毫米波/亚毫米波目标辐射特性及探测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
毫米波被动探测技术在天文、遥感、军事等领域具有重要的实用价值和广阔的应用前景。随着应用的不断深入,探测系统的研究正向着更高频率的波段——亚毫米波波段的方向发展。为了研制相应的被动探测系统,本文对0.3mm~3mm波段的目标辐射特性及其辐射能量探测进行研究。
     由于被动探测系统接收到的辐射能量主要包括物体自身辐射的能量和反射环境的能量两部分,而且辐射能量在大气传输过程中会受到大气分子或水凝体(如雨滴)的影响,所以在分析辐射能量探测之前,须对目标辐射特性及其大气传输情况进行研究。因此,本文的研究分为物体辐射理论、辐射能量大气传输、目标辐射特性建模和辐射能量探测四个方面。
     在物体辐射理论方面,根据Planck方程在0.3mm~3mm波段内对Rayleigh公式进行修正。同时,介绍和分析不同分界面的发射率和反射率的计算方法,以及几种常见的金属和非金属物体的辐射特性差异。
     在辐射能量大气传输方面,首先对散射理论以及太气分子和水凝体的物理特征进行分析。然后利用水凝体的吸收、散射特性,对0.3mm~3mm波段降雨(或云雾等)引起的衰减进行研究,并给出衰减系数(或衰减截面)和频率的关系曲线。
     在目标辐射特性建模方面,首先研究兼顾天气因素的天空温度计算方法,并对目标辐射温度受物理温度影响的情况进行分析,推导出变温物体辐射温度计算模型——VTRT模型。然后通过实验测试对该模型及其参数进行验证,并利用VTRT模型对某车辆缩比模型的辐射温度分布进行仿真和预测。
     在辐射能量探测方面,首先基于目标辐射特性及其大气传输特性,对辐射能量的探测方式及影响因素进行分析,推导出兼顾大气衰减的辐射计探测距离计算方法。然后,进行360GHz交流全功率辐射计的方案设计,并研究相关部件的设计和选择。
     总之,本文从辐射能量的产生、传输和接收的角度,对0.3mm~3mm波段的目标辐射特性和探测技术进行系统地分析和研究,为该波段被动探测系统的研制提供相应的理论和技术支持。
The millimeter wave (MMW) passive detection technology is applied in many fields, such as astronomy, remote sensing, military affairs and so on, owing to important practicality and wide potential application. With the application, the research on detection system advances towards higher frequency band, i.e. submillimeter wave (SMMW) band. For the developing of passive detection system of relevant band, the objects radiation characteristics and energy detection in 0.3mm-3mm waveband are studied in the paper.
     The radiation energy received by detectors includes the energy radiated by objects and reflected from the environment. And the radiation energy transmitted in the atmosphere may be affected by the atmosphere molecules or the hydrometeor, such as rain drops. It's important to analyze objects radiation and atmosphere transmission characteristic before the research on radiation energy detection. So the paper mainly includes four aspects, i.e. objects radiation theories, radiation energy transmission in the atmosphere, objects radiation characteristic modeling and radiation energy detection.
     On the objects radiation theories aspect, Rayleigh formula is amended based on Planck equation in 0.3mm-3mm waveband. The emissivity and reflectivity of different interfaces are studied. And the differences of radiation characteristic between some normal metal and nonmetal objects are analyzed.
     On the radiation energy transmission in the atmosphere aspect, the scattering theory and physical characteristic of atmosphere molecules or hydrometeor are analyzed. Based on the absorption and scattering properties of hydrometeor, the attenuation caused by rain drops or else particles in 0.3mm-3mm waveband is studied. The relationship curves of frequency and attenuation coefficient or cross-section are put forward.
     On the objects radiation characteristic modeling aspect, the calculation method of sky radiation temperature is studied which counts on weather fact. The relationship of physical temperature and radiation temperature is analyzed. Then the vary temperature objects radiation temperature model, i.e. VTRT model, is introduced. Its rationality is validated by the experiment. At the same time, the radiation temperature distribution of a scaled vehicle model is simulated and forecasted by VTRT model.
