磷石膏分解特性及其流态化分解制硫酸联产石灰的工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷化工的迅速发展,一方面对硫酸的需求量增大,而我国硫资源缺乏,大部分依赖进口硫磺制硫酸;另一方面,磷石膏排放量增加迅速而利用率低,大量磷石膏堆积造成严重的环境污染。为此,本文提出了磷石膏流态化分解制硫酸联产石灰的新工艺,并开展了磷石膏分解特性及其流态化分解工艺的研究。
     采用)(RD、XRF、激光粒度分析、高温显微镜等方法研究了磷石膏的基本特性。磷石膏主要矿物成分为CaSO4.2H2O,纯度高达90%以上,干基CaO含量一般在30%左右,SO3含量35~45%,是一种优质的制硫酸联产石灰原料;颗粒粒径≤0.075mm的颗粒含量高达91.25%,因此可不用粉磨,烘干破碎后直接分解制酸;磷石膏中的杂质降低了CaSO4的熔点,1200℃左右开始产生液相,磷石膏熔点在1280℃左右,随杂质含量的变化而略有不同。
     采用HSC热力学计算软件,研究了CaSO4在还原分解的过程中可能发生的反应,并计算了理论热耗。CO和焦炭均能降低CaSO4的起始分解温度和理论热耗,但是低温条件下易发生副反应生成CaS,应避免低温预热过程中形成CaS。
     采用热分析法,研究了分析纯石膏和磷石膏在不同条件下的分解过程及相演变规律。磷石膏中所含杂质降低了CaSO4的起始分解温度,对分解有促进作用;在N2气氛下焦炭掺量对还原分解CaSO4的最终产物有重要影响,掺量为C/S=0.5时主要产物为CaO,当C/S=2时主要产物为CaS。磷石膏在低温易与焦炭反应生产CaS,CaS在高于1100℃、3%O2浓度的高温低氧条件下能被缓慢氧化为CaO并释放出SO2。
     采用高温气氛炉模拟分散态研究了磷石膏在还原气氛的分解动力学。磷石膏在1000℃~1100℃,CO:3%~5%,CO2:25%~30%,PCO/PCO2=0.1~0.2,反应时间20min,分解率达到95%左右,脱硫率85%左右。设计了红外定硫仪法研究磷石膏的分解动力学,使用红外定硫仪可以快速、方便、连续、精确得测定磷石膏的脱硫率。磷石膏热分解的脱硫率方程为:α=Vmaxt/(kn+tn),式中k值为磷石膏脱硫率达到50%的时间,可利用k值判断磷石膏热分解的难易程度。在1000℃,3%CO,反应15min脱硫率可达75%,升高温度至1150~1200℃再通入适量氧气可将副产物CaS进一步快速氧化脱硫,达到90%以上的脱硫率。
     最后,探讨了磷石膏的分解特性,在此基础上提出了磷石膏流态化分解制硫酸联产石灰的工艺要求,并对磷石膏分解制硫酸联产石灰工艺的可行性进行了分析。
The rapid development of phosphorous chemical industry brings about two problems, which are the comprehensive utilization of phosphogypsum(PG) and the quick increase of sulphuric acid demand. Thus, PG fluidization decomposition process for producing sulphuric acid and lime is proposed, which is a good way to solve the two ploblems mentioned above. The research of decomposition characteristics of PG and its fluidization decomposition process is carried out.
     Firstly, XRD, XRF, laser particle size analyzing and high temperature microscope tests were used to study the basic characteristics of PG. The results showed that the main mineral composition of PG is CaSO4·2H2O, which is more than 90%, and the content (dry basis) of CaO and SO3 is about 30% and 35~45% respectively, which shows it is a high-quality raw materials for sulfuric acid and lime generation. Besides, particles with the size≤0.075mm are more than 91.25%, so the raw material may be directly used to produce acid after being crushed and dried. Also, the results showed that the impurity in PG causes the lowering of melting point to approximately 1280℃, and liquid phase may occur after 1200℃, which differs with the variation of impurity content.
