直升机红外辐射特征分析及抑制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
武装直升机是以反坦克为主、兼顾对地火力支援和空战的武器平台,可作超低空机动飞行或悬停,正是由于其良好的机动性能,在小规模的局部冲突、小型化的局部战争以及国际反恐行动中将发挥越来越重要的作用。随着可见光、红外、微波和毫米波等各种探测和制导技术的不断应用,武装直升机在现代高科技战场环境中的生存力将受到越来越严重的威胁,其中,红外制导武器被认为对武装直升机构成最致命的威胁。其一,红外探测和制导方式具有无源特点,随着红外探测和制导水平的提高,基于红外特征信号的探测、制导系统更具备抗干扰和破坏能力;其二,红外辐射特征是装备热动力推进系统的武装直升机所固有的信号特征,随着涡轴发动机排气温度的升高,使得武装直升机的红外辐射特征更为强烈。因此,开展直升机红外辐射特征分析与抑制技术研究对提高武装直升机红外隐身能力具有重要的意义。
     本文的主要研究内容包含三个方面:
     在直升机红外辐射特征分析中,机身蒙皮和排气尾流的温度场对红外辐射特性的影响十分重要。由于直升机蒙皮的温度分布取决于蒙皮与机身内部热部件、以及蒙皮与环境之间的传热过程,影响其温度分布的因素十分复杂,譬如旋翼下洗气流、发动机舱的辐射换热、蒙皮与外部气流之间的对流换热、机身表面的太阳辐照等;同时,发动机排气喷流的流场也受到旋翼下洗气流的直接影响。因此要准确预测直升机表面的温度分布,必须耦合求解排气系统内部和旋翼下洗气流的流动与传热以及燃气与壁面、固壁之间的辐射换热、太阳辐射等过程。对此,本文结合直升机旋翼空气动力学理论,建立了旋翼下洗气流模型,获得了旋翼下洗流场的速度分布,利用用户模块(UDF)导入Fluent软件作为旋翼下洗气流的边界条件;同时,在直升机机身表面温度场建模中建立了太阳辐照模型。在此基础上,计算了直升机悬停状态下的流场,得到了排气系统的流场和温度场,同时对直升机蒙皮温度场及影响因素进行分析,对排气温度、蒙皮发射率和太阳辐射对直升机红外辐射强度的影响进行了分析。
     引射-混合器是红外抑制器的核心部件,为了减小发动机重量,提高气流掺混性能,短突扩波瓣存在较大的应用前景,但是波瓣扩张角过大会造成附面层流动的脱体从而削弱波瓣混合器的混合效果,同时还会增加流动损失,为此,本文开展了短突扩波瓣型混合器的流动分析研究,获得了流动分离与波瓣扩张角的关系,研究了在波瓣波峰处开设通气狭缝以及斜切对波瓣喷管的引射效果的影响,并揭示了其在引射型混合器和强迫型混合器中应用的差异及其物理机制;同时考虑到双级引射-混合器是一个值得探索的结构方案,为此,本文开展了双级引射-混合器的引射特性研究,揭示了混合管在敞开进口和受限进口方式下的气动特征差异。
     随着红外探测和制导技术的不断发展,红外成像探测和制导技术的应用,飞行器红外隐身与反隐身已呈现出在3~5m波段和8~14m波段范围的对抗趋势,而且多模复合制导技术的发展将对武装直升机8~14m红外隐身提出越来越高的要求。为此,本文针对与机身结构一体化设计的红外抑制器冷热气流引射掺混特性、热部件壁面强化冷却、隔热等技术手段进行数值模拟和模型试验研究;同时针对常规布局的红外抑制器,本文研究了直升机发动机舱通风冷却、加设辐射遮挡罩、排气管尾缘延伸遮挡以及敷设隔热层等方案对发动机舱舱表面温度分布以及整机红外辐射特性的影响,提出了一种可大幅降低直升机红外辐射特性的初步改进方案。
Helicopters are platforms of battlefield force transferring and anti-tank missions. They also playimportant roles in air to ground fire covering and short distance air to air fights. Due to their highmaneuverability, helicopters are of increasing importance in local conflicts and counter terrorismmilitary actions in recent decades. Owing to their low-flying height and hovering-attitude, thehelicopters are subjected to serious threats from radio, infrared, visual, and aural detection andtracking. Among these threats, infrared detection and tracking is regarded as more crucial for thesurvivability of helicopter. Firstly, passive detection and tracking by infrared signature seekingmissiles is tactically superior to the active, for comparable detection range. The infrared seekers haveexploited techniques to passively acquire and intercept airborne targets, by detecting their infraredemitting energy. The rapid advances in processor and detector array technology have led to enhancedsensitivity, low noise, multi-spectral, and smart detection capabilities. On the other hand, the ratio ofpower to weight for the turbo-shaft engines mainly been equipped in the helicopters increasestremendously, the maximum temperature under the thermodynamic cycle of aero-engine boosts,resulting in the helicopter infrared signature augment intensively. Consequently, infrared signaturesuppression and analysis is an important issue associated with helicopter susceptibility.