     On the radiation energy detection aspect, based on the research of objects radiation and transmission characteristic, the energy detection mode and relevant influencing factors are analyzed. The distance equation of radiometer is amended including the atmosphere attenuation. Then the 360GHz AC total power radiometer is designed. And its relevant parts are chosen and designed.
     In conclusion, the objects radiation characteristics and detection technology in 0.3mm~3mm waveband roundly from radiation energy generation, transmission and detection are studied in the paper. It provides the theoretical and technical supports for the development of passive detection system in 0.3mm~3mm waveband.
引文
[1]P. Encrenaz, G. Beaudin. Recent developments in millimeter and submillimeter waves. Techniques Astronomiques/Astronomical techniques,2000,1(10):1283-1295.
    [2]Asantha. R. Cooray. Spectral energy distribution of submillimeter sources. New Astronomy,1999,4:377-388.
    [3]V. L. Bratman, G. G. Denisov, M. M. Ofitserov, et al. Concept of a submillimeter wavelength CARM. Nuclear Instrument and Methods in Physics Research A,1995,358: 135-138.
    [4]U. J. Rauschenbach, A. D. Semenov, W. J. Schleicher, et al. Heterodyne submillimeter wave spectroscopy of formic acid with backward-wave oscillators. Infrared Physics and Technology,1997,38:139-143.
    [5]张存林,张岩,赵国忠等著.太赫兹感测和成像.北京:国防工业出版社,2008.
    [6]Alexei D. Semenov. Superconducting submillimeter direct detector using high-frequency current noise. Physica C,2004,416:85-89.
    [7]梁奂晖,张萍,罗锡璋.亚毫米波大气传输特性研究与发展.中山大学研究生学刊,2002,23(2):32-37.
    [8]S. Withington, K. G. Isaak, S. A. Kovtonyuk, et al. Direct detection at submillimetre wavelengths using superconducting tunnel junctions. Infrared Physics and Technology, 1995,36:1059-1075.
    [9]M. Batchelor, D. Adler, W. Trogus. New plans for first far infrared and sub-millimetre space astronomy mission for 2007. Adv. Space Res.,1996,11(18):185-188.
    [10]Bruce E. Carlsten, Kip A. Bishofberger, Rickey J. Faehl. Compact two-stream generator of millimeter- and submillimeter-wave radiation. Physics of Plasmas,2008, 15(073101):1-7.
    [11]J. S. Lawrence. Infrared and submillimeter atmospheric characteristics of high antarctic plateau sites. Publications of the Astronomical Society of the Pacific,2004,116: 482-492.
    [12]H. Nguyen, C. M. Bradford, P. A. R. Ade, et al. Z-Spec's first light at the Caltech Submillimeter Observatory. Nuclear Instruments and Methods in Physics Research A, 2006,559:626-628.
    [13]Shuichi Okuda, Mitsumi Nakamura, Kazuya Yokoyama, et al. New light source in a submillimeter to millimeter range using the coherent radiation from the single-bunch electron beam at ISIR. Nuclear Instruments and Methods in Physics Research A,2000. 445:267-271.
    [14]S. A. Maas. Nonlinear microwave and RF circuits. Boston:Artech House, Inc.,2003.
    [15]Alexander N. Vystavkina, Andrey V. Pestriakova, Eugeny A. Vinogradov. Application of the blackbody radiation source for characteristics measurement of submillimeter low-temperature direct detectors. Nuclear Instruments and Methods in Physics Research A,2006,559:570-572.
    [16]Koji Kamiya, Brent A. Warner, Michael J. DiPirro, et al. Passive magnetic shielding for the submillimeter and far infrared experiment. Physica B,2003,329:1627-1628.
    [17]张纯学.复合制导技术的进展.飞航导弹,2004,9:50-54.
    [18]Sreenivas Erukulla. Optimisation of millimetre wave sensors for security imaging. Master Thesis, Department of MillimetreWave Radar and High Frequency Sensors FGAN, Germany,2006.
    [19]Gary J. Melnick. Submillimeter wave astronomy satellite science highlights. Advances in Space Research,2004,34:511-518.
