基于特征的纹理特征提取、分类与检索方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纹理是图象中一个基本且重要的特性。纹理分析是图象理解、分析与识别中的重要研究内容之一,不仅对于视觉智能活动的模拟具有重要的理论意义,而且具有非常广阔的应用前景。纹理分析通常可分为基于特征和基于模型两类方法。纹理分析的研究主要为纹理描述、纹理分割、纹理分类、纹理检索等方面。本论文概述了早期和近期的多种纹理分析方法,主要研究和讨论了基于特征的纹理特征提取、分类和检索方法。论文的工作主要包括:
     一、提出一种改进的离散极坐标付立叶变换(DPFT)的快速算法,并在此基础上,提出一种基于DPFT的纹理分类算法。提取纹理的归一化DPFT幅度谱在不同方向和尺度上的信息作为纹理特征,应用于纹理分类,取得了良好的分类效果。本文提出的改进的DPFT算法能够快速有效地完成二维离散极坐标付立叶变换。由付立叶变换在工程应用中的广泛性和极坐标系在处理二维数据旋转和尺度变换上的优越性,该算法也可用于图象配准、图象检索和雷达信号处理等应用领域。
     二、提出一种基于提升小波变换的纹理分类算法。利用小波分析的时频局域化特性以及提升小波的本位运算等优点,对纹理图象进行提升小波分解,再对得到的高频子图继续做第二层小波分解,然后以各频率子图的图象熵作为图象的纹理特征进行纹理分类。该算法提取的特征维数较低、计算量较小,具有较强的纹理分类能力。
     三、提出一种基于纹理谱直方图和自组织特征映射网络(SOFM)的纹理分类算法。引入象素的八近邻付立叶级数,计算随机选取的纹理区域的纹理谱并量化得到谱直方图,将其作为SOFM网络的特征模式输入并训练网络。网络的输出层对应的不同纹理的类别,从而将不同模式的纹理归为各自的类别。算法对均匀纹理的分类快速有效。
     四、提出基于高阶累积量、多通道Gabor滤波以及提升小波变换的纹理检索算法。在基于高阶累积量的方法中,利用图象中象素的窗口邻域具有相关性的特点计算图象的三阶累积量作为纹理的特征。基于多通道Gabor滤波和提升小波变换的方法是利用它们的时频局域化特性,提取纹理的不同尺度和方向上的信息作为纹理的特征。分别用上述算法对纹理图象进行处理,提取相应的纹理特征,对实验纹理库进行检索,并给出详实的实验数据、图示与分析。基于多通道Gabor滤波和基于提升小波的检索算法可以提取纹理图象不同尺度和方向上的纹理信息,因此整体检索效果优于基于高阶累积量的方法。
     本文算法的实验纹理库由108类Brodatz纹理图象组成。
Texture is one of the essential and important characteristics of imagery. As an important component of image understanding, analysis and recognition, texture analysis is valuable not only in theory, but also in wide-range applications. There are two basic types of methods in texture analysis which are the method based-on feature and the method based-on model. Texture analysis composes of texture description, texture segment, texture classification, texture retrieval, etc. In this paper, some approaches on texture feature extraction for purpose of classification and retrieval are discussed and studied.
    The major work implemented in this paper is presented as follows:
    (1) An improved discrete fast polar Fourier transform algorithm (called DPFT for short) is proposed which fast and effectively computes the 2D discrete Fourier transform in polar coordinate systems. And based on it, a new texture classification method in presented that utilizes the information of the DPFT serialized amplitude spectrum in different scales and orientations as texture features, and has good performance in texture classification. Because the Fourier transform is widely applied in engineering and the polar coordinate systems has superiority in data' rotation and scaling, the improved DPFT algorithm can also be implemented in many fields such as image registration, image retrieval and radar signal processing.
    (2) A new texture classification algorithm based-on the lifting wavelet transform in suggested utilizing wavelets' perfect performance in spatial-frequency localization and the lifting wavelets' in-place operations. It computes the entropy values of the sub-frequency images disposed by the two-layers' lifting wavelet transform, and has merits of low feature dimensions, low computational cost and good capability.