     The present paper focusing on three aspects:
     It is known that the temperature distributions on the helicopter fuselage skin and in the exhaustplume have a direct impact on the modeling of helicopter infrared signature. Because the temperaturedistribution on fuselage skin is governed by heat transfer between skin and inner hot elements as wellas skin and outer surrounding, there are many factors affecting the temperature distribution, such asthe rotor downwash, heat radiation from engine casting, convective heat transfer between skin andcold air, solar irradiance on the skin, etc. On the other hand, the exhaust plume temperaturedistribution is seriously affected by the rotor downwash flow owing to the mixing action. To preciselysimulate temperature distribution on the helicopter airframe and in the exhaust plume, the effects ofrotor downwash and solar irradiance must be taken into consideration considered in three-dimensionalflow and heat transfer calculation in a coupled mode. In the present paper, rotor propelleraerodynamics is introduced to model rotor downwash velocity distribution. The modeled downwash isthen added into numerical process through user defined function (UDF) as the boundary condition for rotor plane. Solar radiation including direct and diffusive radiative heat flux is also modeled in thenumerical simulation process. Based on the present modeling method, the exhaust flowfield andhelicopter skin temperature are analyzed. The roles of exhaust temperature, skin emissivity, solarradiation heat flux in helicopter infrared radiation characteristics are revealed.
     Mixer-ejector is the key part of an infrared suppressor. Firstly, to minimize the engine weight andenhance mixing between primary and secondary flow, short lobed nozzle with a large lobed angle is apromising setup in future application. But once the lobed angle is too large, there will be boundarylayer detachment near the lobed wall thus produces flow separation in the lobed mixer-ejector andbrings in more pressure loss. In the present paper, a short lobed mixer-ejector with a large lobed angleis researched. The relationship between lobed angle and flow separation is revealed. Ventilation andscarfying treatments are then introduced on the lobed nozzle to suppress separation bubble, enhancemixing and pressure recovery. The difference of those treatments on lobed wall in both ejected andforced secondary flow boundary conditions are revealed. Secondary, considering that double-stagedmixer-ejector is a promising configuration the ejector development, a double-staged mixer-ejector isstudied in this thesis. The aero-dynamical difference between confined secondary flow and opensecondary flow inlet modes on double-staged mixer-ejector is illustrated.
     As the infrared detection and guidance technology development, infrared stealth and anti-stealthin both3~5m and8~14m wavebands are confronting each other for a helicopter in real battlefield.Detectors with both3~5m and8~14m wavebands detection and guidance capabilities have madehelicopter's stealth requirements even higher. In the present paper, a numerical and experimental studyon the infrared suppressor integrating the exhaust system with the tail part of a helicopter has beenperformed to investigate the effects of ambient air pumping-mixing, radiative heat sheltering and rotordownwash on reducing the exhaust system temperature and diminishing the target infrared signature.And for the common engine exhaust system, some methods for suppressing infrared radiation areinvestigated, including nacelle ventilation, radiative shelter, heat resistance layer and mxing ductcovering. A preliminary optimum configuration for suppressing helicopter infrared signature ispresented.