    [20]G. Torosyan, K. Nerkararyan, R. Beigang. Application of narrowband tunable THz-radiation for biomedical sensing 2nd joint conference of the IEEE engineering in medicine and biology society and the biomedical engineering society. Annual International Conference of the IEEE Engineering in Medicine and Biology Proceedings,2002,3:2335-2336.
    [21]L. M. Barone, K. Blazek, D. Bollini, et al. A detector for submillimeter gamma cameras. Nuclear Physics B,1995,44:729-733.
    [22]Enyi Ye Ryan, P.A. Bettens, Frank C. De Lucia, et al. Millimeter and submillimeter wave rotational spectrum of pyridine in the ground and excited vibrational states. Journal of Molecular Spectroscopy,2005,232:61-65.
    [23]Saily, Jussi, Ala-Laurinaho, et al. Measuring satellite antennas with a compact hologram test range. IEEE Aerospace and Electronic Systems Magazine,2002,17: 13-19.
    [24]Bolivar P. Haring, M. Brucherseifer, M. Nagel, et al. Label-free sensing of genetic sequences with integrated terahertz systems. Annual International Conference of the IEEE Engineering in Medicine and Biology-Proceedings,2002,3:2331-2332.
    [25]X. C. Zhang, Mickan, P. Samuel, et al. Label-free bioaffinity detection using terahertz technology. Physics in Medicine and Biology,2002,47:3789-3795.
    [26]徐文兰,罗宁胜.非均匀涂层的热辐射.红外与毫米波学报,1990,9(5):384-388.
    [27]Kiyoshi Chiba. Low-emissivity coating of amorphous diamond-like carbon/Ag-alloy multilayer on glass. Applied Surface Science,2005,246:48-51.
    [28]夏新林,艾青,任德鹏.飞机蒙皮红外辐射的瞬态温度场分析.红外与毫米波学报,2007,26(3):174-177.
    [29]缪晨,娄国伟,李兴国.3mm涂层隐身材料的天线温度模型.红外与毫米波学报,2004,23(3):221-224.
    [30]许景周,张希成著.太赫兹科学技术和应用.北京:北京大学出版社,2007.
    [31]Siebert, J. Karsten, Loffler, et al. All-optoelectronic continuous wave THz imaging for biomedical applications. Physics in Medicine and Biology,2002,47:3743-3748.
    [32]Yang Ji, Sun Cheng-hua, Huang Shu-ping, et al. Measurement of submillimeter zenith atmospheric opacity at 492 GHz. Chinese Astronomy and Astrophysics,2004,28: 367-376.
    [33]M. J. Griffin. Bolometers for far-infrared and submillimetre astronomy. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,2000,444(1-2):397-403.
    [34]J. R. Pardo; E. Serabyn, J. Cernicharo. Submillimeter atmospheric transmission measurements on Mauna Kea during extremely dry El Nino conditions---implications for broadband opacity contributions. Journal of Quantitative Spectroscopy & Radiative Transfer,2001,68:419-433.
    [35]H. M. Pickett, R. L. Poynter, E. A. Cohen, et al. Submillimeter, millimeter, and microwave spectral line catalog. J. Quant. Spectrosc. Radiat. Transfer,1998,5(60): 883-890.
    [36]秦玉亮,朱厦,王宏强等.亚毫米波雷达导引头的特点与应用.现代防御技术,2008,36(6):144-148.
    [37]时翔.被动毫米波探测及其隐身技术研究.南京理工大学博士学位论文,2007.
    [38]K.J.巴顿,J.C.威尔茨编.毫米波系统.方再根,刁育才译.北京:国防工业出版社,1989.
    [39]李兴国,李跃华.毫米波近感技术基础.北京:北京理工大学出版社,2009.
    [40]Pasqualini Davide, Neto Andrea, Wyss Rolf A. Distributed sources on coplanar waveguides:application to photomixers for THz local oscillators. Microwave and Optical Technology Letters,2002,33:430-435.
    [41]J. Shan, C. Weiss, R. Wallenstein, et al. Magnetic-field enhancement of terahertz emission from semiconductor surfaces:a comparison of experiment with a semiclassical model. Proceedings of SPIE---the International Society for Optical Engineering,2002,4643:1-11.
