贵金属纳米颗粒的制备及生物学应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
20世纪80年代初,科学家们发现,当某些材料的尺寸处于介观状态时,其宏观性质会发生巨大的改变,而且当材料的尺寸降至纳米范围时,许多新奇的性能出现了,并且这些性能是不能被传统的理论所预知的。因此,对纳米材料的研究极具挑战性。纳米尺度的贵金属材料(如金、银等),因其突出的催化性质、电性质、磁性质和光学性质,已经成为纳米科技领域中最富有活力的研究热点之一。本论文主要研究金纳米团簇的荧光性质,以及利用银纳米颗粒的局部表面等离子体共振性质来增强硫化铜纳米颗粒在近红外区域的吸收以提高硫化铜纳米颗粒的光热转换效率,使其能更有效地用于光热疗法治疗肿瘤。
     (1)采用谷光甘肽作为稳定剂和温和的还原剂,以不同的比例与三氯化金混合,制备得到红色荧光和近红外荧光的金纳米团簇。运用紫外可见吸收光谱、荧光光谱、HRTEM、FTIR、XPS等技术对金纳米团簇进行表征,发现荧光金纳米团簇粒径很小,约2nm,不具有表面等离子体共振性质,但团簇内含有1价金,因而可以产生荧光。对其发光机理进行初步研究发现,金原子与巯基配体之间杂合轨道的分裂能级是其产生红色荧光和近红外荧光的基础,分别为受激电子从单重态或三重态返回到基态时所发射。同时,我们还对其X射线荧光以及其用于细胞显像进行了初步研究。实验结果显示,荧光金纳米团簇在固体基质中具有X射线荧光性质,在放射性探测和生物靶向传递等方面都可能有进一步的应用。另一方面,细胞可以摄取荧光金纳米团簇,用于细胞显像。
     (2)贵金属纳米颗粒金、银、铜等具有表面等离子体共振性质,在紫外可见光照射下可产生鲜亮的颜色,并且产生一定的热。医学上利用贵金属纳米颗粒的这种性质治疗肿瘤,称为光热疗法。目前常用的光热疗法治疗制剂有金纳米颗粒、碳纳米棒以及硫化铜纳米颗粒。其中硫化铜以其制备简单、成本低、易于修饰,受到了很多科学家的关注。但是其光热转换效率不如金纳米颗粒,于是我们试图利用比金廉价的银纳米颗粒来增强硫化铜纳米颗粒在近红外区域的吸收。因为金和银纳米颗粒具有表面等离子体共振性质,所以可以与Cu2+d-d轨道耦合,增强硫化铜纳米颗粒在近红外区域的光吸收,从而增加其光热转换效率。实验结果证明,Ag/CuS纳米复合物的确比CuS纳米颗粒有更强的近红外吸收,增强了将近4倍,其光热转换效率也得到了进一步加强。利用Ag/CuS纳米复合物的荧光性质,我们研究了其在前列腺肿瘤细胞内的时程吸收。在孵育4个小时后,细胞吸收达到了饱和。当Ag/CuS纳米复合物用于光热疗法治疗肿瘤时,980nm近红外激光作为辐射光源。在0.6W/cm2的照射强度下照射5分钟,就能有效的杀伤肿瘤细胞,达到了美国980nm激光安全辐射范围(0.726W/cm2)的标准。因此,我们认为Ag/CuS纳米复合物是一种极具发展前景的光热疗法治疗制剂。
Since1980s, the scientists have realized that the properties of the materials will be greatly changed if the sizes are reduced in the range of mesoscopic scale. Many novel properties are beyond traditional theories when the materials are nanosized. Thus, they are of challenges. The noble metal nanomaterials have become one of the most active branches in nanotechnological area because of their distinct catalytic, electronic, magnetic, and luminescent properties. In this dissertation, we focus on the luminescent properties of gold nanoparticles and the photo thermal therapy on cancer using Ag/CuS nanocomposites.
     (1) Glutathione as a stabilizer and a soft reducer, were mixed with AuCI2as a1:1or5:4ratio to obtain red luminescent or near-infrared luminescent gold nanoclusters. UV-vis absorption, photoluminescence spectra, high resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and so on, were used to characterize the gold nanoclusters. On one hand, results show that the size of gold nanoclusters is very small about2nm without the representative absorption of surface plasmon resonance around520nm. XPS analysis reveal the nature of luminescent gold nanoparticles with mixed valence states generated from dissociation of polymeric Au(I) thiolates. On the other hand, the potential application of gold nanoclusters in the X-ray luminescence and cell imaging were also explored.
     (2) The noble metal nanoparticles such as gold, silver and copper have the surface plasmon resonance to result In the bright colors. And heat will also be produced to kill cancer cells, which is called photothermal therapy. So far, the common photothermal agents are gold nanoparticles, carbon nanotube and copper sulfide nanoparticles. Cooper sulfide nanoparticles have attracted a lot of attentions from scientists due to simple preparation, low cost and easy modification. However, their photothermal transfer efficiency is not as good as gold nanoparticles. Thus, we try to use the local surface plasmon resonance (LSPR) of silver nanoparticles to enhance the absorption of copper sulfide nanoparticles in the near-infrared region. The results show that the absorbance of CuS nanoparticles in Ag/CuS nanocomposites is enhanced about4times by Ag nanoparticle surface plasmon coupling. The corresponding photothermal transfer efficiency is also enhanced by the temperature measurement in the solution. Using the luminescent properties of Ag/CuS nanocomposites, the time course cell uptake is also carried out. Ag/CuS nanocomposites can get into PC-3cells and are mainly located in their cytoplasm. After4hours incubation, the cell uptake is saturated and the luminescence reaches the brightest. Finally, a power per area of0.6W/cm2with a980nm laser is sufficient to kill cancer cells for Ag/CuS nanocomposite-PTT activation in vitro observations, which is in the range of the conservative limit of980nm laser intensity (0.726W/cm2). In summary, Ag/CuS nanocomposites are a new and promising modality for cancer treatment.