     Secondly, HSC Chemistry was used to study the reactions in the reductive decomposition of PG. The results of thermodynamic calculation showed that CO and carbon both lower initial decomposition temperature and theoretical heat consumption. However, CaS is easily generated under low temperature conditions. Therefore, the formation of CaS should be avoided in the course of low-temperature pre-heating of PG.
     Thirdly, thermal analysis was used to study PG decomposition course and phase change law. The results showed that the impurity in PG lowers its initial decomposition temperature and promotes the decomposition. In the nitrogen atmosphere, coke dose has a great influence on the decomposition result of CaSO4. The main product is CaO in the case of C/S=0.5, while CaS becomes the main product in the case of C/S=2. Under the condition of high than1100℃, O2=3%, CaS can be slowly oxidized to CaO, releasing SO2.
     Fourthly, high-temperature atmosphere furnace tests were used to study the decomposition characteristics of PG in decentralized state. Under the condition of 1000℃~1100℃,3%~5% CO,25%~30% CO2, and 20min of decomposition time, decomposition degree can reach 95% while desulfurization degree can exceed 85%. An Infrared Sulfur Analyzer is set to study PG decomposition. The desulphurization degree of PG can be obtained quickly, conveniently, continuously and accurately with Infrared Sulfur Analyzer. The desulphurization degree equation of PG thermal decomposition isα=Vmax(?), in which, theκvalue is a useful parameter to predict the reaction time of complete decomposition. Under a condition of 1000℃, 3%CO and 15min of decomposition time, desulfurization degree can reach 75%. At 1150~1200℃, the desulfurization degree can quickly exceed 90% if proper amount of O2 is added because of the oxidizing reaction of CaS.
     The technological requirements of PG fluidization decomposition process for producing sulphuric acid and lime is obtained on basis of decomposition characteristics of PG. Then, the critical process is designed according to the technological requirements. Lastly, the feasibility of this process is analysed.
引文
[1]M. S. Al-Masri, Y. Amin, S. Ibrahim and F. Al-Bich. Distribution of some trace metals in Syrian phosphogypsum[J]. Applied Geochemistry,2004,19(5),747~753.
    [2]汤德元,瞿德泸.磷肥和磷酸盐生产工艺[M].贵州:贵州科技出版社,1990.
    [3]彭家惠,万体智,汤玲等.磷石膏中杂质组成形态分布及其对性能的影响[J].中国建材科技,2000,(6):31-35.
    [4]E.M. El Afifi, M.A. Hilal, M.F. Attallah,etc.. Characterization of phosphogypsum wastes associated with phosphoric acid and fertilizers production[J]. Journal of Environmental Radioactivity,2009 (100) 407~412
    [5]杨敏,钱觉时,王智等.杂质对磷石膏应用性能的影响[J].材料导报,2007,21(6):104-106.
    [6]Manjit Singh, Mridul Garg, C.L. Verma, S.K. Handa, Rakesh Kumara. An improved process for the purification of phosphogypsum[J]. Construction and Building Materials,1996, 10(8):597-600.
    [7]侯杰.全球磷石膏堆放量已达五十六亿吨[N].中国化工报,2010-6-24(7).
    [8]Hanan Tayibi, Mohamed Choura et al. Environmental impact and management of phosphogypsum[J]. Journal of Environmental Management,2009,90:2377-2386.
    [9]中国产业信息经济网.磷肥产量突飞猛进实力大增[EB/OL].[2011-01-13].http://www.cinic.org.cn/site951/hgpd/2011-01-13/447681.shtml
    [10]傅伯杰,陈利顶,于秀波等.中国生态环境的新特点及对策[J].环境科学,2000,21(5):104-106.
    [11]国际在线.贵州毕节流行氟斑牙及氟骨病发病率达96%[EB/OL].[2004-01-19].http://gb.cri.cn/41/2004/01/19/108@48739.htm
    [12]慧聪网化工行业.我国成为世界最大硫磺进口国[EB/OL].[2005-07-4].http://info.chem.hc360.com/HTML/001/001/024/88638.htm
    [13]王海军,徐鹏.我国硫资源利用现状及发展战略[J].中国非金属矿工业导刊,2007,60(2):12-13.