    [42]Michael Von Ortenberg. Monochromatic submillimeter radiation---a fundamental tool in magneto spectroscopy of solids. Infrared Phys. Technology,1995,1(36):321-331.
    [43]Jose E. Manzoli, O. Hipolito. Finite superlattice with a localized state:a possible new submillimeter wave emitter, in a numerical simulation submillimeter wave emitter, in a numerical simulation. Microelectronic Engineering,1998,43:221-227.
    [44]冉勇,李太全,秦家银.亚毫米波激光的应用领域及应用前景.激光技术,2000,24(6):392-395.
    [45]向德琳,黄光力.毫米波、亚毫米波天文学的现状和进展.天文学进展,1994,12(4):259-277.
    [46]K. Franklin Evans. Submillimeter-wave ice cloud radiometry channel selection study. Borlder:University of Colorado,2004:1-47.
    [47]G. J. Melnick, A. Dalgarno, N. R. Erickson, et al. The submillimeter wave astronomy satellite---mission science objectives. Adv. Space Res,1996,11(18):163-167.
    [48]J. Yang. Atmospheric attenuation and intensity calibration for millimeter and submillimeter wave observations. Acta Astrophysica Sinica,1999,1(19):55-62:
    [49]Martin Harwit, David Leisawitz, Stephen Rinehart. A far-infrared submillimeter kilometer-baseline interferometer in space. New Astronomy Reviews,2006,50: 228-234.
    [50]G. Bianchini, U. Cortesi, L. Palchetti, et al. Emission Fourier transform spectroscopy for the remote sensing of the atmosphere. Optics and Lasers in Engineering,2002,37: 187-202.
    [51]V. P. Wallace, B. C. Cole, R. M. Woodward, et al. Biomedical applications of terahertz technology. Conference Proceedings---Lasers and ElectroOptics Society Annual Meeting-LEOS,2002,1:308-309.
    [52]B. M. Fischer, M. Walther, P. U. Jepsen. Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy. Physics in Medicine and Biology,2002,47:3807-3814.
    [53]苏锦文.亚毫米波激光对生物活体作用机理的讨论.激光生物学报,2002,11(2):155-160.
    [54]李伟,刘富刚,李涛等.亚毫米波无损检测技术.无损检测,2007,29(7):412-414.
    [55]焦月英,张存林,周燕.航天绝热泡沫的连续亚毫米波检测.无损检测,2008,30(10):728-731.
    [56]Doicu, Adrian, Schreier, et al. Iteratively regularized Gauss-Newton method for atmospheric remote sensing. Computer Physics Communications,2002,148:214-226.
    [57]夏亚,贺志毅.亚毫米波导弹末制导技术前景分析.制导与引信,2004,25(1):18-20.
    [58]Holger S. P. Mvller, Paul Helminger, Sidney H. Young. Millimeter and submillimeter spectroscopy of chlorine nitrate---the Cl quadrupole tensor and the harmonic force field. Journal of Molecular Spectroscopy,1997,181:363-378.
    [59]Y. Shimizu, K. Ichikawa, K. Shibutani, et al. Submillimetre wave gyrotron (gyrotron FU IV) for plasma diagnostics. Fusion Engineering and Design,1997,34:459-462.
    [60]P. S. Sheridan, N. C. Shilton. Analysis of yield while cooking beefburger patties using far infrared radiation. Journal of Food Engineering,2002,51:3-11.
    [61]S. Mongpraneet, T. Abe, T. Tsurusaki. Accelerated drying of welsh onion by far infrared radiation under vacuum conditions. Journal of Food Engineering,2002,55: 147-156.
    [62]P. S. Sheridan, N. C. Shilton. Determination of the thermal diffusivity of ground beef patties under infrared radiation oven-shelf cooking. Journal of Food Engineering,2002, 52:39-45.
    [63]G. Serra, M. Giard, F. Bouchou, et al. PRONAOS---a two meter submillimeter balloon borne telescope. Adv. Space. Res.,2002,5(30):1297-1305.