引文
[1]Roco MC. The long view of nanotechnology development:the National Nanotechonology Initiative at 10 years. J Nanopart Res 2011,13:427-445
    [2]Sanchez F, Sobolev K. Nanotechnology in concrete—A review. Construction and Building Materials 2010,24:2060-2071
    [3]Ferrari M. Cancer nanotechnology:opportunities and challenges. Nature Reviews Cancer 2005,5:161-171
    [4]Eustis S, El-Sayed MA. Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev 2006,35: 209-217
    [5]Daniel MC, Astruc D. Gold nanoparticles:assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 2004,104:293-346
    [6]Park WH, Kim ZH. Charge transfer enhancement in the SERS of a single molecule. Nano Lett 2010,10:4040-4048
    [7]Huang X, El-Sayed IH, Qian W, et al. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 2006,128: 2115-2120
    [8]Shao L, Woo KC, Chen H, et al. Angle-and energy-resolved plasmon coupling in gold nanorod dimers. ACS Nano 2010,4(6):3053-3062
    [9]Ming T, Zhao L, Xiao M, et al. Resonance-coupling-based plasmonic switches. Small 2010,6(22):2514-2519
    [10]Feynman RP. There's plenty of room at the bottom. Caltech Engineering and Science 1960,23(5):22-36
    [11]Jensen TR, Malinsky MD, Haynes CL, et al. Nanosphere lithography:tunable localized surface plasmon resonance spectra of silver nanoparticles. J Phys Chem B 2000,104:10549-10556
    [12]Schwartzberg AM, Zhang JZ. Novel optical properties and emerging applications of metal nanostructures. J Phys Chem C 2008,112(28):10323-10337
    [13]Jain PK, El-Sayed IH, El-Sayed MA. Au nanoparticles target cancer. Nano Today 2007,2(1):18-29
    [14]Haes AJ, Zou S, Schatz GC, et al. Nanoscale Optical Biosensor:short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J Phys Chem B 2004,108:6961-6968
    [15]Haes AJ, Zou S, Schatz GC, et al. A nanoscale optical biosensor:the long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J Phys Chem B 2004,108:109-116
    [16]Haes AJ, Van Duyne RP. A unified view of propagating and localized surface plasmon resonance bilsensors. Anal Bioanal Chem 2004,379:920-930
    [17]Okamoto T, Yamaguchi I. Local plasmon sensor with gold colloid monolayers deposited upon glass substrates. Optics Letters 2000,25(6):372-374
    [18]Mie VG. Beitrage zur Optik Truber Medien, speziell Kolloidaler Metallosungen. Ann Phys 1908,25:377-452
    [19]Hao E, Li S, Bailey RC, et al. Optical properties of metal nanoshells. J Phys Chem B 2004,108:1224-1229
    [20]Payne EK, Shuford KL, Park S, et al. Multipole plasmon resonances in gold nanorods. J Phys Chem B 2006,110(5):2150-2154
    [21]Yang WH, Schatz GC, Van Duyne RP. Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes. J Chem Phys 1995,103(3):869-875
    [22]Lou XW, Archer LA, Yang Z. Hollow micro-/nanostructures:synthesis and applications. Adv Mater 2008,20:3987-4019
    [23]Csaki A, Berg S, Jahr N, et al. Plasmonic nanoparticles-noble material for sensoric applications, Gold Nanoparticles:Properties, Characterization and Fabrication, Nova Science Publishers,2010,245-261.
