden, R. L. Henry, et al. Growth model for GaNwith comparison to structural, optical, and electrical properties[J]. J. Appl.Phys,1998,84(4):1998-2010.
    [71] P. K. Kandaswamy, F. Guillot, E. Bellet-Amalric, et al. GaN/AlNshort-period superlattices for intersubband optoelectronics: A systematicstudy of their epitaxial growth, design, and performance[J]. J. Appl. Phys,2008,104(9):093501.
    [72] K. Hiramatsu, H. Amano, I. Akasaki, et al. Movpe Growth of GaN on aMisoriented Sapphire Substrate[J]. J.Cryst.Growth,1991,107(1-4):509-512.
    [73] S. Krasavin. Electron scattering due to dislocation wall strain field in GaNlayers[J]. J. Appl. Phys,2009,105(12):126104.
    [74] C.G. Van De Walle. First-principles calculations for defects and impurities:Applications to III-nitrides[J]. J. Appl. Phys,2004,95(8):3851.
    [75] S. Krasavin. Mobility in epitaxial GaN: Limitation of electron transport dueto dislocation walls[C]. International Conference on Theoretical PhysicsDubna-Nano2010,2010,248:012052.
    [76] E. Baghani, S.K. O'leary. Dislocation line charge screening within n-typegallium nitride[J]. J. Appl. Phys,2013,113(2):023709.
    [77] R. D. Dupuis, J. Park, P. A. Grudowski, et al. Selective-area and lateralepitaxial overgrowth of III-N materials by metalorganic chemical vapordeposition[J]. J.Cryst.Growth,1998,195(1-4):340-345.
    [78] S. J. Hearne, J. Han, S. R. Lee, et al. Brittle-ductile relaxation kinetics ofstrained AlGaN/GaN heterostructures. Appl. Phys. Lett,2000,76(12):1534-1536
    [79] E. V. Etzkorn, D. R. Clarke. Cracking of GaN films[J]. J. Appl. Phys,2001,89(2):1025.
    [80] D. Rudloff, T. Riemann, J. Christen, et al. Stress analysis of AlxGa1-xN filmswith microcracks[J]. Appl. Phys. Lett,2003,82(3):367-369.
    [81] S. K. Hong, T. Yao, B. J. Kim, et al. Origin of hexagonal-shaped etch pitsformed in (0001) GaN films[J]. Appl. Phys. Lett,2000,77(1):82-84.
    [82] B. Pecz, Z. Makkai, M. A. Di Forte-Poisson, et al. V-shaped defectsconnected to inversion domains in AlGaN layers[J]. Appl. Phys. Lett,2001,78(11):1529-1531.
    [83] C. L. Progl, C. M. Parish, J. P. Vitarelli, et al. Analysis of V defects inGaN-based light emitting diodes by scanning transmission electronmicroscopy and electron beam induced current[J]. Appl. Phys. Lett,2008,92(24):242103.
    [84] J. E. Northrup, R. Difelice, J. Neugebauer. Energetics of H and NH2onGaN(10-10) and implications for the origin of nanopipe defects[J]. Phys. Rev.B,1997,56(8): R4325-R4328
    [85] J. Y. Kang, S. Tsunekawa, B. Shen, et al. Nanopipes in undoped AlGaNepilayers[J]. J.Cryst.Growth,2001,229(1):58-62.
    [86] M. Hawkridge, D. Cherns, Oxygen segregation to nanopipes in galliumnitride, in GaN, AIN, InN and Related Materials[M], M. Kuball, et al.,Editors. Warrendale, Materials Research Society:2006.543-548.
    [87] F. Y. Meng, I. Han, H. Mcfelea, et al. Sapphire surface pits as sources ofthreading dislocations in hetero-epitaxial GaN layers[J]. Scripta Mater,2011,65(3):257-260.
    [88] M. E. Hawkridge, D. Cherns. Oxygen segregation to dislocations in GaN[J].Appl. Phys. Lett,2005,87(22):221903.
    [89] I. G. Batyrev, W. L. Sarney, T. S. Zheleva, et al. Dislocations and stackingfaults in hexagonal GaN[J]. Phys. Status Solidi a-Applications and MaterialsScience,2011,208(7):1566-1568.
    [90] T. Mattila, R. M. Nieminen. Ab initio study of oxygen point defects in GaAs,GaN, and AlN[J]. Phys. Rev. B. Condens Matter,1996,54(23):16676-16682.
    [91] A. Uedono, S. Ishibashi, T. Ohdaira, et al. Point defects in group-III nitridesemiconductors studied by positron annihilation[J]. J.Cryst.Growth,2009,311(10):3075-3079.