引文
[1] Steven A. Tomorrow’s high-tech helicopter[J]. Mechanical Engineering,1991,113(6):41-45
    [2] Paterson J. Overview of low observable technology and its effects on combat aircraftsurvivability[J]. Journal of Aircraft,1999,36(2):380-388
    [3]张靖周.军用直升机进气防护与排气红外辐射抑制技术的使用现状与发展趋势[C].科技进步与学科发展,东南大学出版社,1999,137-140
    [4]武振波,武哲.武装直升机红外隐身系统研究[J].北京航空航天大学学报,2003,29(7):588-592
    [5] Sweetman B. Stealth aircraft-history, technology and outlook[R]. ASME Paper GT-172,1990
    [6] Howe D. Introduction to the basic technology of stealth aircraft. part1: basic considerations andaircraft self-emitted signals (passive considerations)[J]. Journal of Engineering for Gas Turbinesand Power,1991,113(1):75-79
    [7] Howe D. Introduction to the basic technology of stealth aircraft. part2: illumination by the enemy(active considerations)[J]. Journal of Engineering for Gas Turbines and Power,1991,113(1):80-86
    [8] Glasgow B B, Bell W A. Future of anti-aircraft imaging infrared seeker missile threats[C]. IEEEProceedings of Aerospace Applications Conference,4:457-465,1999
    [9]徐南荣,卞南华.红外辐射与制导[M].北京:国防工业出版社,1997
    [10] Rao G A, Mahulikar S P. Integrated review of stealth technology and its role in airpower[J].Aeronautical Journal,2002,106:629-642
    [11] Yu Y, Liu Y. Generation of realistic infrared image for moving objects[J]. International Journal ofInfrared Millimeter Waves,2004,25(7):1087-1097
    [12] The MANPADS menace: combating the threat to global aviation from man-portable air defencesystems[C]. Bureau of Political-Military Affairs and Bureau of International Security andNon-Proliferation, Washington, DC, September20,2005./www.state.gov/t/pm/rls/fs/53558.htm
    [13] Rao G A, Mahulikar S P. New criterion for aircraft susceptibility to infrared guided missiles[J].Aerospace Science and Technology,2005,9:701-712
    [14] James G. External fins and ejection action for reducing the infrared emission of engine exhaustducting[R]. NASA TMX3249,1975
    [15] Banthin C. Advancements in I.R. suppressors for helicopters[C]. Proceedings of the31st AnnualNational Forum of the American Helicopter Society, Washington, DC,1975
    [16] Barlow B, Petach A. Advanced design infrared suppressor for turbo-shaft engines[C].Proceedings of the33rd Annual National Forum of the American Helicopter Society, Washington,DC.1977
    [17] Harrold M C. General electric infrared suppressor for the Black Hawk helicopter[C]. Proceedingsof the35th Annual National Forum of the American Helicopter Society, Washington, DC,1979
    [18] Guglielmo A, Barnard R, Steyer W. Black Hawk hover infrared suppressor subsystem[J].Vertiflite,1984,30(5):40-44
    [19] Francois T. Internal aerodynamics of infrared suppressors for helicopter engines[J]. Journal of theAmerican Helicopter Society,1988,33(4):4-14
    [20]李立国,张靖周.航空用引射混合器[M].北京:国防工业出版社,2007
    [21]张靖周,李立国,高潮,等.波瓣喷管红外抑制系统的试验研究[J].航空动力学报,1997,12(2):212-214
    [22]张靖周,李立国,高潮,等.直升机排气系统红外抑制器的模型试验研究[J].红外与毫米波学报,2005,24(2):125-129
    [23]单勇,张靖周,李立国.直升机红外抑制器红外辐射特性的数值研究和试验验证[J].红外与毫米波学报,2006,25(2):95-100
    [24]张靖周,单勇,李立国.直升机排气系统用波瓣喷管引射-混合式红外抑制器研究[J].航空学报,2007,28(1):32-36
    [25] Thompson J, Gubbels A W, Barry B, et al. Design of an infrared signature suppression for theBell205(UH-1H) helicopter, Part-II: engine&flight testing[C]. Proceedings of11th CASIAerodynamics Symposium,2001
    [26]单勇,张靖周.波瓣喷管/气膜冷却混合管气动和红外辐射特性试验[J].航空学报,2008,29(2):309-314
    [27] Hammond M H, Presz W M. Multi-stage mixer/ejector for suppressing infrared radiation[P].United States Patent No.6016651,1997
    [28] Presz W M. Two stage mixer ejector suppressor[P]. United States Patent No.5761900,1998.