    [24]Fleischmann M, Hendra PJ, McQuillan A. Raman spectra of phyridzne adsorbed at a silver electrode. J Chem Phys Lett 1974,26(2):163-166
    [25]Jeanmaire DJ, VanDuyne RP. Surface enhanced raman spectroscopy. Journal of Electroanalytical Chemistry 1977,84(1):1-20
    [26]Albrecht MG, Creighton JA. Anomalously intense raman spectra of pyridine at a silver electrode. J Am Chem Soc 1977,99(15):5215-5217
    [27]Kneipp K, Wang Y, Kneipp H, et al. Population pumping of excited vibrational states by surface-enhanced raman scattering. Phys Rev Lett 1996,76(14):2444-2447
    [28]Freeman RG, Grabar KC, Allison KJ, et al. Self-assembled metal colloid monolayers: an approach to SERS substrates. Science 1995,267(17):1629-1632
    [29]Shen C, Hui C, Yang T, et al. Monodisperse noble-metal nanoparticles and their surface enhanced Raman scattering properties. Chem Mater 2008,20:6939-6944
    [30]Hossain MK, Kitahama Y, Huang GG, et al. Surface-enhanced Raman scattering: realization of localized surface plasmon resonance using unique substrates and methods. Anal Bioanal Chem 2009,394:1747-1760
    [31]杨群峰,刘建云,陈华萍等,贵金属纳米团簇的制备及在生物检测中的应用,化学进展2011,23(5):880-892
    [32]Sakanaga I, Inada M, Saitoh T, et al. Photoluminescence from excited energy bands in Au25 nanoclusters. Appl. Phys. Express 2011,4:095001
    [33]Zheng J, Dickson RM. Individual water-soluble dendrimer-encapsulated silver nanodot fluorescence. J Am Chem Soc 2002,124 (47):13982-13983
    [34]Zheng J, Zhang C, Dickson RM. Highly fluorescent, water-soluble, size-tunable gold quantum dots. Phys Rev Lett 2004,93(7):077402
    [35]Zheng J, Nicovich PR, Dickson RM. Highly fluorescent noble metal quantum dots. Annu Rev Phys Chem 2007,58:409-431
    [36]Richards CI, Choi S, Hsiang JC, et al. Oligonucleotide-stabilized Ag nanocluster fluorophores. J Am Chem Soc 2008,130 (15):5038-5039
    [37]Novak JP, Brousseau LC, Vance FW, et al. Nonlinear optical properties of molecularly bridged gold nanoparticle arrays. J Am Chem Soc 2000,122: 12029-12030
    [38]Selvakannan PR, Mandal S, Pasricha R, et al. One-step synthesis of hydrophobized gold nanoparticles of controllable size by the reduction of aqueous chloroaurate ions by hexadecylaniline at the liquid-liquid interface. Chem Commun 2002,13: 1334-1335
    [39]Davidovic D, Tinkham M. Coulomb blockade and discrete energy levels in Au nanoparticles. Appl Phys Lett 1998,73:3959-3961
    [40]张树霞、高书燕、杨恕霞等,贵金属纳米材料的研究进展,化学通报2008,71(8):601-608
    [41]Reetz MT, Helbig W, Quaiser SA, et al. Visualization of surfactants on nanostructured palladium clusters by a combination of STM and high-resolution TEM. Science 1995,267(5196):367-369
    [42]Liu Z, Zu Y, Guo S. Synthesis of micron-scale gold nanochains by a modified citrate reduction method. Applied Surface Science 2009,255:5827-5830
    [43]Polte J, Ahner TT, Delissen F, et al. Mechanism of gold nanoparticle formation in the classical citrate synthesis method derived from coupled in situ XANES and SAXS evaluation. J Am Chem Soc 2010,132 (4):1296-1301
    [44]Brinas RP, Hu M, Qian L, et al. Gold nanoparticle size controlled by polymeric Au(I) thiolate precursor size. J Am Chem Soc 2008,130(3):975-982
    [45]Heitsch AT, Smith DK, Patel RN, et al. Multifunctional particles:magnetic nanocrystals and gold nanorods coated with fluorescent dye-doped silica shells. Journal of Solid State Chemistry 2008,181(7):1590-1599
    [46]Smith DK, Korgel BA. The importance of the CTAB surfactant on the colloidal seed-mediated synthesis of gold nanorods. Langmuir 2008,24 (3):644-649
    [47]Cai W, Gao T, Hong H, et al. Applications of gold nanoparticles in cancer nanotechnology. Nanotechnology, Science and Applications 2008,1:17-32
    [48]Faraday M. The bakerian lecture:experimental relations of gold (and other metals) to light. Phil Trans R Soc Lond 1857,147:145-181
    [49]Brust M, Walker M, Bethell D, et al. Synthesis of thiol-derivatized gold nanoparticles in a two-phase liquid-liquid system. J Chem Soc Chem Commun 1994, 7:801-802
    [50]Aligana AK, Duwez AS, Mittler S. Binary mixtures of self-assembled monolayers of 1,8-octanedithiol and 1-octanethiol for a controlled growth of gold nanoparticles. Organic Electronics 2006,7:337-350
    [51]Carotenuto G, Nicolais L. Size-controlled synthesis of thiol-derivatized gold clusters. J Mater Chem 2003,13:1038-1041
    [52]Chiang CL. Controlled growth of gold nanoparticles in aerosol-OT/sorbitan monooleate/isooctane mixed reverse micelles. Journal of Colloid and Interface Science 2000,230(1):60-66