    [92] A. Uedono, H. Nakamori, K. Narita, et al. Vacancy-type defects in Mg-dopedInN probed by means of positron annihilation[J]. J. Appl. Phys,2009,105(5):054507.
    [93] S. Yamaguchi, M. Kariya, S. Nitta, et al. Control of crystalline quality ofMOVPE-grown GaN and (Al,Ga)N-AlGaN MQW using In-doping and-or N2carrier gas[J]. J.Cryst.Growth,2000,221:327-331.
    [94] R. M. Farrell, D. A. Haeger, X. Chen, et al. Effect of carrier gas and substratemisorientation on the structural and optical properties of m-planeInGaN/GaN light-emitting diodes[J]. J.Cryst.Growth,2010,313(1):1-7
    [95] Q. Q. Zhuang, W. Lin, J. Y. Kang. Effect of In-Adlayer on AlN (0001) and(000-1) Polar Surfaces[J]. Journal of Physical Chemistry C,2009,113(23):10185-10188.
    [96] E. R. Letts, J. S. Speck, S. Nakamura. Effect of indium on the physical vaportransport growth of AlN[J]. J.Cryst.Growth,2009,311(4):1060-1064.
    [97] F. Bernardini, V. Fiorentini, D. Vanderbilt. Spontaneous polarization andpiezoelectric constants of III-V nitrides[J]. Phys. Rev. B,1997,56(16):10024-10027.
    [98] S. B. Li, M. E. Ware, J. Wu, et al. Polarization doping: Reservoir effects ofthe substrate in AlGaN graded layers[J]. J. Appl. Phys,2012,112(5):053711.
    [99]雷双瑛,沈波,张国义. AlxGa1-xN/GaN双量子阱的结构和掺杂浓度对子带间跃迁波长和吸收系数的影响[J].物理学报,2008(04):2386-2391.
    [100] A. Koukitu, N. Takahashi, H. Seki. Thermodynamic study on metalorganicvapor-phase epitaxial growth of group III nitrides[J]. J. J. Appl. Phys. Part2-Letters.1997,36(9ab): L1136-L1138.
    [101] S. K. Duan. D. C. Lu. Quasi-thermodynamic analysis of MOVPE ofAlGaN[J]. J.Cryst.Growth,2000,208:73-78.
    [102]陆大成,段树坤,金属有机化合物气相外延基础及应用[M].北京:科学出版社,2009:93-95.
    [103] K. Matsumoto, A. Tachibana. Growth mechanism of atmospheric pressureMOVPE of GaN and its alloys: gas phase chemistry and its impact on reactordesign[J]. J.Cryst.Growth,2004,272(1-4):360-369.
    [104] T. G. Mihopoulos, S. G. Hummel, K. F. Jensen. Simulation of flow andgrowth phenomena in a close-spaced reactor[J]. J.Cryst.Growth,1998,195(1-4):725-732.
    [105] R. D. Dupuis. Epitaxial growth of III-V nitride semiconductors bymetalorganic chemical vapor deposition[J]. J.Cryst.Growth,1997,178(1-2):56-73.
    [106] M. A. Moram, M. E. Vickers. X-ray diffraction of III-nitrides[J]. Reports onProgress in Physics,2009,72(3):036502.
    [107] Y. Huang, Optical Characterization of III Nitride Semiconductors UsingCathodoluminescence Techniques[D]. ARIZONA STATE UNIVERSITY,2011:24-26
    [108] D. B. Williams, Transmission Electron Microscopy: A Textbook for MaterialsScience[M]. Springer,2009.141-143.
    [109]雷双瑛, AlxGa1-xN/GaN双量子阱中子带间跃迁的研究[D].北京:北京大学博士学位论文,2006:27-35.
    [110] H. W. Jang, J. H. Lee, J. L. Lee. Characterization of band bendings onGa-face and N-face GaN films grown by metalorganic chemical-vapordeposition[J]. Appl. Phys. Lett,2002,80(21):3955-3957.
    [111] H. W. Jang, K. W. Ihm, T. H. Kang, et al. Polarization-induced surface bandbendings of GaN films studied by synchrotron radiation photoemissionspectroscopy[J]. Phys. Status Solidi B-Basic Research,2003,240(2):451-454.
    [112] A. E. Romanov, G. E. Beltz, P. Cantu, et al. Cracking of III-nitride layerswith strain gradients[J]. Appl. Phys. Lett,2006,89(16):161922.
    [113] B. Heying, E. J. Tarsa, C. R. Elsass, et al., Dislocation mediated surfacemorphology of GaN[J]. J. Appl. Phys,1999,85:6470-6476.
    [114] S. E. Bennett, D. Holec, M. J. Kappers, et al. Imaging dislocations in galliumnitride across broad areas using atomic force microscopy[J]. Rev Sci Instrum.2010,81(6):063701.
