航天器目标红外和可见光辐射特性及其抑制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航天器目标辐射特性的研究在航天技术、空间对抗、遥感探测及通讯导航等各领域都有着非常重要的意义。而对于空间对抗技术,尤其需要掌握对航天器目标辐射特性进行抑制的方法,这将有利于保持空间优势。本文在航天器目标红外及可见光辐射特性研究的基础上,通过实验探讨了空间环境对目标辐射特性的影响效应,并提出了对航天器目标辐射特性进行抑制的方法。
     具体完成了如下的工作:
     (1)航天器目标红外辐射特性及其环境效应研究
     在分析航天器目标内外热源的基础上对航天器目标的红外辐射特性进行研究。建立了基于航天器目标热平衡的温度场计算模型,同时考虑表面反射及自身辐射等因素,建立了航天器目标红外辐射通量计算模型。由航天器目标红外辐射的可探测特性分析可知目标表面的平均温度值,决定了目标的可探测特性。通过空间光学系统表面沾染实验,研究空间沾染引起的航天器目标红外辐射特性环境效应。由实验结果可得:表面沾染对航天器常规表面材料的目标表面辐射特性的影响效应是使其表面发射率增大,温度升高,红外辐射特性增强。
     (2)航天器目标可见光辐射特性及其环境效应研究
     建立了基于航天器目标表面漫反射性质的目标可见光辐射特性分析计算模型,以某地球同步轨道卫星为例,采用基于蒙特卡罗的非序列光线追迹方法,对航天器目标可见光辐射特性进行计算和分析,用探测器上接收的辐照度值来描述卫星目标的可见光辐射特性。同时,由航天器目标可见光辐射的可探测特性研究可知目标表面的平均反射率值,决定了目标的可探测特性。由于卫星实体的对称性,不同观测角度上探测的卫星光学辐照度也具有对称性,且辐照度值与观测距离平方成反比关系。通过航天器目标各组件材料的空间辐射环境效应模拟实验,研究空间辐射对目标可见光辐射特性的影响效应,由实验结果知:空间辐射的影响效应是个长期累积效果,短期辐射对航天器常规表面材料的目标可见光辐射特性几乎没有影响,长期的空间辐射使得航天器目标可见光辐射特性明显随着辐射时间增长而增大。
     (3)航天器目标红外辐射特性抑制方法研究
     本文提出采用在目标表面包覆真空多层绝热薄膜结构的方法来抑制航天器目标表面的红外辐射特性,该方法能够在不改变目标内部结构的情况下将目标表面温度降至最低,使得其表面红外辐射特性大大降低直至接近于空间环境背景辐射,辐射的峰值波长偏移出各种红外探测器窗口,使得探测器无法从背景环境中发现目标,大大减小了其被红外探测器发现的概率及探测距离。
     (4)航天器目标可见光辐射特性抑制方法研究
     提出了在航天器目标的表面设计中采用镜面表面设计,且目标本体设计成多面体结构的方法对航天器目标可见光辐射特性进行抑制,并且对典型的轨道和目标外形进行计算分析,由分析的结果可知该方法使得地基可见光探测器对目标的探测范围明显减小,并且由探测到的目标光学特征无法准确判断目标本身的真实外形特征,从而探测器对目标的探测概率大大降低,实现了有效抑制目标可见光辐射特性的目的,且该方法在实际应用中是确实可行的。
     (5)红外辐射特性抑制用多层绝热薄膜结构传热分析及实验研究
     在传热机理分析的基础上,对用于航天器目标红外辐射特性抑制的多层绝热薄膜结构进行传热分析,建立了空间环境辐射传热模型,模型对膜系结构的设计和应用具有很好的指导意义。为了验证膜系结构的红外辐射特性抑制性能,选择10层的Al/Kapton/Ge膜系结构进行空间环境模拟实验,实验结果为该膜系结构将航天器目标表面光谱辐射出射度降低了两个数量级,且辐射峰值波长偏移到了20μm以外,对航天器目标的红外光谱辐射特性具有很好的抑制效果。实验结果不如模型计算结果理想,存在一定误差,是由于实验过程中存在不可避免的接触导热及其它热源的辐射传热,通过对实验误差来源的分析和计算,可知实验中测温系统的热传导是实验误差的最主要来源,后续实验应采用非接触测温系统,最大限度地减小该项误差来源,将使实验结果更好地验证模型计算结果。
Research on radiation characteristics of spacecraft target has very important application values in fields of aerospace technology, space countermeasure, remote sensing detection, and communication-navigation. For space countermeasure the mastery of radiation characteristics restrain technology of spacecraft target is particularly important, which leads to the maitain of a favorable space sueriority. Based on the study on radiation characteristics of spacecraft target, contamination and radiation effects on the radiation characteristics of spacecraft target and the radiation characteristics restrain technology of spacecraft target are investigated in this paper. Details are as follows:
     1. Infrared radiation characteristics and its environmental effects of spacecraft target
     Based on the study on space environment, radiation characteristics of spacecraft target is investigated. According to the internal and external heat flux of spacecraft target, a temperature field model of target is built. The model can be used to calculate the surface temperature distribution of target. If considering the surface characteristics of the target, infrared radiation flux model can be built, which be used to calculate the target infrared radiation flux distribution. Analysis of surface contamination and space radiation effects on spacecraft target is given. Space optical systems surface contamination testing and space radiation testing are designed to study the effects. Surface contamination on spacecraft target mainly makes the surface gray rise. So the infrared radiation characteristics of spacecraft target increase and infrared radiation characteristics of different surface becomes uniform.