    [53]Esumi K, Kameo A, Suzuki A, et al. Preparation of gold nanoparticles using 2-vinylpyridine telomers possessing multi-hydrocarbon chains as stabilizer. Colloids and Surfaces A:Physicochemical and Engineering Aspects (Colloid. Surf. A) 2001, 176(2-3):233-237
    [54]曹艳丽,丁孝龙, 李红臣等,形貌可控贵金属纳米颗粒的合成、光学性质及生 长机制,物理化学学报2011,27(6):1273-1286
    [55]Yener DO, Sindel J, Randall CA, et al. Synthesis of nanosized silver platelets in octylamine-waterbilayer systems. Langmuir 2002,18(22):8692-8699
    [56]Wei G, Zhou H, Liu Z, et al. One-step synthesis of silver nanoparticles, nanorods, and nanowires on the surface of DNA network, J Phys Chem B 2005,109(18): 8738-8743
    [57]Zhang J, Liu H, Wang Z, et al. Shape-selective synthesis of gold nanoparticles with controlled sizes, shapes, and plasmon resonances. Adv Funct Mater 2007,17(16): 3295-3303
    [58]Kim F, Song JH, Yang P. Photochemical synthesis of gold nanorods. J Am Chem Soc 2002,124(48):14316-14317
    [59]Jana NR, Gearheart L, Murphy C. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv Mater 2001,13(18):1389-1393
    [60]Han YJ, Kim JM, Stucky GD. Preparation of noble metal nanowires using hexagonal mesoporous silica SBA-15. Chem Mater 2000,12(8):2068-2069
    [61]Martin CR. Membrane-based synthesis of nanomaterials. Chem Mater 1996,8(8): 1739-1746
    [62]Tsuji T, Higuchi T, Tsuji M. Laser-induced structural conversions of silver nanoparticles in pure water—influence of laser intensity. Chem Lett 2005,34(4): 476-477
    [63]Tang B, Xu SP, An J, et al. Photoinduced shape conversion and reconstruction of silver nanoprisms. J Phys Chem C 2009,113 (17):7025-7030
    [64]Yang S, Zhang T, Zhang L, et al. Morphological transition of gold nanostructures induced by continuous ultraviolet irradiation. Nanotechnology 2006,17(22): 5639-5643
    [65]Zhang Q, Ge JP, Pham T, et al. Reconstruction of silver nanoplates by UV irradiation: tailored optical properties and enhanced stability. Angew Chem 2009,121(19): 3568-3571
    [66]Jia H, XuW, An J, et al. A simple method to synthesize triangular silver nanoparticles by light irradiation. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy (Spectrochim. Acta PartA) 2006,64(4):956-960
    [67]Jin RC, Cao YW, Mirkin CA, et al. Photoinduced conversion of silver nanospheres to nanoprisms. Science 2001,294(5548):1901-1903
    [68]Hone DC, Haines AH, Russell DA. Rapid quantitative colorimetric detection of a lectin using mannose-stabilized gold nanoparticles. Langmuir 2003,19(17): 7141-7144
    [69]Huang CC, Chen CT, Shiang YC, et al. Synthesis of fluorescent carbohydrate-protected Au nanodots for detection of Concanavalin A and Escherichia coli. Anal Chem 2009,81(3):875-882
    [70]Liu S, Yu J, Ju H. Renewable phenol biosensor based on a tyrosinase-colloidal gold modified carbon paste electrode. J Electroanal Chem 2003,540:61-67
    [71]Liu S, Ju H. Reagentless glucose biosensor based on direct electron transfer of glucose oxidase immobilized on colloidal gold modified carbon paste electrode. Biosens Bioelectron 2003,19:177-183
    [72]唐芳琼,孟宪伟,陈东等, 纳米颗粒增强的葡萄糖生物传感器,中国科学(B辑)2000,30(2):119-124
    [73]Yu J, Patel SA, Dickson RM. In vitro and intracellular production of peptide-encapsulated fluorescent silver nanoclusters. Angew Chem Int Ed Engl 2007, 46(12):2028-2030
    [74]Yu J, Choi S, Richards CI, et al. Live cell surface labeling with fluorescent Ag nanocluster conjugates. Photochem Photobiol 2008,84(6):1435-1439
    [75]Yu J, Choi S, Dickson RM. Shuttle-based fluorogenic silver-cluster biolabels. Angew Chem Int Ed Engl 2009,48(2):318-320
    [76]Horky M, Kotala V, Anton M, et al. Nucleolus and apoptosis. Ann N Y Acad Sci 2002,973:258-264
    [77]Lin SY, Chen NT, Sum SP, et al. Ligand exchanged photoluminescent gold quantum dots functionalized with leading peptides for nuclear targeting and intracellular imaging. Chem Commun 2008,39:4762-4764
    [78]Lin CAJ, Yang TY, Lee CH, et al. Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications. ACS Nano 2009,3(2):395-401
    [79]Muhammed MA, Verma PK, Pal SK, et al. Bright, NIR-Emitting Au23 from Au25: Characterization and Applications Including Biolabeling. Chemistry 2009,15(39): 10110-10120
    [80]Wu X, He X, Wang K, et al. Ultrasmall near-infrared gold nanoclusters for tumor fluorescence imaging in vivo. Nanoscale 2010,2:2244-2249
    [81]Xie J, Zheng Y, Ying JY. Protein-directed synthesis of highly fluorescent gold nanoclusters. J Am Chem Soc 2009,131(3):888-889
    [82]Mirkin CA, Letsinger RL, Mucic RC, et al. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 1996,382:607-609