    [14]中国石化新闻网.2010年我国硫酸工业继续保持高速增长.[EB/OL].[2010-12-31].http://www.sinopecnews.com.cn/info/content/2010-12/31/content_913517.htm
    [15]L.O.O'Brien, M. E. Sumner. Effects of phosphogypsum on leachate and soil chemical composition Communications in Soil Science and Plant Analysis[J]. Communications in Soil Science and Plant Analysis,1988,19(7):1319~1329.
    [16]M.C.S. Carvalho, B. van Raij. Calcium sulphate, phosphogypsum and calcium carbonate in theamelioration of acid subsoils for root growth[J]. Plant and Soil,1997,192:37~48.
    [17]Paolo Battistoni, Enrico Carniani, Valeria Fratesi et al..Chemical-Physical Pretreatment of Phosphogypsum Leachate[J]. Ind. Eng. Chem. Res.,2006,45(9):3237~3242.
    [18]Mitsuru Toma, Masahiko Saigusa. Effects of phosphogypsum on amelioration of strongly acid nonallophanic andosols[J]. Plant and Soil,1997,192:49~55.
    [19]何水清,利用磷石膏生产建材[J].砖瓦世界,2008,(2):23-26.
    [20]张毅,王小鹏,李东旭.利用原状磷石膏制备石膏基复合胶凝材料的力学性能[J].南京工业大学学报,2011,33(1):69-73.
    [21]M.S. Scientist, M.G. Scientist. Phosphogypsum-Fly ash cementitious binder-Its hydration and strength development[J]. Cement and Concrete Research, 1995,25(4):752~758.
    [22]Sunil Kumar. Fly ash-lime-phosphogypsum hollow blocks for walls and partitions[J]. Building and Environment,2003,38(2):291~295.
    [23]公信科技.磷石膏循环经济产业链项目开工奠基仪式简报[EB/OL].[2010-10-17].http://www.chinagongxin.com/chinagongxin/?action=view&css=&ClassId=14&produc etid=173
    [24]黄新,于海帆.我国磷石膏硫酸联产水泥的现状[J].硫酸工业,2000,(3):10-14.
    [25]闫久智.磷石膏制硫酸联产水泥工艺[J].磷肥与复肥,2004,19(3):53-55.
    [26]沈咸.磷石膏制硫酸联产水泥生产线的工艺设计特点[J].新世纪水泥导报,1998,4(5)22-23.
    [27]蒋永安.磷石膏制硫酸联产水泥的装置情况介绍[J].硫酸工业,2002,(6):5-10.
    [28]胡振玉.磷石膏制硫酸联产水泥机理与应用研究[J].[D].北京:北京科技大学安全技术及工程,2004.
    [29]吴秀俊.用磷石膏生产水泥熟料的试验研究与技术探讨[J].水泥,2010,(1):1-7.
    [30]张巫兴.磷石膏低碱度水泥及其水化特性[J].硅酸盐通报,1996,2:19-24.
    [31]宋廷寿,芦令超,胡佳山.用磷石膏烧成硫铝酸盐水泥的研究[J].水泥,1999,2:4-6.
    [32]路向前.磷石膏在水泥工业中的应用[J].国外建材科技,2003,(5):8-10.
    [33]孙创奇,吴清仁,陈光,李清涛,谢代义.磷石膏的复合矿化作用及其对硅酸盐水泥生料煅烧的影响[J].水泥技术,2007,(2):24-28.
    [34]伏世军,缪正坤,刘海明.磷石膏作矿化剂的应用研究[J].四川水泥,2001,(4):11-14.
    [35]Singh, Manjit. Treating waste phosphogypsum for cement and plaster manufacture[J]. Cement and Concrete Research,2002,32(7):1033~1038.
    [36]Olmez H., Erdem E..Effects of phosphogypsum on the setting and mechanical properties of portland cement and trass cement[J]. Cement and Concrete Research,1989,19(3):377~384.
    [37]张昌清.磷石膏制水泥缓凝剂工艺述评北[J].化学工业与工程技术.2003,(3):18-20.
    [38]周丽娜,周明凯,赵青林等.不同改性处理方法对磷石膏水泥调凝剂性能的影响[J].水泥,2007,8:16-18.
    [39]周丽娜.复合改磷石膏做水泥调凝剂的研究[D].武汉:武汉理工大学材料学,2007.