    [29] Ponton T, Warnes G. Helicopter IRS engine integeration for the “first” technology demonstratorprogramme[R]. ASME Ppaper GT2007-27408,2007
    [30] Colucci F. Suppressed to survive[R]. Defence Helicopter,1992,40-45
    [31] Kanclebo S W. Boeing Silorsky findings underscore RAH-66stealth[R]. AW&ST,1993,22-23
    [32]毋梅莲,赵玉洁.现代隐身直升机RAH-66[J].直升机技术,1995,2:34-40
    [33] Frawley R C. IR suppressor[P]. United States Patent No.6122907,2000
    [34] Frawley R C, Amelio A F, Barnard R S. Suppressing infrared radiation emitted from gas turbineengine[P]. United States Patent No.6134879,2000
    [35] Wollenweber G C. Methods and apparatus for exhausting gases from gas turbine engines[P].United States Patent No.6971240,2005
    [36] Steyer W. Method and apparatus for suppressing infrared signatures[P]. United States Patent No.6988674,2006
    [37]唐正府,张靖周.利用喷管引射和旋翼下洗的红外抑制器特性研究[J].南京航空航天大学学报,2007,39(3):288-293
    [38]唐正府,张靖周,王先炜,等.排气系统与尾机身一体化红外抑制器试验分析[J].航空动力学报,2007,22(2):233-237
    [39]唐正府,张靖周.直升机红外抑制器两种进气方式下的试验研究[J].推进技术,2007,28(3):257-260
    [40]任利锋,张靖周,王先炜,等.直升机后机身内埋式红外抑制器隐身性能分析[J].红外与激光工程,2011,40(11):2091-2097
    [41] Paterson R W. Turbofan mixer nozzle flow field-A benchmark experimental study[J]. Journal ofEngineering for Gas Turbine and Power,1984,106:692-698
    [42] Shumpert P K. An experimental model investigation of turbofan engine internal exhaust gasmixer configurations[R]. AIAA Paper80-0228,1980
    [43] Kuchar A P, Chamberlin R. Scale model performance test investigation of exhaust system mixersfor an energy efficient engine(E3) porpulsion system[R]. AIAA Paper80-0229,1980
    [44] Kozlowski K, Kraft G. Experimental evaluation of exhaust mixers for an energy efficientengine[R]. AIAA Paper80-1088,1980
    [45] Kuchar A P, Chamberlin R. Scale model performance test investigation of mixed flow exhaustsystems for an energy efficient engine(E3) propulsion system[R]. AIAA Paper83-0541,1983
    [46] Werle M, Presz W, Paterson R. Flow structure in a periodic axial vortex array[R]. AIAA Paper87-0610,1987
    [47] Skebe S A, Paterson R W, Barber T J. Experimental investigation of three-dimensional forcedmixer lobe flow fields[R]. AIAA Paper88-3785-CP,1988
    [48] Abolfadl M A, Sehra A K. Application of three-dimensional viscous analysis to turbofan forcedmixers[R]. AIAA Paper91-0131,1991
    [49] Eckerle W A, Sheibani H, Awad J. Experimental measurements of vortex developmentdownstream of a lobed forced mixer[J]. Journal of Engineering for Gas Turbines and Power,1992,114:63-71.
    [50] Elliot H K, Manning T A, Qiu Y J, etal. Computational and experimental studies of flow inmulti-lobed forced mixers[R]. AIAA Paper92-3568,1992
    [51] McCormick D C, Bennett J C Jr. Vortical and turbulent structure of a lobed mixer free shearlayer[J]. AIAA Journal,1994,32(9):1852-1859.
    [52] O’Sullivan M N, Krasnodebski J K, Waitz I A, etal. Computational study of viscous effects onlobed mixer flow features and performance[J]. Journal of Propulsion and Power,1996,12(3):449-456
    [53] Tsui Y Y, Wu P W. Investigation of the mixing flow structure in multilobe mixers[J]. AIAAJournal,1996,34(7):1386-1391
    [54] Glauser M N, Ukeiley L S, Wick D P. Investigation of turbulent flows via pseudo flowvisualization-Part II: lobed mixer[J]. Experimental Thermal and Fluid Science,1996,13(2):167-177
    [55] Yu S C M, Yip T H. Measurements of velocities in the near field of a lobed forced mixer trailingedge[J]. The Aeronautical Journal,1997,101:121-129
    [56] Belovich V M, Samimy M. Mixing process in a coaxial geometry with a central lobed mixingnozzle[J]. AIAA Journal,1997,35(5):838-84l
    [57] Waitz I A, Qiu Y J, Manning T A, etal. Enhanced mixing with streamwise vorticity[J]. Progressin Aerospace Science,1997,33:323-351
    [58] Salman H, McGuirkt J J, Pagez G J. A numerical study of vortex interactions in lobed mixer flowfields[R]. AIAA Paper99-3409,1999
    [59] Hu H, Saga T, Kobayashi T, etal. A study on a lobed jet mixing flow by using stereoscopicparticle image velocimetry technique[J]. Physics of Fluid,2001,13(11):3425-3442
    [60] Salman H, Page G J, McGuirk J J. Prediction of lobed mixer vortical structures with a k-turbulence model[J]. AIAA Journal,2003,41(5):878-887
    [61]张靖周,李立国,吴国钏.波瓣混合结构三维流场数值计算[J].南京航空航天大学学报,1996,28(6):745-749
    [62]姜卫星,李立国,陈锵.波瓣流向涡的数值分析[J].航空学报,1998,19(3):318-322
    [63]张靖周,谢志荣,李立国.三维强迫混合波瓣结构流场的数值研究[J].推进技术,2001,22(3):225-228
    [64]刘友宏,樊超,谢翌.波瓣数对波瓣强迫混合排气系统性能影响[J].航空动力学报,2010,25(8):2236-2242
    [65]谢翌,刘友宏.瓣高宽比对波瓣强迫混合排气系统性能影响[J].航空动力学报,2010,25(12):2787-2794
    [66] Sokhey J S. Experimental performance evaluation of ventilated mixers-a new mixer concept forhigh-bypass turbofan engines[J]. Journal of aircraft,1984,21(8):567-575
    [67] Abolfadl M A, Sehra A K. Experimental investigation of exhaust system mixers for a high bypassturbofan engine[R]. AIAA Paper93-0022,1993
    [68] Yu S C M, Yip T H, Liu C Y. Mixing characteristics of forced mixers with scalloped lobes[J].Journal of Propulsion and Power,1997,13:305-311
    [69] Yu S C M, Hou Y X, Chan W K. Scarfing and scalloping effects on lobed forced mixer atlow-speed conditions[J]. Journal of propulsion and power,2000,16(3):440-448
    [70] Mengle V G, Dalton W N. Lobed mixer design for noise suppression[R]. NASA CR2002-210823,2002
    [71] Mao R, Yu S C M, Zhou T, etal. On the vorticity characteristics of lobe-forced mixer at differentconfigurations[J]. Experiments in Fluids,2009,46:1049-1066
    [72]刘友宏,郭楠.后缘切角对波瓣混合器性能影响[J].航空动力学报,2009,24(9):1917-1922.