    [115]许振嘉,半导体的检测与分析[M].北京:科学出版社.2007:114-118.
    [116] J. C. Zhang, D. G. Zhao, J. F. Wang, et al. The influence of AlN buffer layerthickness on the properties of GaN epilayer[J]. J.Cryst.Growth,2004,268(1-2):24-29.
    [117] G. P. Dimitrakopulos, E. Kalesaki, P. Komninou, et al. Strain accommodationand interfacial structure of AlN interlayers in GaN[J]. Crystal Research andTechnology,2009,44(10):1170-1180.
    [118]贺小庆,温才,卢朝靖,等. AlSb/GaAs异质外延薄膜应变的HRTEM几何相位分析[J].电子显微学报,2009, v.28(04):338-342.
    [119] J. R. Gong, C. L. Yeh, Y. L. Tsai, et al. Influence of AlN/GaN strainedmulti-layers on the threading dislocations in GaN films grown by alternatesupply of metalorganics and NH3[J]. Materials Science and EngineeringB-Solid State Materials for Advanced Technology,2002,94(2-3):155-158.
    [120] Y. L. Tsai, J. R. Gong. Influence of low-temperature AlGaN intermediatemultilayer structures on the growth mode and properties of GaN[J]. OpticalMaterials,2004,27(3):425-428.
    [121] E. Niikura, K. Murakawa, F. Hasegawa, et al. Improvement of crystal qualityof AlN and AlGaN epitaxial layers by controlling the strain with theAlN/GaN multi-buffer layer[J]. J.Cryst.Growth,2007,298(0):345-348.
    [122] D. J. Won, X. J. Weng, J. M. Redwing. Effect of indium surfactant on stressrelaxation by V-defect formation in GaN epilayers grown by metalorganicchemical vapor deposition[J]. J. Appl. Phys,2010,108(9):093511.
    [123] L. Zhou, M. R. Mccartney, D. J. Smith, et al. Observation ofdodecagon-shape V-defects in GaN/AlInN multiple quantum wells[J]. Appl.Phys. Lett,2010,97(16):161902.
    [124] J. I. Goldstein, D. E. Newberry, P. Echlin, et al. Scanning ElectronMicroscopy and X-ray Microanalysis[M]. Springer.2003:131.
    [125] S. L. Selvaraj, A. Watanabe, T. Egawa. Influence of deep-pits on the devicecharacteristics of metal-organic chemical vapor deposition grownAlGaN/GaN high-electron mobility transistors on silicon substrate[J]. Appl.Phys. Lett,2011,98(25):252105.
    [126] U. Jahn, O. Brandt, E. Luna, et al. Carrier capture by threading dislocationsin (In,Ga)N/GaN heteroepitaxial layers[J]. Phys. Rev. B,2010,81(12):125314.
    [127] M. Albrecht, A. Cremades, J. Krinke, et al. Carrier recombination at screwdislocations in n-type AlGaN layers[J]. Phys. Status Solidi B-Basic Research.1999,216(1):409-414.
    [128] J. Elsner, R. Jones, P. K. Sitch, et al. Theory of threading edge and screwdislocations in GaN[J]. Physical Review Letters,1997,79(19):3672-3675.
    [129] Z. Y. Gao, Y. Hao, J. C. Zhang, et al. Influence of dislocations in the GaNlayer on the electrical properties of an AlGaN/GaN heterostructure[J].Chinese Physics B,2009,18(11):4970-4975.
    [130]高志远,郝跃,李培咸,等.异质外延GaN中穿透位错对材料发光效率的影响[J].半导体学报,2008(03):521-525.
    [131]高志远.极性宽禁带半导体微结构与新效应研究[D].西安:西安电子科技大学博士学位论文,2010:44-47.
    [132] S. M. Lee, M. A. Belkhir, X. Y. Zhu, et al. Electronic structures of GaN edgedislocations[J]. Phys. Rev. B,2000,61(23):16033-16039.
    [133] A. Gutierrez-Sosa, U. Bangert, A. J. Harvey, et al. Band-gap-related energiesof threading dislocations and quantum wells in group-III nitride films asderived from electron energy loss spectroscopy[J]. Phys. Rev. B,2002,66(3):035302.
    [134] N. Iizuka, K. Kaneko, N. Suzuki. Polarization dependent loss in III-nitrideoptical waveguides for telecommunication devices[J]. J. Appl. Phys,2006,99(9):093107.
    [135] S. Nicolay, E. Feltin, J. F. Carlin, et al. Strain-induced interface instability inGaN/AlN multiple quantum wells[J]. Appl. Phys. Lett,2007,91(6):061927.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700