     2. Visible radiation characteristics and its environmental effects of spacecraft target
     A visible radiation characteristics model is built. Take a geosynchronous orbit communications satellite of our country for example, the non-sequential ray-tracing method based on Monte-Carlo technique is used to calculate the visible radiation characteristics of the target. The satellite visible radiation characteristics are expressed as irradiance accepted by the observation point detector. Bacause the symmetry of satellite body, the satellite irradiance value accepted by the detector in different observation angles has symmetry property. And the irradiance value is proportional to the square of the distance between observer and satellite. The space radiation effect is an impact of long-term cumulation. Testing and simulation analysis show that the visible radiation characteristics of spacecraft target almost keeps the same in the short-term space radiation. When the period of space radiation is longer than 5 years, the visible radiation characteristics of spacecraft target significantly increases with the time increasing. After the period of 15years space radiation, the visible radiation energy of spacecraft target becomes double.
     3. Infrared radiation characteristics restrain method of spacecraft target
     Cryogenic vacuum multilayer thermal insulation film structure is used to restrain the infrared radiation characteristics of spacecraft target in this paper, which is different from existing methods. This method does change the target shape and reduces the target temperature near to the environment temperature.According to the model analysis we find that target’s infrared flux was significantly reduced and its peak wavelength shift out of so all kinds of infrared detector window. So the detected probability is decreased.
     4. Visible radiation characteristics restrain method of spacecraft target
     Polyhedral shape and mirror surface design is presented in the paper, which is used to restrain the visible spectral radiation characteristics of spacecraft target. This design decreases visible detected probability of spacecraft target. Examples are given to illustrate the comprehensive application of the method, which shows the excellent restrain effect.
     5. Heat transfer analysis and testing study of multilayer film structure used in infrared radiation characteristics restrain of spacecraft target
     Based on the the heat transfer mechanism, heat transfer analysis of cryogenic vacuum multilayer thermal insulation film structure used in restrain infrared radiation characteristics restrain of spacecraft target is given in this paper. The classical radiation heat transfer models is built. The models are extremely instructive in the design and application of the film structure. For the perpose of verifying the infrared radiation characteristics restrain performance of the film structure, ten-layer Al/Kapton/Ge film structure was chosen to be tested in the space environment simulation testing. The results show that spectral radiation intensity becomes two orders of magnitude lower and its peak wavelength shift to longer than 20μm. Because of the inevitable contact heat transfer and radiation heat transfer from other heat sources, the testing results are not so good as analysis results of models. Contact heat transfer should be minimaized in application.