    [73]刘友宏,谢翌,郭楠.尾缘凹扇及综合修形对波瓣混合器性能影响[J].航空动力学报,2010,25(2):243-250
    [74]丁玉林,刘友宏,谢翌,等.尾缘锯齿修形对波瓣强迫混合排气系统性能影响[J].航空动力学报,2012,27(10):2236-2242
    [75] Lei Z, Mahallati A, Cunningham M, etal. Influence of inlet swirl on the aerodynamics of a modelturbofan lobed mixer[R]. ASME Paper IMECE2010-39116,2010
    [76] Lei Z, Mahallati A, Cunningham M H, etal. Effects of core flow swirl on flow characteristics of ascalloped lobed force mixer[R]. ASME paper GT2011-46726,2011
    [77] Mao R H, Yu S C M, Chua L P. Kelvin-Helmholtz and streamwise vortices in the near wake of asingle-lobe forced mixer[J]. Proc. IMechE, Part G: Journal of Aerospace Engineering,2006,220:279-298
    [78] Nastase I, Meslem A. Vortex dynamics and mass entrainment in turbulent lobed jets with andwithout lobe deflection angles[J]. Experiments in Fluids,2010,48:693-714
    [79] Presz W M, Morin B L, Gousy R G. Forced mixer lobes in ejector design[R]. AIAA Paper86-1614,1986
    [80] Presz W, Morin B, Blinn R. Short efficient ejector systems[R]. AIAA Paper87-1837,1987
    [81] Presz W M, Morin B L, Gousy R G. Forced mixer lobes in ejector designs[J]. Journal ofPropulsion and Power,1988,4(4):350-355
    [82] Presz W. Mixer/ejector noise suppressors[R]. AIAA Paper91-2243,1991
    [83] Presz W, Reynolds G, McMormick D. Thrust augmentation using mixer/ejector/diffuser[R].AIAA Paper94-0020,1994
    [84] Tew D E, Teeple B S, Waitz I A. Mixer-ejector noise-suppressor model[J]. Journal of Propulsionand Power,1998,14(6):941-950
    [85]张靖周,李立国,高潮.波瓣喷管引射系统的初步试验研究[J].航空学报,1994,15(12):1512-1514
    [86] Skebe S, McCormick D, Presz W. Parameter effects on mixer-ejector pumping performance[R].AIAA Paper88-7018,1988
    [87] Malecki R E, Mityas S J, Lord W K. Navier-Stokes analysis of an ejector and mixer-ejectoroperating at pressure ratio in the range2-4[R]. AIAA Paper90-2730,1990
    [88]胡晖,刘火星,吴寿生,等.二元波瓣喷管排气引射系统的试验研究[J].航空学报,1996,17(5):518-523
    [89] Hu H, Kobayashi T, Taniguchi N, etal. Research on the rectangular lobed exhaust ejector/mixersystems[R]. Transactions of Japan Society of Aeronautics and Space Science,1999,41(134):187-194
    [90]刘友宏,李立国.有无中心锥圆排波瓣喷管引射器内流场模拟与比较[J].航空动力学报,2002,17(3):280-286
    [91]刘友宏,李立国.直排波瓣喷管引射器流场计算k-模型的选择[J].空气动力学学报,2002,20(3):343-350
    [92] Liu Y H. Experimental and numerical investigation of circularly lobed nozz le with/withoutcentral plug[J]. International Journal of Heat and Mass Transfer,2002,45(12):2577-2585
    [93] Dalbello T, Steffen C J. Parametric study of a mixer/ejectoe nozzle with mixing enhancementdevices[R]. AIAA Paper2002-0667,2002
    [94]单勇,张靖周.波瓣喷管引射-混合器的数值研究与验证[J].推进技术,2004,25(4):320-324
    [95]单勇,张靖周.波瓣喷管引射-混合器涡结构的数值研究[J].空气动力学学报,2005,23(3):355-359
    [96]单勇,张靖周.波瓣喷管结构参数对引射混合器性能影响的数值研究[J].航空动力学报,2005,20(6):973-977
    [97] Zhang J Z, Shan Y, Li L G. Computation and validation of parameter effects on lobedmixer-ejector performances[J]. Chinese Journal of Aeronautics,2005,18(3):193-198