    [40]Samir I. Abu-Eishah, Ali A. Bani-Kananeh, Mamdouh A. Allawzi. K2SO4 production via the double decomposition reaction of KCl and phosphogypsum[J]. Chemical Engineering Journal,2000,76(3):197-207.
    [41]曹广秀,曹广连,马淮凌.磷石膏一步法制取硫酸钾工艺研究[J].2005,34(7):421-423
    [42]刘晓红.磷石膏制硫酸钾中试研究[J].环境工程,2004,22(4):76-78.
    [43]杨启山,杜凤毅,高丽娟等.浅析磷石膏综合利用与提取稀土[J].稀士,2007,28(1):99-101.
    [44]M.S. Al-Hwaiti, J.F. Ranville and P.E. RossBioavailability and mobility of trace metals in phosphogypsum from Aqaba and Eshidiya, Jordan[J]. Chemie der Erde-Geochemistry 2010,70(3):283~291.
    [45]卢忠远.利用磷石膏生产陶瓷装饰材料[J].重庆环境科学,1997,19(3):48-49.
    [46]沈卫国,周明凯,余崇峻等.磷石膏改性二灰路面基层材料的性能研究[J].武汉理工大学学报,2003,25(10):34-38.
    [47]龙秀才,陈发吉.磷石膏充填材料及其配比试验研究[J].化工矿物与加工,2011,(4):22-25.
    [48]卢振华,高玉杰,刘红娟,李敏.磷石膏晶须在造纸中应用的初步研究[J].天津科技大学学报,2010,25(5):35-37.
    [49]刘圣林.湿法磷酸联产石膏晶须方法探讨[J].磷肥与复肥,2010,25(5):75-76.
    [50]武希彦,武雪梅.中国磷肥20年发展与展望[J].磷肥与复肥,2009,25(5):1-6.
    [51]中国化肥网.磷石膏利用率“十二五”将达30%[EB/OL].[2010-6-10].http://www.fert.cn/news/2010/6/10/201061010262144191.shtml
    [52]中化新网.磷石膏综合利用任重道远[EB/OL].[2010-7-13].http://www.ccin.com.cn/templet/ccin/ShowArticle.isp?id=134813
    [53]Hong Yong Sohn* and Byung-Su Kim. A Novel Cyclic Reaction System Involving CaS and CaSO4 for Converting Sulfur Dioxide to Elemental Sulfur without Generating Secondary Pollutants.1. Determination of Process Feasibility. Ind. Eng. Chem[J]. Res.2002,41(13): 3081~3086.
    [54]Hong Yong Sohn* and Byung-Su Kim. A Novel Cyclic Reaction System Involving CaS and CaSO4 for Converting Sulfur Dioxide to Elemental Sulfur without Generating Secondary Pollutants.2. Kinetics of the Reduction of Sulfur Dioxide by Calcium Sulfide Powder[J]. Ind. Eng. Chem. Res.2002,41(13):3087~3091.
    [55]Hong Yong Sohn* and Byung-Su Kim. A Novel Cyclic Reaction System Involving CaS and CaSO4 for Converting Sulfur Dioxide to Elemental Sulfur without Generating Secondary Pollutants.2. Kinetics of the Hydrogen Reduction of the Calcium Sulfate Powder to Calcium Sulfide[J]. Ind. Eng. Chem. Res.2002,41(13):3092~3096.
    [56]丁竑广,丁汝斌,杨兴志,余德田.磷石膏制硫酸联产水泥仍是其综合利用的有效途径[J].硫磷设计与粉体工程,2011,(1):1-7.
    [57]刘述祖.水泥悬浮预热与窑外分解技术[J].武汉:武汉工业大学出版社,1995.
    [58]周松林,胡道和,张薇等.磷石膏分解工业反应动力学的研究[J].化肥工业,1994,(2):16-22.
    [59]肖国先,周松林,胡道和.磷石膏还原分解动力学研究[J].水泥技术,1998,(4):22-24.
    [60]马丽萍,宁平,郑少聪,张伟,牛学奎.磷石膏循环流化床热分解工艺运行关键技术探讨[J].现代化工,2011,30(2):43-48.