引文
1闵桂荣.世界空间技术发展趋势.世界科技研究与发展. 2000, (2):1~2
    2 D. Wright, L. Grego. Physics of Space Security. American Academy of Arts and Sciences. 2005: 1~5
    3杨乐平.空间安全与国家安全.国防科技. 2005, (4):19~23
    4曾德贤,杜小平.空间目标在天基光学探测中的特性分析与仿真.空间科学学报. 2008, 28(6): 560~566
    5周彦平,舒锐,陶坤宇.空间目标光电探测与识别技术的研究.光学技术. 2007, 33(1): 68~73
    6 G. H. Stokes, C. V. Braun, R. Sridharan. The Space-based Visible Program. Lincoln Laboratory Journal. 1998, 11(2): 205~238
    7赵霜,张社欣,方有培,汪立萍.美俄空间目标监视现状与发展研究.航天电子对抗. 2008, 24(1): 27~29
    8 J. L. Africano, E. G. Stansbery. The Optical Orbital Debris Measurement Program at NASA and AMOS. Advances in Space Research. 2004, (34): 892~900
    9刘云猛,柴金广,王旭辉,张宝龙.空间目标可见光特性与探测距离估算.红外技术. 2009, 31(1): 23~26
    10 G. Ambrosi. AMS, a Particle Detector in Space:Results from the Precursor Flight and Status of AMS-02. Nuclear Physics B. 2003, (125): 236~244
    11 R.Walker, C.E.Martin. Cost-effective and Robust Mitigation of Space Debris in Low Earth Orbit.Advances in Space Research.2004, (34): 1233~1240
    12 M. Garg, J. K. Quamara. Multiple Relaxation Processes in High-energy Ion Irradiated Kapton-H Polyimide: Thermally Stimulated Depolarization Current Study. Nucl. Instr. and Meth.B. 2006, (246): 355~363
    13刘振兴.太空物理学.哈尔滨工业大学出版社. 2005: 3~12
    14中国科学院空间科学与应用研究中心.宇航空间环境手册.中国科学技术出版社. 2001: 1~6
    15 B. A. Banks, S. K. Miller, K. K. Groh. Low Eart h Orbital atomic oxygen interactions wit h materials. NASA TM220042213223. AIAA2200425638. 2004: 7~11
    16 B. A. Banks, K. K. Groh, E. B. Barton, et al. A Space Experiment to Measure theAtomic Oxygen Erosion of Polymers and Demonst Rate a Technique to Identify Sources of Silicone Contamination. NASA TM219992209180. 1999: 1~13
    17周传良.航天器研制全过程污染控制工程.航天器环境工程. 2005, 22(6): 335~341
    18 R. E. Shalin, V. T. Minakov, I. S. Deev. Study of Polymer Composite Specimens Surface Changes After the Longterm Exposure in Space. Proceedings of the 7th International Symposium on Materials in SpaceEnvironment. 1997, ESA SP-399: 375~383
    19 F. Whitaker, L. E. Young. An Overview of the First Results on the Solar Array Materials Passive LDEF Experiment (Sample), AO171. N92227087. 1992: 1241~1254
    20 J. Alred, J. T. Visentine, K. Albyn. Summary of Shuttle Mir Risk Mitigation Experiments Contamination/ Optical Observations. AIAA2200120097. 2001: 18~23
    21 P. T. Chen. Contamination Effects Due to Space Environmental Interaction. AIAA2200120095. 2001: 798~800
    22 M. C. Lillis, E. E. Youngstrom, L. M. Marx. Space Flight Experiments to Measure Polymer Erosion and Contamination on Spacecraft. NASA TM220022211553. 2002: 12~18
    23达道安,李旺奎.空间真空技术.宇航出版社. 1995: 375~377
    24 D. J. Coleman, K. T. Luey. Photochemical Deposition of Spacecraft Material Outgassing Products. Proceedings SPIE Conference on OpticalSystem Contamination: Effects, Measurements, and Control VI. San Diego, Califormia: SPIE. 1998, 3427: 336~347