    (3) An algorithm for classification of texture image based-on spectrum histogram and self-organized feature mapping network in proposed. It induces the idea of pixel's 8-neighbor Fourier series, randomly chooses the local region of texture and computes the spectrum of it. After quantizing the spectrum, the spectrum histogram of the local area is extracted and then provided to the SOFM network as a feature vector to train the net. The neurons in the topological output layer correspond to different textures when the training process is finished. Experiments on six samples of Brodatz textures demonstrate the simplicity and efficiency of this algorithm.
    (4) Approaches for texture retrieval based on high-order cumulants, multi-channel Gabor filters and lifting wavelet transform are suggested separately which extract the texture features to implement the texture queries. In these methods, the approach based-on high-order cumulants utilize the local window's correlation of image to compute the three-order cumulants as features. And the other two methods are perfect in spatial-frequency localization. In a whole these two
    
    
    spatial-frequency localized methods are more effective than the method based-on high-order cumulants for the superiority in embodying images' information at different scales and orientations.
    The texture' test database in this paper is composed of 108 different kinds of Brodatz textures.
引文
[1] Ander Gagalowicz, and Song De Ma, "Sequential Synthesis of Natural Textures," Computer Vision, Graphic, and Image Processing, pp.289-315, 1985.
    [2] R. W. Conners, and C. A. Harlow, "Equal Probability Quantizing And Texture Analysis of Radiographic Images," Comp. Graph. and Image Proc., Vol.8, pp.447-463, 1978.
    [3] J. Sklansky, "Image Segmentation and Feature Extraction", IEEE Trans. on Systems, Man, and Cybernetics, Vol.8, No.4, pp.237-247, June 1978.
    [4] R. L. Kashyap, R. Chellappa, "Estimation And Choice of Neighbors In SPatial-Interaction Models of Images," IEEE Trans. on Informationn Theory, Vol.29, No. 1, pp.60-72, Jan. 1983.
    [5] Robert J. Elliott, Lakhdar Aggoun, John B. Moore, Hidden Markov Models, Springer-Verlag New York, Inc, 1995.
    [6] Georgy L. Gimel'farb, Image Textures and Gibbs Random Fields, Netherlands: Kiuwer Academic Publishers, 1999.
    [7] H. Tamura, S. Mori, and T. Yamawaki, "Textural Features Corresponding to Visual Perception", IEEE Trans. on Systems, Man, and Cybernetics, Vol.8, No.6, pp. 460-472, June 1978.
    [8] Bram van Ginneken, Shigehiko Katsuragewa, Bart M. ter Haar Romeny, Kunio Doi, and Viergever, "Automatic Detection of Abnormalities in Chest Radiographs Using Local Texture Analysis," IEEE Trans. on Medical Imaging, Vol.21, No.2, Feb.2002.
    [9] W. J. Jasper, S. J. Gamier, and H. Potapalli, "Texture Characterization And Defect Detection Using Adaptive Wavelets," Opt. Eng., vol. 35,pp.3140-3149, Nov. 1996.
    [10] K. N. Bhanu Prakash, A. G. Ramakrishnan, S. Suresh, and Teresa W. P. Chow, "Fetal Lung Maturity Analysis Using Ultrasound Image Features," IEEE Trans. on Inf. Tech. in Biomedicine. Vol.6, No.1, pp.38-45, Mar.2002.
    [11] Blancho Patrice, and Hubert Konik, "Texture Similarity Queries And Relevance Feedback For Image Retrieval," IEEE International Conference on Pattern Recognition Proceedings, Vol.4, pp.55-58, Sep.2000.
    [12] Leen-Kiat Soh, and Costas Tsatsoulis, "Texture Analysis of SAR Sea Ice Imagery Using Gray Level Co-occurrence Matrices," IEEE Trans. on Geoscience and Remote Sensing, Vol.37, No.2, Mar.1999.