    [98]张靖周,李立国,高潮.弯曲混合管引射系统气动特性试验研究[J].航空动力学报,1994,9(1):89-91
    [99]单勇,张靖周.弯曲混合管引射系统引射-混合特性数值研究[J].南京航空航天大学学报,2008,40(2):137-141
    [100]唐正府,张靖周.波瓣喷管-狭长出口弯曲混合管引射混合特性分析[J].航空动力学报,2005,20(6):978-982
    [101]唐正府,张靖周,单勇.混合管出口掺混距离对气流温度的影响[J].航空动力学报,2008,23(7):1194-1197
    [102] Presz W M, Werle M. Multi-stage mixer/ejector system[R]. AIAA Paper2002-4064,2002
    [103]鲁盼,黄勇,王方,等.面积比、波瓣张角对多级波瓣喷管性能的影响研究[J].2010,36(6):12-17
    [104] Mahulikar S P, Sonawane H R, Rao G A. Infrared signature studies of aerospace vehicles[J].Progress in Aerospace Sciences,2007,43:218-245
    [105] Segalman I, Semerjian H. Turbine engine infrared signature program[R]. ADA028659,1976
    [106] Noah M A, Kristi J, Schroeder J W, etal. NIRATAM-NATO infrared air target model[C].Proceedings of SPIE,1479:275-282,1991
    [107] Bakker E J, Fair M L, Schleijpen H M A. Modeling multi-spectral imagery data withNIRATAM v3.1and NPLUME v1.6[C]. Proceedings of SPIE,3699:80-91,1999
    [108] Sanders J S, Johnson K R, Curran A R, etal. Ground target infrared signature modeling with themulti-service electro-optic signature (MuSES) code[C]. Proceedings of SPIE,4029:197-204,2000
    [109] Bishop G J, Caola M J, Geatches R M, etal. SIRUS spectral signature analysis code[C].Proceedings of SPIE,2003,5075:259-269
    [110] Johansson M, Dalenbring M. SIGGE, A prediction tool for aeronautical IR signatures, and itsapplications[R]. AIAA Paper2006-3276,2006
    [111] Ludwig C B, Malkmus W, Reardon J E, etal. Handbook of infrared radiation from combustiongases[R]. NASA SP-3080,1973
    [112] Kneizys F X, Shettle E P, Abreu L W, etal. Lowtran-7computer code user’s manual[R].AFGL-TR-88-0177,1988
    [113] Berk A, Bernstein L S, Robertson D C. Modtran: a moderate resolusion model for Lowtran7[R].AFGL-TR-89-c122,1989
    [114] Rothman L S, Barbe A, Benner D C, etal. The Hitran molecular spectroscopic database: editionof2000including updates through2001[J]. Journal of Quantitative Spectroscopy and RadiatioveTransfer,2003,82:5-44
    [115] Fiveland W A. A discrete ordinates method for predicing radiative heat transfer in axisymmetricenclosures[R]. ASME Paper82-HT-20,1982
    [116] Turelove J S. Three-dimensional radiation in absorbing-emitting-scattering media using thediscrete-ordinates approximation[J]. Journal of Quantitative Spectroscopy and RadiatioveTransfer,1988,39:27-31
    [117] Lu X D, Hsu P F. Reverse Monte Carlo method for transient radiative transfer in participatingmedia[J]. Journal of heat tranfer,2004,126:621-627
    [118] Tan H P, Yong S, Dong S K. Analysis of rocket plume base heating by using backwardMonte-Carlo method[J]. Journal of Thermophyysics and Heat Transfer,2005,19(1):125-127
    [119]帅永,董士奎,刘林华.高温含粒子自由流红外辐射特性的反向蒙特卡罗法模拟[J].红外与毫米波学报,2005,24(2):100-104
    [120] Ibgui L, Hartmann J M. An optimized line by line code for plume signature calculations, I:model and data[J]. Journal of Quantitative Spectroscopy and Radiatiove Transfer,2002,75(3):273-295.