    25 E. M. Silverman. Space environmental Effects on Spacecraft: LEO Materials Selection Guide. NASA CR-4661. 1995: 88~92
    26 C. W. Chang, P. T. Chen, O. M. Uy. Molecular Contamination Effects on the Thermal Emittance of Highly Reflective Surfaces at Cryogenic Temperatures. Proceedings of SPIE-Optical Systems Contamination: Effects, Measurements, and Control VII. 2002, 4774: 119~128
    27廖少英.飞行环境污染对航天器的影响.上海航天. 2002, (6): 29~32
    28 C. L. Hakes. Contamination Analysis Programs for the International Space Station. AIAA29720632. 1997: 23~29
    29 H. Dursch. Results from Testing and Analysis of Solar Cells Flown on LDEF.N93210591. 1993: 649~660
    30 B. A. Banks, K. K. Groh, S. K. Rutledge. Consequences of Atomic Oxygen Interaction with Silicone and Silicone Contamination on Surface in Low Earth Orbit. NASA TM219992209179. 1999: 1~10
    31 Y. Noter, E. Grossman, L. Genkin, et al. Variations in the Telemetry of an OFFEQ Satellite’s Sun Sensors. Proceedings of the 7th International Symposium on Materials in Space Environment. 1997, ESA SP2399: 143~152
    32 J. M. Costantini, J. P. Salvetat, F. Couvreur, S. Bouffard. Carbonization of Polyimide by Swift Heavy Ion Irradiations: Effects of Stopping Power and Velocity. Nuclear Instruments and Methods in Physics Research B. 2005, (234): 458~466
    33 M. Garg, J. K. Quamara. Multiple Relaxation Processes in High-energy Ion Irradiated Kapton-H Polyimide: Thermally Stimulated Depolarization Current Study. Nuclear Instruments and Methods in Physics Research B. 2006, (246): 355~363
    34 X. Wang, X. Zhao, M. Wang and Z. Shen. The Effects of Atomic Oxygen on Polyimide Resin Matrix Composite Containing Nano-silicon Dioxide. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms. 2006, 243(2): 320~324
    35 F. Stewart and M. Finckenor. Optical Coatings and Surfaces in Space: MISSE. Proc. of SPIE. 2007, 6403: 1~12
    36 W. Changa and G. P. Rosecrans. EOS AM-i Flight-phase Contamination Analysis. SPIE. 1998, 3427:314~323
    37 P. K. Quinn, T. L. Anderson, T. S. D. Bates, J. Heintzenbert, W. von Hoyningen-Huene, M. Kulmala, P. B. Russell, E. Swietlicki. Closure in Tropospheric Aerosol-climate Research: Direct Shortwave Radiative Forcing. Beitraege Physikalische Atmosphere. 1996, 69(4): 547~577
    38 P. H. McMurry, X. Q. Zhang, C. T. Lee. Issues in Aerosol Measurement for Optics Assessments. Journal of Geophysical Research-Atmospheres. 1996, 101(D14): 19189~19197
    39 C. I. Lin, M. Baker, R. J. Charlson. Absorption Coefficient of Atmospheric Aerosol: a Method for Measurement. Applied Optics. 1973, 12(6): 1356~1363
    40 D. Clarke, A. P. Waggoner. Measurement of Particle Optical Absorption, Imaginary Refractive Index, Mass Concentration, and Size at First InternationalLAAP Workshop. Appl. Opt. 1982, (21): 398~402
    41 L. R. Baker. Surface Imperfections: Specimen Measurement by Microscope and Digital Camera. Opt. Eng. 2001, 40(10): 2059~2060