    [13] Sarkar. N., Chaudhuri, and B. B., "An Efficient Approach To Estimate Fractal Dimension of Texture Image," Pattern Recognition, Vol.25, pp.1035-1041, 1992.
    [14] Chaudhuri, B. B., and Sarkar N, "Texture Segmentation Using Fractal Dimension," IEEE Trans. on PAMI, vol.17, No.1, pp.72-77, 1995.
    [15] Kasparis. T., Tzannes, N. S., Bassiouni M. at al, "Texture Description Based on Fractal And Energy Features, "Computers and Electrical Engineering, Vol.21, pp.21-32, 1995.
    [16] J. M. Francos, A. Zvi Meiri, and B. Porat, "A Unified Texture Model Based on A 2-D Wold-Like Decomposition," IEEE Trans. on Sig. Proc., pp.2555-2678, Aug.1993.
    
    
    [17] F. Liu, and R. W. Picard, "Periodicity, Directinoality, And Randomness: Wold Features For Image Modeling And Retrieval," IEEE Trans. on PAMI, Vol.18, No.7, pp.722-733, July 1996.
    [18] 张继贤,柳健,基于能量分解的影像纹理多尺度分析,电子学报,Vol.25,No.12,Dec.1997.
    [19] 李宏贵,李兴国,基于Gabor小波滤波器的红外图象多尺度识别,红外与毫米波学报,Vol.19,No.2,PP.113-116.Apr.2000.
    [20] Dae-kyu Shin, Hyun-Sool Kim, Tae-Yun Chung, and Sang-Hui Park, "Image Retrieval Using VQ-based Local Modified Gabor Feature," IEICE Trans on. info. & systems, The Institute of Elec. Info. &. Commun. Eng., Vol.e85-d, No.8, Aug.2002.
    [21] P. Kruizinga, N. Petkov, and S. E. Grigorescu, "Comparision of Texture Features Based on Gabor Filters," Proceedings of the 10th International Conference on Image Analysis and Processing, Venice, Italy, pp.142-147, Sep.1999.
    [22] Porter. R and Canagarajah. N, "Robust Rotation-invariant Texture Classification: Wavelet, Gabor Filter And GMRF Based Schemes," IEEE Proceedings-Vision, Image and Signal Processing, Vol.144, ssue.3, pp.180 -188, June 1997.
    [23] 田金文,柳健,张天序,变窗 Gabor 变换理论及其在图象处理中的应用,红外与激光工程,Vol.27,No.4,PP.1-5,Aug.1998.
    [24] Mira Park, Jesse S. Jin, and Laurence S. Wilson, "Fast Content-based Image Retrieval Using Quasi-Gabor Filter And Reduction of Image Feature Dimension," Fifth IEEE Southest Symposium on Image Analysis and Interpretation, 2002.
    [25] 吴高洪,章毓晋,林行刚,利用特征加权进行基于小波变换的纹理分类,模式识别与人工智能,Vol.12,No.3,pp.263-267,1999.
    [26] Javier Portilla, Eerop Simoncelli, "A Parametric Texture Model Based on Joint Statistics of Complex Wavelet Coefficients," International Journal of Computer Vision, Vol.40, No. 1, pp.49-71, 2000.
    [27] G. Van de Wouwer, P. Scheunders, and D. Van Dyck, "Statistical Texture Characterization From Discrete Wavelet Representations," IEEE Trans. on Image Processing, Vol.8, Issue.4, pp.592~598, April 1999.
    [28] Nicu. Sebe, and Michael S. Lew, "Wavelet Based Texture Classification," IEEE 15th International Con. on Pattern Recognition Proc.," Vol.3, pp.947-950, 2000.
    [29] T. Chang and C. C. J. Kug, "Texture Analysis And Classification With Tree-structured Wavelet Transform," IEEE Trans. Image Processing, Vol.2, pp.429-441, Apr. 1993.
    [30] Kyoung-Ok Kim, In-Sook Jung and Young-Kyu Yang, "High Resolution Image Classification With Features from Wavelet Frames," IEEE Trans. on Geoscience and Remote Sensing, vol.1, pp.584-587,1997.