    [64]Shengcai Shi. Development of submillimeter supercondcutingsis mixers for radio astronomy. Publications of Purple Mountain Observatory,2003,1(22):21-38.
    [65]M. Walther, P. Plochocka, B. Fischer, et al. Collective vibrational modes in biological molecules investigated by terahertz time-domain spectroscopy. Biopolymers-Biospectroscopy Section,2002,67:310-313.
    [66]田国良,余涛,柳钦火等著.热红外遥感.北京:电子工业出版社,2006.
    [67]吕斯骅编著.遥感物理基础.北京:商务印书馆,1981.
    [68]E.M.斯帕罗,R.D.塞斯著.辐射传热.顾传保,张学学译.北京:高等教育出版社,1982.
    [69]王兴安,梅飞鸣编.辐射传热.北京:高等教育出版社,1989.
    [70]F. Beckmann, P. Ramananstizehena, M. P. Stroll. Angular variation of the bidirectional reflectance of bare soils in the thermal infrared band. Applied Optics.,1985,24: 365-375.
    [71]克利克苏诺夫著.红外技术原理手册.俞福堂译.北京:国防工业出版社,1986.
    [72]J. Dozier, S. G. Warren. Effect off viewing angle on infrared brightness temperature of snow. Water Resources Research,1982,18(5):1424-1434.
    [73]P. Beckmann, A. Spizzichino. The scattering of electromagnetic waves from rough surface. pergamn press, Oxford, London, New Youk, Paris.1963.
    [74]R. A. Sutherland, J. F. Bartholic. Significance of vegetation in interpreting thermal radiation from a terrestrial surface. Journal of Applied Meteorology,1977,16(8): 759-763.
    [75]唐义平.亚毫米波高温超导成像技术的研究.南京理工大学博士学位论文,1997.
    [76]George J. Zissis Editor. Sources of radiation. The Infrared and Electr-optical Systems Handbook.1995:112-128.
    [77]刁育才编著.毫米波技术及其军事应用.北京:兵器工业出版社,1991.
    [78]车念曾编著.辐射热度学和光度学.北京:北京理工大学出版社,1990.
    [79]张敬贤编著.微光与红外成像技术.北京:北京理工大学出版社,1995.
    [80]唐义平,李兴国,李卫等.亚毫米波大气传输计算及分析.上海航天,1997,1:13-20.
    [81]谢益溪,J.拉菲涅特,J.P.蒙等编著.电波传输——超短波·微波·毫米波.北京:电子工业出版社,1990.
    [82]唐义平,李卫,李兴国等.亚毫米波的大气传输研究.红外与激光工程,1997,26(1):25-32.
    [83]白继元.气溶胶粒子的激光散射对激光雷达性能影响的研究.黑龙江大学硕士学位论文,2008.
    [84]杨昭.基于1.06μm激光雷达的大气消光特性的研究.苏州大学硕士学位论文,2004.
    [85]李久喜.基于扩展Mie理论的平面上方微粒的光散射计算研究.西安电子科技大学硕士学位论文,2005.
    [86]李小川.蓝绿激光在海水中的散射特性及其退偏研究.电子科技大学硕士学位论文,2006.
    [87]V. D. Hulst. Light scattering by small particle. New York:Wiley,1957.
    [88]潘乃先,毛节泰,王永生.大气光学.北京:科学出版社,1988.
    [89]佐浩毅.大气光谱学与Mie散射研究.四川大学博士学位论文,2007.
    [90]赵振维.水凝物的电波传播特性与遥感研究.西安电子科技大学博士学位论文,2001.
    [91]F. T. Ulaby, R. K. Moore, A. K. Fung. Microwave remote sensing. Addison-Westley Publishing Company,1981.
    [92]H. R. Prupacher, R. L. Pitter. A semi-empirical determination of the shape of clouds and rain drops. J. Atmos. Sci,1971,1(28):86-94.
    [93]ITU-R, Rec. P.838. Specific attenuation model for rain for use in prediction methods. ITU-R Recommendations, propagation in non-ionized media, Geneva:1994.