    [121] Ibgui L, Valentin A, Merienne M F, etal. An optimized line-by-line code for plume signaturecalculations, II: comparisons with measurements[J]. Journal of Quantitative Spectroscopy andRadiatiove Transfer,2002,74(4):401-415.
    [122] Chu W C, Der J, Wun W. Simple two dimensional-nozzle plume model for infrared analysis[J].Journal of Aircraft,1981,18(12):1038-1043
    [123] Lefebvre A H. Flame radiation in gas turbine combustion chambers[J]. Journal of Heat MassTransfer,1984,27(9):1493-1510.
    [124] Cogliandro S, Castelli P. Plume infrared signature measurements and comparison with atheoretical model[C]. Proceedings of SPIE,1986,685:73-79
    [125]黄勇,郭志辉,魏福清,等.收扩喷管加小突片对尾喷流红外辐射的影响[J].航空动力学报,2001,16(1):19-22
    [126] Heragu S S, Rao KV L, Raghunandan B N. Generalized model for infrared perception from anengine exhaust[J]. Journal of Thermophysics and Heat Transfer,2002,16(1):68-76
    [127]金捷,朱谷君,徐南荣,等.发动机高速排气系统红外辐射特性的数值计算和分析[J].航空动力学报,2002,17(5):582-585
    [128] Mahulikar S P, Rao G A, Sane S K, etal. Aircraft plume infrared signature in nonafterburningmode[J]. Journal of Thermophysics and Heat Transfer,2005,19(3):413-415
    [129] Levy Y, Lev M, Ovcharenko V. Infrared radiation from turbojet exhaust plume[R]. ASME PaperGT2007-27379,2007
    [130] Rao G A, Buijtenen J P, Mahulikar S P. The effect bypass ratio on aircraft plume infraredsignatures[R]. ISABE-2009-1194,2009
    [131] Rao A G. Infrared signature modeling and analysis of aircraft plume[J]. International Journal ofTurbo and Jet Engines,2011,28(3):187-197
    [132] Banken G J, Cornette W M, Gleason K M, etal. Investigation of infrared characteristics of threegeneric nozzle concepts[R]. AIAA Paper80-1160,1980
    [133] Decher R. Infrared emissions from turbofans with high aspect ratio nozzles[J]. Journal ofAircraft,1981,18(12):1025-1031.
    [134]徐南荣,朱谷君.热空腔-喷气流的组合辐射[J].航空动力学报,1995,10(3):295-298
    [135]额日其太,王强,陈渭鹏.两种涡扇发动机排气系统红外辐射特性的比较[J].航空动力学报,2003,24(4):334-337
    [136] Dix J, Saddington A J, Knowles K, etal. Infra-red signature reduction study on a small-scalejet engine[J]. Aeronautical Journal,2005,109(1092):83-88
    [137] Rao G A, Mahulikar S P. Aircraft powerplant and plume infrared signature modelling andanalysis[R]. AIAA Paper2005-0221,2005
    [138]罗明东,吉洪湖,黄伟,等.无加力涡扇发动机二元喷管的红外辐射特性试验[J].航空动力学报,2006,21(4):631-636
    [139]张勃,吉洪湖,罗明东,等.宽高比对尾向可见明火矩形喷管红外抑制特性影响研究[J].航空动力学报,2007,22(11):1820-1825
    [140]刘长春,吉洪湖,李娜,等.一种二元S弯喷管的红外辐射特性数值研究[J].工程热物理学报,2010,31(9):1567-1570
    [141]刘福城,吉洪湖,林兰之,等.二元引射喷管几何特征参数对推力及红外特性的影响[J].航空动力学报,2011,26(6):1244-1250
    [142]孙志强,杨青真,陈立海,等.涡扇发动机引射喷管的红外辐射特性数值研究[J].航空工程进展,2012,3(1):92-97
    [143] McGlynn J D, Auerbach S P. IR signature prediction errors for skin-heated aerial targets[C].Proceedings of SPIE,1997,3062:22-30
    [144] Mahulikar S P, Sane S K, Gaitonde U N, et al. Numerical studies of infrared signature levels ofcomplete aircraft[J]. Aeronautical Journal,2001,105(1046):185-192
    [145] Rao G A, Mahulikar S P. Effect of atmospheric transmission and radiance on aircraft infraredsignatures[J]. Journal of Aircraft,2005,42(4):1046-1054
    [146] Mahulikar S P, Kolhe P S, Rao G A. Skin temperature prediction of aircraft rear fuselage withmultimode thermal model[J]. Journal of Thermophysics and Heat Transfer,2005,19:114-124