    [31] Ajay Kumar and Grantham K. H. Pang, "Defect Detection in Textured Materials Using Gabor Filters," IEEE Trans. on Industry Applications," Vol.38, No.2, Mar.2002.
    [32] Abdelrahim Nasser Esgiar, Raouf N. G. Naguib, Bayan S. Sharif, Mark K. Bennett, and Alan Murray, "Fractal Analysis in The Detection of Colonic Cancer Images," IEEE Trans. on Info. Tech. in Biomedicine,
    
    Vol.6, No.1, Mar.2002.
    [33] Onsy Abdel Alim, and Maha Sharkas, "Texture Classification of The Human Iris Using Artificial Neural Networks," IEEE 11th Mediterranean Electrotechincal Conference, pp.580-583, 2002.
    [34] Wilburn E. Reddick, John O. Glass, Edwin N. Cook, T. David Elkin, and Russell J. Deaton, "Automated Segmentation And Classification of Multispectral Magnetic Resonance Images of Brain Using Artificial Neural Networks," IEEE Trans. on Medical Imaging, Vol.16, No.6, pp.911-917, Dec.1997.
    [35] J. Antonio Catalan, J. S. Jin, and T. Gedeon, "Reducing The Dimensions of Texture Features For Image Retrieval Using Multi-layer Neural Networks," Pattern Analysis & Applications, Vol.2, pp. 196-203, 1999.
    [36] Yong Man Ro, Munchurl Kim, Ho Kyung Kang, B. S. Manjunath, and Jinwoong Kim, "MPEG-7 Homogeneous Texture Descriptor," ETRL Journal, 23(2), pp.41-50, June 2001.
    [37] 王文惠,孟兵,万建伟等,利用不变量进行基于内容的图象检索,电子学报,Vol.30, No.7,pp.949-95 1, July 2002.
    [38] Jakob van de Laar, and Piet Sommen, "Comparison of Discrete Polar Fourier Transform to 2D Cartesian FFT For Non-uniform Polar Input Data," Proc. ProR/SC 2000, 11th Annual Workshop on Circuits, Systems and Signal, PP.355-363, Dec. 2000.
    [39] W. Lawton, "A new Polar Fourier Transform For Computer-aided Tomography And Spotlight Synthetic Aperture Radar," IEEE Trans. on acoustics, speech and signal processing, Vol.36, No.6, pp.931-933, June 1988.
    [40] A. Averbuch, R. Coifman, D. Donoho, M. Israeli, and J. Walden, "The Pseudopolar FFT And Its Applications," Research Report, YALEU/DCS/RR-1178, 1999.
    [41] Y. Keller, A. Averbuch, and M. Isreali, "Pseudo-polar Based Estimation of Large Translations Rotations And Scaling in Images," [online]. Available: http://www.math.tau.ac.il/~amirl/PS/KELLER/pp_regisl.pdf, Aug.2002.
    [42] Michael Elad, Dave Donoho, Amir Averbuch, and Ronald Coifman, "Fast Polar Fourier Transform," [online]. Available: http://www.math.umn.edu/~focm/c /Elad.pdf, Aug.2002.
    [43] 应启珩,冯一云,窦维蓓,离散时间信号分析和处理,清华大学出版社,2001.邓集锋,第二代小波变换及其遥感图象应用,中国图象图形学报,Vol.3,No.2,PP.100-105,1998.
    [44] P. Brodatz, "Texture: A Photographic Album For Artists And Designers," Dover, New York, 1996.
    [45] 张贤达,现代信号处理,北京:清华大学出版社,1999.
    [46] 程正兴,小波分析算法与应用,西安:西安交通大学出版社,1998.
    [47] 秦前清,杨宗凯,实用小波分析,西安:西安电子科技大学出版社,1994.
    [48] 全海英,杨源,张懿等,一种基于第二代小波变换的图象融合算法,系统工程与电子技术,Vol.23, No.5,pp.74-79,2001.