    [83]Taton TA, Mucic RC, Mirkin CA, et al. The DNA-mediated formation of supramolecular mono-and multilayered nanoparticle structures. J Am Chem Soc 2000,122:6305-6306
    [84]Alivisatos AP, Johnsson KP, Peng XQ et al. Organization of 'nanocrystal molecules' using DNA. Nature 1996,382:609-611
    [85]Yeh HC, Sharma J, Han JJ, et al. A DNA-silver nanocluster probe that fluoresces upon hybridization. Nano Lett 2010,10(8):3106-3110
    [86]张金中,Rozanova Nadejda,基于金属纳米材料的癌症光热切除疗法,Science in China Series B:Chemistry 2009,52(10):1559-1575
    [87]徐文才,李萍,傅深。金纳米颗粒在肿瘤显像和治疗领域中的应用。上海交通 大学学报(医学版)2011,31(10):1461-1464
    [88]Huang X, El-Sayed IH, Qian W, et al. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 2006,128(6): 2115-2120
    [89]Lu W, Xiong C, Zhang G, et al. Targeted photothermal ablation of murine melanomas with melanocyte-stimulating hormone analog-conjugated hollow gold nanospheres. Clin Cancer Res 2009,15(3):876-886
    [1]Wilcoxon JP, Martin JE, Parsapour F, et al. Photoluminescence from nanosize gold clusters. Journal of Chemical Physics 1998,108(21):9137-9143
    [2]Mooradian A. Photoluminescence of metals. Physical Review Letters 1969,22(5): 185-187
    [3]Boyd GT, Yu ZH, Shen YR. Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces. Physical Review B 1986,33(12): 7923-7936
    [4]Lin CA, Yang TY, Lee CH, et al. Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications. ACS Nano 2009,3(2):395-401
    [5]Xu H, Suslick KS. Water-soluble fluorescent silver nanoclusters. Adv Mater 2010, 22:1078-1082
    [6]Kawasaki H, Yamamoto H, Fujimori H, et al. Stability of the DMF-protected Au nanoclusters:photochemical, dispersion, and thermal properties. Langmuir 2010, 26(8):5926-5933
    [7]Guevel XL, Ho □tzer B, Jung G, et al. Formation of fluorescent metal (Au, Ag) nanoclusters capped in bovine serum albumin followed by fluorescence and spectroscopy. J Phys Chem C 2011,115 (22):10955-10963
    [8]Hussain AMP, Sarangi SN, Kesarwani JA, et al. Au-nanocluster emission based glucose sensing. Biosensors and Bioelectronics 2011,29:60-65
    [9]Tian D, Qian Z, Xia Y, et al. Gold nanocluster-based fluorescent probes for near-infrared and turn-on sensing of glutathione in living cells. Langmuir 2012,28: 3945-3951
    [10]Bigioni TP, Whetten RL, Dag O. Near-infrared luminescence from small gold nanocrystals. Journal of Physical Chemistry B 2000,104(30):6983-6986
    [11]Schaaff TG, Whetten RL. Giant gold-glutathione cluster compounds:intense optical activity in metal-based transitions. J Phys Chem B 2000,104:2630-2641
    [12]Link S, Beeby A, FitzGerald S, et al. Visible to infrared luminescence from a 28-atom gold cluster. J Phys Chem B 2002,106:3410-3415
    [13]Zheng J, Zhang C, Dickson RM. Highly fluorescent, water-soluble, size-tunable gold quantum dots. Phys Rev Lett 2004,93:77402-77406
    [14]Bao Y, Zhong C, Vu DM, et al. Nanoparticle-free synthesis of fluorescent gold nanoclusters at physiological temperature. J Phys Chem C 2007,111:12194-12198
    [15]van Zyl WE, Lopez-de-Luzuriaga JM, Fackler Jr JP. Luminescence studies of dinuclear gold(I) phosphor-1,1-dithiolate complexes. Journal of Molecular Structure 2000,516:99-106
    [16]Negishi Y, Nobusada K, Tsukuda T. Glutathione-protected gold clusters revisited: bridging the gap between gold(I)-thiolate complexes and thiolate-protected gold nanocrystals. J Am Chem Soc 2005,127:5261-5270
    [17]Chen CT, Chen WJ, Liu CZ, et al. Glutathione-bound gold nanoclusters for selective-binding and detection of glutathione S-transferase-fusion proteins from cell lysates. Chem Commun 2009,48:7515-7517
    [18]Kawasaki H, Yoshimura K, Hamaguchi K, et al. Trypsin-stabilized fluorescent gold nanocluster for sensitive and selective Hg2+ detection. Anal Sci 2011,27:591-596
    [19]Cha SH, Kim JU, Kim KH, et al. Preparation and photoluminescent properties of Gold(Ⅰ)-alkanethiolate complexes having highly ordered supramolecular structures. Chem Mater 2007,19:6297-6303
    [20]Choo H, Cutler E, Shon YS. Synthesis of mixed monolayer-protected gold clusters from thiol mixtures:variation in the tail group, chain length, and solvent. Langmuir 2003,19:8555-8559
    [21]Tu X, Chen W, Guo X. Facile one-pot synthesis of near-infrared luminescent gold nanoparticles for sensing copper (Ⅱ). Nanotechnology 2011,22:95701
    [22]Zhou C, Sun C, Yu M, et al. Luminescent gold nanoparticles with mixed valence states generated from dissociation of polymeric Au(Ⅰ) thiolates. J Phys Chem C 2010,114:7727-7732
    [23]Zheng J, Nicovich PR, Dickson RM. Highly fluorescent noble-metal quantum dots. Annual Review of Physical Chemistry 2007,58:409-431