    [147] Mahulikar S P, Rao G A, Kolhe P S. Infrared signatures of low-flying aircraft and their rearfuselage skin’s emissivity optimization[J]. Journal of Aircraft,2006,43(1):226-232
    [148]夏新林,艾青,任德鹏.飞机蒙皮红外辐射的瞬态温度场分析[J].红外与毫米波学报,2007,26(3):174-178
    [149] Mahulikar S P, Potnuru S K, Rao, G A. Study of sunshine, skyshine, and earthshine for aircraftinfrared detection[J]. Journal of Optics A: Pure and Applied Optics,2009,11(4):045703
    [150] Lu J W, Wang Q. Aircraft-skin infrared radiation characteristics modeling and analysis[J].Chinese Journal of Aeronautics,2009,22:493-497
    [151]吕建伟,王强.飞行器表面温度和发射率分布对红外辐射特征的影响[J].光电工程,2009,36(2):50-54
    [152] Mahulikar S P, Vijay S, Potnuru S K, etal. Aircraft engine's lock-on envelope due to internal andexternal sources of infrared signature[J]. Transactions on Aerospace and Electronic Systems,2012,48(3):1914-1923
    [153] Power G D, McClure M D, Vinh D. Advanced IR suppresser design using a combined CFD/testapproach[R]. AIAA Paper94-32l5, l994
    [154] Ponton A J. The use of concurrent engineering techniques in helicopter I.R. suppressordesign[R]. ISABE-2005-1290,2005
    [155] Bettini C, Cravero C, Cogliandro S. Multidisciplinary analysis of a complete infraredsuppression system[R]. ASME Paper GT2007-27721,2007
    [156] Shan Y, Zhang J Z. Numerical investigation of flow mixture enhancement and infrared radiationshieled by lobed forced mixer[J]. Applied Thermal Engineering,2009,29:3687-3695
    [157] Vaivads R H, Gauthier J E D. CFD simulation of helicopter tailboom heating[C]. Annual ForumProceedings-American Helicopter Society,1998,2:953-956
    [158]王先炜,黄勇,路玉霞.旋翼下洗气流对红外抑制器性能的影响研究[J].航空动力学报,2003,18(6):772-776
    [159]朱英,黄勇.红外抑制器模型出口温度的试验[J].航空动力学报,2007,22(7):1142-1147
    [160] Mahulikar S P, Prasad H S S, Potnuru S K. Infrared signature suppression of helicopter engineduct based on conceal and camouflage[J]. Journal of Propulsion and Power,2008,24(3):613-618
    [161]匡传树,王先炜.波瓣喷管红外抑制器装机状态引射性能分析[J].直升机技术,2008,1:30-34
    [162]王同辉,王先炜,张靖周,等.直升机红外抑制器遮挡罩间距对红外辐射特性的影响[J].航空动力学报,2009,24(7):1493-1499
    [163]王芳,余建祖,谢永奇.直升机发动机舱流场及温度场的模拟[J].航空动力学报,2005,20(2):208-213
    [164]谢永奇,余建祖,高红霞.直升机发动机舱通风冷却系统仿真[J].航空动力学报,2006,21(2):297-302
    [165]曹学伟,余建祖,谢永奇,等.发动机舱冷却用排气引射混合管改进设计方法[J].航空动力学报,2010,25(3):526-530
    [166]刘沛清.空气螺旋桨理论及其应用[M].北京:北京航空航天大学出版社,2006
    [167]康宁,孙茂.旋翼近地飞行时诱导速度的N-S方程计算[J].空气动力学学报,1998,2(16):221-225
    [168]王博.基于CFD方法的直升机旋翼/机身流场模拟及分析[D].南京航空航天大学硕士学位论文,2007
    [169]云南林学院.气象学[M].北京:农业出版社,1979
    [170]彦启森,赵庆珠.建筑热过程[M].北京:中国建筑出版社,1986
    [171] FLUENT Ver6.3User Manual
    [172] Shan Y, Zhang J Z, Huang G P. Experimental and numerical studies on lobed ejector exhaustsystem for micro turbojet engine[J]. Engineering Applications of Computational FluidMechanics,2011,5(1):141-148
    [173] Shan Y, Zhang J Z, Xu L. Numerical investigation of aerodynamic and mixing characteristics ofscarfed lobed mixer for turbofan engine exhaust system[J]. Transactions of Nanjing University ofAeronautics and Astronautics,2009,26(2):130-136
    [174]王婕.涡轴型发动机冷却通风系统参数在机动试飞中的变化规律与分析[J].工程与试验.2012,52(2):28-32

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700