    [61]黄南樾,谢朝晖,孙勇等.用流态化分解炉分解磷石膏的试验研究[J].水泥工程,1996,(4):4-6.
    [62]张少明,彭新战,周永敏等.磷石膏流化床分解技术的研究.化肥工业,1994(3):28-31.
    [63]彭新战,胡道和.磷石膏分解炉的研究与开发进展[J].硫酸工业,1993(5):43-48.
    [64]程治方.国内磷石膏制硫酸技术发展综述[J].石油和化工设备,2009(8):4-9.
    [65]张薇,简淼夫,周松林等.悬浮状态下磷石膏分解规律的研究[J].南京化工学院学报,1994.16:84-88.
    [66]周松林,肖国先.磷石膏分解过程的模拟试验研究[J].水泥工程,1998,(5):5-7.
    [67]Li Jianxi, Yu Su, Ma Liping. Feasibility analysis for decomposition of phosphogypsum in cement precalciner[J]. Environmental Progress & Sustainable Energy,2011,30(1):44~49.
    [68]吕天宝.石膏法硫酸联产水泥对生料的要求[J].中国水泥,2010,(6):63-65.
    [69]文柏鸣.用于水泥生产的磷石膏原料特性研究与探讨[J].新世纪水泥导报,2010,4(2):14-17.
    [70]魏昆吾.用磷石膏制造硫酸和水泥时五氧化二磷含量对熟料质量的影响[J].硫酸工业,1987,(3):11-18.
    [71]磷石膏制酸联产水泥在烧成过程中应注意的几个问题[J].水泥工程,1999,(6):15-17.
    [72]许振义,常晖,武俊军.磷石膏制酸工程的经济效益及技术难点问题分析[J].磷肥与复肥,2008,23(6):63-64.
    [73]张兴桥,马晓燕.硫酸钙的还原分解特性[J].煤炭技术,2007,26(7):44-46.
    [74]周松林,胡道和,肖国先.磷石膏分解反应机理及影响因素浅析[J].新世纪水泥导报,1998,4(5):16-18.
    [75]R.kuusik*,P.Saikkonen, et al. Thermal decomposition of calcium sulfate in carbon monoxide[J]. Journal of Thermal Analysis,1985,30:187~193.
    [76]C. A. Strydom 1, E. M. Groenewald, J. H. Potgieter. Thermogravimetric studies of the synthesis of CaS from gypsum, CaSO4·2H2O and phosphogypsum[J]. Journal of Thermal Analysis,1997,49:1501~1507.
    [77]Naoto Mihara, Dalibor Kuchar,Yoshihiro Kojima, et al. Reductive decomposition of waste gypsum with SiO2, Al2O3, and Fe2O3 additives[J]. J Mater Cycles Waste Manag,2007, (9):21-26.
    [78]H. Y. S OH N*, Byung-Sukim. A New Process for Converting SO2 to Sulfur without Generating Secondary Pollutants through Reactions Involving CaS and CaSO4[J].Environ. Sci. Technol,2002, (36):3020~3024.
    [79]E.M. van der Merwe, C.A. Strydom, J.H. Potgieter. Thermogravimetric analysis of the reaction between carbon and CaSO4-2H2O, gypsum and phosphogypsum in an inert atmosphere[J]. Thermochimica Acta,1999,340:431~437.
    [80]R.kuusik*,P.Saikkonen, et al. Thermal decomposition of calcium sulfate in carbon monoxide[J]. Journal of Thermal Analysis,1985,30:187~193.
    [81]Iv. Gruncharov, Y. Pelovski, G. Bechev, et al. Effects of some admixtures on the decomposition of calcium sulfate[J]. Journal of Thermal Analysis,1988,33:597~602.
    [82]Iv. Gruncharov. Effects of additives during the thermochemical decomposition of phosphogypsum under isothermal conditions[J]. Journal of Thermal Analysis, 1987,32:1739~1742.
    [83]Iv. Gruncharov, PI. Kirilov, Y. Pelovski, et al. Isothermal gravimetrical kinetic study of the decomposition of phosphogypsum under CO-CO2-Ar atmosphere[J]. Thermochimica Acta, 1985,92(15):173~176
    [84]T. D. Wheelock, D. R. Boylan. Reductive decomposition of gypsum by carbon monoxide[J]. Industrial and Engineering Chemistry,1960,52(3):215~218.