    [24]Zheng J, Zhang C, Dickson RM. Highly fluorescent, water-soluble, size-tunable gold quantum dots. Physical Review Letters 2004,93:077402
    [25]Brinas RP, Hu M, Qian L, et al. Gold nanoparticle size controlled by polymeric Au(Ⅰ) thiolate precursor size. J Am Chem Soc 2008,130 (3):975-982
    [26]Huang CC, Yang Z, Lee KH, et al. Synthesis of highly fluorescent gold nanoparticles for sensing mercury(Ⅱ). Angew Chem Int Ed 2007,46:6824-6828
    [27]Lin HT, Bescher E, Mackenzie JD, et al. Preparation and properties of laser dye-ORMOSIL composites. Journal of Materials Science 1992,27:5523-5528
    [28]Yong KT, Roy I, Swihart MT, et al. Multifunctional nanoparticles as biocompatible targeted probes for human cancer diagnosis and therapy. J Mater Chem 2009,19: 4655-4672
    [29]Schmidbaur H, Schier A. Aurophilic interactions as a subject of current research:an up-date. Chem Soc Rev 2012,41:370-412
    [1]Huang X, Jain PK, El-Sayed IH, et al. Determination of the minimum temperature required for selective photothermal destruction of cancer cells using immunotargeted gold nanoparticles. Photochem Photobiol 2006,82(2):412-417
    [2]Huff TB, Tong L, Zhao Y, et al. Hyperthermic effects of gold nanorods on tumor cells. Nanomedicine 2007,2(1):125-132
    [3]Svaasand LO, Gomer CJ, Morinelli E. On the physical rationale of laser induced hyperthermia. Lasers Med Sci 1990,5(2):121-128
    [4]Zee JVD. Heating the patient:a promising approach? Ann Oncol 2002,13: 1173-1184
    [5]Huang X, Jain PK, El-Sayed IH, et al. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 2008,23:217-228
    [6]Rau B, Wust P, Tilly W, et al. Preoperative radiochemotherapy in locally advanced or recurrent rectal cancer:regional radiofrequency hyperthermia correlates with clinical parameters. Int J Radiat Oncol Biol Phys 2000,48(2):381-391
    [7]Song CW, Shakil A, Osborn JL, et al. Tumour oxygenation is increased by hyperthermia at mild temperatures. Int J Hyperthermia 2009,25(2):91-95
    [8]Li JL, Gu M. Gold-nanoparticle-enhanced cancer photothermal therapy. IEEE J. Sel. Top. Quant. Electron.2010,16(4):989-996
    [9]Castren-Persons M, Schroder T, Ramo OJ, et al. Contact Nd:YAG laser potentiates the tumor cell killing effect of hyperthermia. Lasers Surg Med 1991,11(6):595-600
    [10]Chen WR, Adams RL, Carubelli R, et al. Laser-photosensitizer assisted immunotherapy:a novel modality for cancer treatment. Cancer Lett 1997,115(1): 25-30
    [11]O'Neal DP, Hirsch LR, Halas NJ, et al. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 2004,209(2):171-176
    [12]Rozanova N, Zhang J. Photothermal ablation therapy for cancer based on metal nanostructures. Sci China Ser B-Chem 2009,52(10):1559-1575
    [13]Huang X, El-Sayed MA. Plasmonic photo-thermal therapy (PPTT). Alexandria Journal of Medicine 2011,47:1-9
    [14]El-Sayed IH, Huang X, El-Sayed MA. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett 2006,239(1):129-135
    [15]Khlebtsov B, Zharov V, Melnikov A, et al. Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters. Nanotechnology 2006,17(20): 5167-5179
    [16]Dickerson EB, Dreaden EC, Huang X, et al. Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett 2008,269(1):57-66
    [17]Huang X, E1-Sayed IH, Qian W, et al. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 2006,128(6): 2115-2120
    [18]O'Neal DP, Hirsch LR, Halas NJ, et al. Photothermal tumor ablation in mice using near infrared absorbing nanoshells. Cancer Lett 2004,209(2):171-176
    [19]Loo C, Lowery A, Halas NJ, et al. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 2005,5(4):709-711
    [20]Chen J, Wiley B, Li ZY, et al. Gold nanocages:engineering their structure for biomedical applications. Adv Mater 2005,17(18):2255-2261
    [21]Hu M, Petrova H, Chen J, et al. Ultrafast laser studies of the photothermal properties of gold nanocages, J Phys Chem B 2006,110(4):1520-1524
    [22]Zhou F, Xing D, Ou Z, et al. Cancer photothermal therapy in the near-infrared region by using single-walled carbon nanotubes. J Biomed Opt 2009,14(2):021009
    [23]Robinson JT, Welsher K, Tabakman SM, et al. High performance in vivo near-IR (>1 μm) imaging and photothermal cancer therapy with carbon nanotubes. Nano Res 2010,3(11):779-793
    [24]Li Y, Lu W, Huang Q, et al. Copper sulfide nanoparticles for photothermal ablation of tumor cells. Nanomedicine 2010,5(8):1161-1171
    [25]Zhou M, Zhang R, Huang M, et al. A chelator-free multifunctional [64Cu]CuS nanoparticle platform for simultaneous micro-PET/CT imaging and photothermal ablation therapy. J Am Chem Soc 2010,132(43):15351-15358