    [49] 程正兴,姚普选,张玲玲,整数到整数小波分解与重构的现状,工程数学学报,Vol.17,pp.73-78,2000
    [50] W. Sweldens and P. Schroder, "Building Your Own Wavelets at Home," Wavelets in Computer Graphics,
    
    pp. 15-87, ACM SIGGRAPH Course Notes, 1996.
    [51] A. R. Calderbank, Ingrid Daubechies, W. M. Sweldens and Book-Lock Yeo, "Wavelet Transforms That Map Integers to Integers," Applied and Computational Harmonic Analysis, Vol.5, No.3, pp.332-369, July 1998.
    [52] 边肇祺,张学工等,模式识别,北京:清华大学出版社,2000.
    [53] 闻新,周露等,MATLAB神经网络应用设计,北京:科学出版社,2000.
    [54] Abhijit S.Pandya,Robert B.Macy著,徐勇,荆涛等译,神经网络模式识别及其实现,北京:电子工业出版社,1999.
    [55] 周烽,封举富,石青云,一种新的基于局部傅立叶级数的纹理描述子,中国图象图形学报,Vol.6(A),No.10,pp.993-997,2000.
    [56] Guang-Ho Cha and Chin-wan Chung, "A New Indexing Scheme For Content-Based Image Retrieval, Multimedia Tools and Applications," Vol.6, pp.263-288, 1998.
    [57] Qi Tian, Pengyu Hong and Thomas S. Huang, "Update Relevant Image Weights For Content-Based Image Retrieval Using Support Vector Machines," Proc. of IEEE International Conference on Multimedia and Expo, Vol.2, pp. 1199-1202, Aug.2000.
    [58] Gaurav Aggarwal, Ashwin T. V. and Sugata Ghosal, "An Image Retrieval System With Automatic Query Modification," IEEE Trans. on Multimedia, Vol,4, No.2, pp.201-213, June 2002.
    [59] Gopal S. Pingali, Agata Opalach, Yves D. Jean, and Ingrid B. Carlbom, "Instantly Indexed Multimedia Databases of Real World Events," IEEE Trans. on Multimedia, Vol,4, No.2, pp.269-282, June 2002.
    [60] Roberto Brunelli and Omeila Mich, "Image Retrieval by Examples," IEEE Trans. on Multimedia, Vol.2, No.3, pp. 164-171, Sep.2000.
    [61] 唐文彬,郝重阳,张宇,基于三阶累积量的图象特征提取新方法,中国图象图形学报,Vol.3,No.11,pp.922-924,Nov.1998.
    [62] 张安清,章新华,四阶累积量的递推估计及其应用,信号处理,Vol.1 8,No.1,pp.88-90,Feb.2002.
    [63] John G. Daugman, "Complete Discrete 2-D Gabor Transforms by Neural Networks For Image Analysis And Compression," IEEE Trans. on Acoustics, Speech, and Signal Processing, Vol.36, No.7, July 1988.
    [64] Tai Sing Lee, "Image Representatin Using 2D Gabor Wavelets," IEEE Trans. on Pattern Analysis and Machine Intelligence," Vol.18, No.10, pp.959-971, Oct.1996.
    [65] Shie Qian and Dapang Chen, "Discrete Gabor Transform," IEEE Trans. on Image Processing, Vol.41,No.7, pp.2429-2438, July 1999.
    [66] W. Y. Ma and B. S. Manjunath, "Texture Features And Learning Similarity," IEEE Computer Society Con. on Proc. CVPR'96, pp.425-430, Jun. 1996.
    [67] B. S. Manjunath and W. Y. Ma, "Texture Features For Browsing And Retrieval of Image Data," IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 18, No.8, pp.837-842, Aug 1996.
    [68] George M. Haley, and B. S. Manjunath, "Rotation-invariant Texture Classification Using a Complete Space-Frequency Model," IEEE Trans. on Image Processing, Vol.8, No.2, pp.255-269, Feb. 1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700