    [94]ITU-R. Document 2/36-E. Draft revision to recommendation ITU-R P.618-5. ITU-R Study Group 3 meeting, Geneva:1999,3.
    [95]H. R. PruPacher, K. V. Beard. A wind tunnel investigation of the internal circulation and shape of water drops falling at terminal velocity in the air. Quart. journ. roy. meteor. soc,1970,96(408):247-256.
    [96]R. Gunn, G. D. Kinzer, The terminal velocity of fall for water droplets in stagnant air. J. Meteorol.,1949,6:243-248.
    [97]C. Best. Empirical formulae for the terminal velocity of water drops falling through the atmosphere. Quart. J. Roy. meteor. soc.,1950,76:301-311.
    [98]北京大学地球物理系大气物理教研室云物理教学组.云物理学基础.北京:农业出版社,1981.
    [99]T. Oguchi. Eletromagnetic wave propagation and scattering in rain and other hydrometerors. Proc. IEEE,1983,71(9):1029-1078.
    [100]王一平,肖景明.微波传播.北京:人民邮电出版社,1987.
    [101]P. Debye. Polar molecules. New York:Dover,1929.
    [102]P. S. Ray. Broadband complex refractive indices of ice and water. Appl. opt.,1972, 11(8):1836-1844.
    [103]T. H. Manabe, J. Liebe, G. A. Hufford. Complex permittivity of water between 0 and 30 THz, Lake Buena Vista, FL:in conf. Dig.12th Int. Conf. Infrared and millimeter wave,1987,12:14-18.
    [104]ITU-R Rec. P.840-1. Attenuation due to clouds and fog. ITU-R Recommendations, ITU-R Recommendations, propagation in non-ionized media, Geneva:1994.
    [105]D. Maggiori. Computed transmission through rain in the 1-400GHz frequency range for spherical and elliptical drops and any polarization. Alta Frequenza,1981,5: 262-273.
    [106]H. J. Liebe, T. Manabe, G. Hufford. Millimeter-wave attenuation and delay rates due to fog/cloud condition. IEEE Trans. Antermas Propag,1989,37(12):1617-1623.
    [107]J. Wiesner, Biettraege zur kenntniss des tropisehen reddens, K. Akad. Wiss.. Math.-Naturw. Klasse, Sitzber,1895,104:397-1434.
    [108]J. O. Laws, D. A. Parsons. The relation of raindrop size to intensity. Trans. Am. Geophys. Union,1943,24:452-460.
    [109]J. Joss, J. C. Thams, A. Waldvogel. The variation of raindrop size distributions at lacarno. Cloud Physics, Toronto,1968:369-373.
    [110]J. S. Marshall, W. M. Palmer. The distribution of raindrops with size. J. Meter.,1948, 5:165-166.
    [111]G.O. Ajayi, R. L. Olsen. Modeling of a tropical raindrop size distribution for microwave and millimeter wave application. Radio Sci,1985,20(2):193-202.
    [112]A. Maitra, C. J. Gibbins. Modeling of raindrop size distributions from multi-wavelength rain attenuation measurements. Radio Sci,1999,34(3):657-666.
    [113]黄捷,胡大璋,仇盛柏.中国部分地区O℃等温层高度的统计特性.电波科学学报,1993,8(1):57-64.
    [114]邹进上,刘长盛,刘文保.大气物理基础.北京:气象出版社,1982.
    [115]王彬华.普通气象学.济南:山东人民出版社,1961.
    [116]L. J. Ippolito. Propagation effects handbook for satellite system design. NASA Reference Publication,1989.
    [117]ITU-R. Document 3/BL/27-E. Draft revision to recommendation ITU-R P.840-2. Attenuation due to clouds and fog. ITU-R Study Group 3 meeting, Geneva:1999,6.
    [118]Zhao Zhenwei, Zhensen Wu. Millimeter-wave attenuation due to fog and clouds. International Journal of Infrared and millimeter waves,2000,21(10):1607-1616.
    [119]D. H. Staellin. Measurements and interpretation of the microwave spectrum of terrestrial atmosphere near lcm wavelength. J. Geophys. Res.,1966,71:2875-2881.