    [26]Tian Q, Tang M, Sun Y, et al. Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells. Adv Mater 2011,23(31):3542-3547
    [27]Lakshmanan SB, Zou X, Hossu M, et al. Local field enhanced Au/CuS nanocomposites as efficient photothermal transducer agents for cancer treatment. J Biomed Nanotechnol 2012,8(6):1-8
    [28]Englebienne P, Hoonacker AV, Verhas M. Surface plasmon resonance:principles, methods and applications in biomedical sciences. Spectroscopy 2003,17:255-273
    [29]Aslan K, Lakowicz JR, Geddes CD. Plasmon light scattering in biology and medicine:new sensing approaches, visions and perspectives. Curr Opin in Chem Biol 2005,9:538-544
    [30]Lakowicz JR. Radiative decay engineering:biophysical and biomedical applications. Anal Biochem 2001,298(1):1-24
    [31]Evanoff Jr. DD, Chumanov G. Synthesis and optical properties of silver nanoparticles and arrays. Chem Phys Chem 2005,6(7):1221-1231
    [32]Sun Z, Yang Z, Zhou J, et al. A general approach to the synthesis of gold-metal sulfide core-shell and heterostructures. Angew Chem Int Ed 2009,48(16): 2881-2885
    [33]Sharma S, Ahmad N, Prakash A, et al. Synthesis of crystalline Ag nanoparticles (AgNPs) from microorganisms. Mater Sci Appl 2010,1(1):1-7
    [34]Feng X, Ruan F, Hong R, et al. Synthetically directed self-assembly and enhanced surface-enhanced raman scattering property of twinned crystalline Ag/Ag homojunction nanoparticles. Langmuir 2011,27(6):2204-2210
    [35]Kim SJ, Stach EA, Handwerker CA. Silver layer instability in a SnO2/Ag/SnO2 trilayer on silicon. Thin Solid Films 2012,520:6189-6195
    [36]Wu C, Yu S-H, Chen SF, et al. Large scale synthesis of uniform CuS nanotubes in ethylene glycol by a sacrificial templating method under mild conditions. J Mater Chem 2006,16:3326-3331
    [37]Xu HL, Wang Z, Zhu W. Sonochemical synthesis of crystalline CuS nanoplates via an in situ template route. Mat Lett 2006,60(17-18):2203-2206
    [38]Zhu HL, Ji X, Yang D, et al. Novel CuS hollow spheres fabricated by a novel hydrothermal method. Microporous Mesoporous Mater 2005,80(1-3):153-156
    [39]Sohrabnezhad Sh, Pourahmad A. As-synthesis of nanostructure AgCl/Ag/MCM-41 composite. Spectrochim Acta A Mol Biomol Spectrosc 2012,86:271-275
    [40]Guilbault GG Assay of organic compounds:In:Guilbault GG, editor. Practical fluorescence.2nd ed. New York:Marcel Dekker Inc.; 1990, p.337-338.
    [41]Wintzinger L, An W, Turner CH, et al. Synthesis and modeling of fluorescent gold nanoclusters. Joshua 2010,7:24-27
    [42]Alkilany AM, Murphy CJ. Toxicity and cellular uptake of gold nanoparticles:what we have learned so far? J Nanopart Res 2010,12(7):2313-2333
    [43]Murphy CJ, Gole AM, Stone JW, et al. Gold nanoparticles in biology:beyond toxicity to cellular imaging. Acc Chem Res 2008,41(12):1721-1730
    [1]Bode AM, Dong Z. Cancer prevention research —then and now. Nature reviews: Cancer 2009,9:508-516
    [2]Danaei G, Hoorn SV, Lopez AD, et al. Causes of cancer in the world:comparative risk assessment of nine behavioural and environmental risk factors. Lancet 2005, 366:1784-1793
    [3]Huang X, El-Sayed MA. Plasmonic photo-thermal therapy (PPTT), Alexandria Journal of Medicine 2011,47,1-9
    [4]Zharov VP, Mercer KE, Galitovskaya EN, et al. Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles. Biophysical Journal 2006,90:619-627
    [5]Huang X, El-Sayed IH, Qian W, et al. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 2006,128: 2115-2120
    [6]Yang K, Xu H, Cheng L, et al. In vitro and in vivo near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles. Adv Mater 2012,24: 5586-5592
    [7]田开亮、朱立新、许小亮,光热疗法在浅表肿瘤治疗中的应用,Modern Oncology 2012,20(10):2174-2176
    [8]Ivarsson K, Myllymaki L, Jansner K, et al. Heat shock protein 70 (HSP70) after laser thermotherapy of an adenocarcinoma transplanted into rat liver, Anticancer Res 2003, 23(5):3703-3712
    [9]Hilger I, Rapp A, Greulich K-O, et al. Assessment of DNA damage in target tumor cells after thermoablation in mice. Radiology 2005,237(2):500-506
    [10]Hunt CR, Dix DJ, Sharma GG, et al. Genomic instability and enhanced radiosensitivity in Hsp70.1-and Hsp70.3-deficient mice. Mol Cell Biol 2004,24(2): 899-911
    [11]Hunt CR, Pandita RK, Laszlo A, et al. Hyperthermia activates a subset of ataxia-telangiectasia mutated effectors independent of DNA strand breaks and heat shock protein 70 status. Cancer Res 2007,67(7):3010-3017
    [12]Hildebrandt B, Wust P, Ahlers O, et al. The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hematol 2002,43(1):33-56