    [85]Jae Seung Oh and T. D. Wheelock. Reductive Decomposition of Calcium Sulfate with Carbon Monoxide. Reaction Mechanism[J], Ind. Eng. Chem. ReS.1990,29(4):544-550
    [86]肖国先,周松林,胡道和.磷石膏在还原——氧化双气氛下的分解反应动力学研究[J].水泥,1997,(8):1-3.
    [87]徐品晶,陈延信,罗永勤等.磷石膏悬浮态分解条件的优化试验研究[J].非金属矿,2009,32(3):17-19.
    [88]王成波,张志业,陈欣.磷石膏生产硫酸联产水泥用新型还原剂的实验研究[J].磷肥与复肥,2007,22(1):21-23.
    [89]方祖国,宁平,杨月红等.复合还原剂还原分解磷石膏制取高浓度二氧化硫[J].无机盐工业,2009,41(1):48-50.
    [90]肖海平等.CaS04与CaS在N2气氛下反应动力学[J].化工学报,2005(07):1322-1326.
    [91]肖海平,周俊虎,曹欣玉,等.CaS04在CO气氛下的平行竞争反应实验与模型研究[J].燃料化学学报,2005,33(2):150-154.
    [92]Y.Suyadal and H.Oguz. Dry Desulfurization of Simulated Flue Gas in a Fluidized-Bed Reactor for a Broad Range of SO2 Concentration and Temperature:A Comparison of Models.Ind. Eng. Chem. Res.1999,38(8),2932~2939
    [93]E. J. Anthony, L. Jia, and K. Qiu. CaS Oxidation by Reaction with CO2 and H2O. Energy & Fuels 2003,17(2):363~368.
    [94]Hongjian Li and Yahui Zhuang. Catalytic Reduction of Calcium Sulfate to Calcium Sulfide by Carbon Monoxide. Ind. Eng. Chem. Res.1999,38,3333~3337.
    [95]S.Ozawa, Y. Morita, L. Huang etc.Oxidation of Coal Char/CaS Mixture at High Temperature.Energy & Fuels 2000,14(1):138~141.
    [96]Satoshi Okumura, Naoto Mihara, Ken Kamiya etc..Recovery of CaO by Reductive Decomposition of Spent Gypsum in a CO-CO2-N2 Atmosphere. Ind. Eng. Chem. Res.2003, 42(24):6046~6052.
    [97]Lubka Atanasova. Exergy Analysis of the Process of Thermal Decomposition of Phosphogypsum to Lime and Sulfur Dioxide[J]. Int.J. Applied Thermodynamics, 2009,5(3):119~127.
    [98]刘少文,张茜,吴元欣,包传平.热分析在磷石膏制酸反应研究中的应用[J].化工进展,2009,27(5):761-765.
    [99]李建锡,余苏,马丽萍.磷石膏预分解的热分析研究[J].动力工程,坏境工程学报2009,27(5):1861-1864.
    [100]周松林,王雅琴.外加剂对磷石膏还原性分解过程的影响[J].硅酸盐通报,1998,(04),19-22.
    [101]王轩翾,冉祥兰,刘少文.磷石膏中硫酸钙含量测定的方法[J].武汉工程大学学报,2010,32(5),41-44.
    [102]顾鸿语,王遵尧.电导滴定法快速测定不同水中硫酸根的含量[J].盐城工学院学报1997,10(3),30-32.
    [103]黄佩伦,韩仲果.络合滴定法测定硫酸根三要素评析[J].海湖盐与化工,1998,27(4),7-9.
    [104]范红宇.不同气氛下高温固硫产物硫酸钙和硫化钙相互转化机理研究[D].浙江:浙江大学工程热物理,2004.
    [105]谢峻林,何峰,冯小平.玻璃中硫溶解度的测定与研究[J].武汉工业大学学报,2009,3(10):32-34.
    [106]周松林,胡道和,肖国先等.分散态磷石膏分解动力学模拟试验研究.磷石膏分解新技术研究专题报告1991,5-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700