    [120]中国科学院大气物理研究所微波遥感组.中国晴空和云雨天气的微波辐射和传播特性.北京:国防工业出版社,1981.
    [121]E. A. Altshuler, R. A. Marr. Cloud attenuation at millimeter wavelength. IEEE Trans. Antennas Propag.,1989,37(12):1473-1479.
    [122]A. Matsumoto, A. Nishitsuji. SHF and EHF propagation in snowy districts. Monograph Ser. of the Res. Inst. of Appl. Electricity, Hokkaido Univers., Sapporo, Japan:1958,19:31-71.
    [123]H. R. Prupacher, J. D. Klett. Microphysics of clouds and precipitations, D. Reidel. Dordrecht,1978.
    [124]C. Magono, T. Nakamura. Aerodynamic studies of falling snowflakes. J. Meteorol. Soc, Japan:1965,43:139-147.
    [125]R. S. Sekhon, R. C. Srivastava. Snow size spectra and radar reflectivity. J. Atmos. Sci, 1970,27:299-307.
    [126]K. L. S. Gunn, T. W. R. East. The microwave properties of precipitation particles. Quarterly Journ. Royal. Meter. Soc,1954,80:522-545.
    [127]葛琦.水雾的近、中红外消光性能研究.武汉大学硕士学位论文,2004.
    [128]甘仲民,张更新,王华力等.毫米波通信技术与系统.北京:电子工业出版社,2003.
    [129]赫崇骏,韩永宁,袁乃昌等.微波电路.长沙:国防科技大学出版社,1999.
    [130]郭伟,张光锋,张祖荫.毫米波辐射计目标检测仿真研究.系统仿真学报,2004,16(3):470-473.
    [131]张文华,王星,张凤鸣等.红外诱饵弹气动辐射特性数学建模与仿真.系统仿真学报,2008,20(21):5731-5735.
    [132]张祖荫,林世杰.微波辐射测量技术及应用.北京:电子工业出版社,1995.
    [133]柯依群,郭伟,张祖荫.金属目标对天空亮温的散射特性.红外与激光工程,2000,29(3):49-51.
    [134]桂良启,张祖荫,郭伟.3mm波段天空亮温的计算.华中科技大学学报,2005,33(12):73-75.
    [135]Bing Gong, Guowei Lou, Xingguo Li. Research on the sub-millimeter wave hydro-meteors attenuation characteristic. Journal of Infrared, Millimeter, and Terahertz Waves,2009,30:1234-1242.
    [136]张光锋.毫米波辐射特性及成像研究.华中科技大学博士学位论文,2005.
    [137]张惕远,张祖荫,李青侠.面目标辐射特性数据库和数据处理.华中理工大学学报,1999,27(8):98-100.
    [138]苏金明,张莲花,刘波等.Matlab工具箱应用.北京:电子工业出版社,2004.
    [139]Becker Francois, Li Zhaoliang. Surface temperature and emissivity at various scale: definition, measurement, and related problem. Remote Sensing Review,1995,12: 225-253.
    [140]肖志辉.微波辐射计定标关键理论与实验研究.华中科技大学博士学位论文,2001.
    [141]Bing Gong, Guowei Lou, Xingguo Li, et al. Research on the Distance Equation of the Submillimeter Radiometer via Lambert W Function. The 8th International Symposium on Antennas, Propagation and EM Theory proceedings. Kunming:ISAPE 2008,2008: 627-629.
    [142]R. M. Corless, G. H. Gonnet, D. E. G. Hare, et al. On the Lambert W-function. Adv. Comput. Math,1996,5(4):329-359.
    [143]Elias Jarlebring, Tobias Damm. The Lambert W function and the spectrum of some multidimensional time-delay systems. Automatica,2007,43(8):2124-2128.
    [144]D. A. Barry, J. Y. Parlange, L. Li, et al. Analytical approximations for real values of the Lambert W-function. Mathematics and Computers in Simulation,2000,53(5): 95-103.
    [145]Kai Chang. Encyclopedia of RF and microwave engineering. New Jersey:John Wiley & Sons, Inc.,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700