    [13]Vaupel P. Tumor microenvironmental physiology and its implication for radiation oncology. Semin Radiat Oncol 2004,14(3):198-206
    [14]Ito A, Shinkai M, Honda H, et al. Heat shock protein 70 expression induces antitumor immunity during intracellular hyperthermia using magnetite nanoparticles. Cancer Immunol Immunother 2003,52(2):80-8 Epub
    [15]Sawaji Y, Sato T, Takeuchi A, et al. Anti-angiogenic action of hyperthermia by suppressing gene expression and production of tumour-derived vascular endothelial growth factor in vivo and in vitro. Br J Cancer 2002,86(10):1597-1603
    [16]Rong Y, Mack P. Apoptosis induced by hyperthermia in Dunn osteosarcoma cell line in vitro. Int J Hyperthermia 2000,16(1):19-27
    [17]Vidair CA, Dewey WC. Two distinct modes of hyperthermic cell death. Radiation research 1988,116:157-171
    [18]Trono VA, Konstantinov EM, Kramarenko Ⅱ. Hyperthermia induced signal for apoptosis and pathways of its transduction in the cell. Tsitologiia 2002,44(11): 1079-1088
    [19]Yuen WF, Fung KP, Lee CY, et al. Hyperthermia and tumour necrosis factor-alpha induced apoptosis via mitochondrial damage. Lief Sci 2000,67(6):725-732
    [20]Rong Y, Mack P. Apoptosis induced by hyperthermia in Dunn osteosarcoma cell line in vitro. Int J Hyperthermia 2000,16(1):19-27
    [21]Yiqun G, Shellman, William R, et al. Hyperthermia induces endoplasmic reticulum-mediated apoptosis in melanoma and non-melanoma skin cancer cells. Journal of Investigative Dermatology 2008,128:949-956
    [22]王淼舟、李苏宜,热休克蛋白的生物功效及与肿瘤热疗的研究进展,实用医学杂志2006,22(8):969-971
    [23]李洪、刘桥义、杨天德,热休克蛋白的抗凋亡作用,国外医学临床与生物化学检验学分册2000,21(3):118-120
    [24]王梅,肿瘤热疗的研究进展,海南医学院学报2010,16(2):245-247
    [25]张阳德、曲华伟、何剪太等,近红外激光热疗对人宫颈癌Caski细胞抑制作用的实验研究,Aerospace Medicine 2010,21(3):298-300
    [26]Pattani VP, Tunnell JW. Nanoparticle-mediated photothermal therapy:a comparative study of heating for different particle types, Lasers in Surgery and Medicine 2012, 44:675-684
    [27]Zhang JZ, Noguez C. Plasmonic optical properties and applications of metal nanostructures. Plasmonics 2008,3:127-150
    [28]Huang X, Jain PK, El-Sayed IH, et al. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 2008,23:217-228
    [29]Li JL, Gu M. Gold-nanoparticle-enhanced cancer photothermal therapy. IEEE Journal of Selected Topics in Quantum Electronics 2010,16 (4):989-996
    [30]Huang X, El-Sayed MA. Plasmonic photo-thermal therapy (PPTT), Alexandria Journal of Medicine 2011,47:1-9
    [31]Loo C, Lin A, Hirsch L, et al. Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol Cancer Res Treat 2004,3(1):33-40
    [32]Huang X, Neretina S, El-Sayed MA. Gold nanorods:from synthesis and properties to biological and biomedical applications. Adv Mater 2009,21:4880-4910
    [33]Hu M, Chen J, Li ZY, et al. Gold nanostructures:engineering their plasmonic properties for biomedical applications. Chem Soc Rev 2006,35:1084-1094
    [34]Hirsch LR, Stafford RJ, Bankson JA, et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA 2003,100(23):13549-13554
    [35]O'Neal DP, Hirsch LR, Halas NJ, et al. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Letters 2004,209:171-176
    [36]Lowery AR, Gobin AM, Day ES, et al. Immunonanoshells for targeted photothermal ablation of tumor cells, Int J Nanomedicine 2006,1(2):149-154
    [37]Dickerson EB, Dreaden EC, Huang X, et al. Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett 2008,269(1):57-66
    [38]Zhou F, Xing D, Ou Z, et al. Cancer photothermal therapy in the near-infrared region by using single-walled carbon nanotubes, Journal of Biomedical Optics 2009,14(2), 021009
    [39]Kam NWS, O'Connell M, Wisdom JA, et ali. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. PNAS 2005,102(33):11600-11605
    [40]Moon HK, Lee SH, Choi HC. In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes. ACS Nano 2009,3 (11):3707-3713
    [41]Huang N, Wang H, Zhao J, et al. Single-wall carbon nanotubes assisted photothermal cancer therapy:animal study with a murine model of squamous cell carcinoma. Lasers in Surgery and Medicine 2010,42:638-648
    [42]Li Y, Lu W, Huang Q, et al. Copper sulfide nanoparticles for photothermal ablation of tumor cells. Nanomedicine 2010,5(8):1161-1171
    [43]Zhou M, Zhang R, Huang M, et al. A chelator-free multifunctional [64Cu]CuS nanoparticle platform for simultaneous micro-PET/CT imaging and photothermal ablation therapy. J Am Chem Soc 2010,132:15351-15358
    [44]Yu X, Cao C, Zhu H, et al. Nanometer-sized copper sulfide hollow spheres with strong optical-limiting properties. Adv Funct Mater 2007,17:1397-1401

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700