    42 L. R. Baker. Surface Damage Metrology: Precision at Low Cost. Proc. of SPIE. 2002, 4779: 41~51
    43曹运华,吴振森,张涵璐,魏庆农,汪世美.粗糙目标样片光谱双向反射分布函数的实验测量及其建模.光学学报. 2008, 28(4): 792~798
    44戴名奎,徐德衍.光学元件的疵病检验与研究现状.光学仪器. 1996, 18(3): 33~36
    45杨甬英,徐敏,卓永模.实时扫描非接触测量表面微观轮廓仪.浙江大学学报(自然科学版). 1999, 33(3): 317~322
    46 C. Leinert, D. Klüppelberg. Stray Light Suppression in Optical Space Experiments. Applied Optics. 1974, 13(3): 556~564
    47 J. I. Minow. Development and Implementation of an Empirical Ionosphere Variability Model. Advances in Space Research. 2004, (33): 887~892
    48 C. D. Li, D. Z. Yang, S. Y. He. Effects of Proton Exposure on Aluminized Teflon FEP Film Degradation, Nucl. Instr. and Meth. B. 2005, (234): 249~255
    49 Y. Gao, S. L. Jiang, D. Z. Yang, S. Y. He, J. D. Xiao, Z. J. Li. A Study on Radiation Effect of<200keV Protons on M40J/Epoxy Composites. Nuclear Instruments and Methods in Physics Research-Section B. 2005, 229(2): 261~268
    50 J. Han, C. Kim. Low Earth Orbit Space Environmemt Simulation and its Effects on Graphite/Epoxy Composites. Composite Structures. 2006, 72(2): 218~226
    51 G. Bitetti, M. Marchetti, S. Mileti, F. Valente and S. Scaglione. Degradation of the Surfaces Exposed to the Space Environment. Acta Astronautica. 2007, 60(3): 166~174
    52 D. E. Bowles, S. S. Tompkins, G. F. Sykes. Journal of Spacecraft and Rockets. 1986, 23(6): 625~629
    53 R. Mishira, S. P. Tripathy, D. Sinha. Optical and Electrical Properties of some Electron and Pproton Irradiated Polymers.Nuclear instruments and Methods Inphysics Research B. 2000, (168): 59~64
    54 H. Tahara, T. Kawabate, L. L. Zhang, et al. Nuclear Instruments and Methods in Physics Research B. 1997, (121): 446~449
    55王衡禹,李春萱. LEO原子氧对空间材料侵蚀的数值模拟.北京航空航天大学学报. 2005, 31(3): 293~296
    56 K. Fujimoto, T. Shioya, K. Satoh. Degradation of Carbon-Based Materials due to Impact of High-Energy Atomic Oxygen. International Journal of Impact Engineering. 2003, (28): 1~11
    57 C. D. Li, D. Z. Yang, S. Y. He, S. Q. Yang. Degradation of Teflon Film Underradiation of Protons and Electrons. Journal of Spacecraft and Rockets. 2004, 41(3): 373~376
    58 G. Bitetti, M. Marchetti, S. Mileti, F. Valente and S. Scaglione. Degradation of the Surfaces Exposed to the Space Environment. Acta Astronautica. 2007, 60(3): 166~174
    59卢榆孙,范本尧,冯煜东.卫星柔性热控材料性能及其稳定性研究.中国空间科学技术. 2002, (6): 43~48
    60袁俊.弹道导弹飞行弹道的特点.中国航天. 2003, (4): 41~42.
    61 T. Star, J. R. Msx. Design Parameters Driven by Targets and Backgrounds. Johns Hopkins Apl Technical Digest. 1996, 17(1): 11~18
    62李宏,孙仲康,徐晖.再入大气层弹道导弹弹头及其伴随重诱饵的红外辐射特性.系统工程与电子技术. 1997, (8): 28 ~33
    63丰松江,聂万盛.中段弹道导弹和背景红外辐射研究概况.红外. 2006, 27(11): 19~22
    64姚连兴,侯秋萍,罗继强.弹道导弹中段目标表面温度与红外突防研究.航天电子对抗. 2005, 21(2): 5~16
    65徐晖.空间点目标红外和可见光特性及其应用研究博士论文.国防科技大学.湖南长沙. 1994: 8~13
    66王慧频.大气层外目标和诱饵的红外辐射特性及其识别方法研究博士论文.国防科技大学.湖南长沙. 1996: 11~17
    67徐晖,孙仲康.大气层外弹道式目标的红外辐射特性的理论计算方法.系统工程与电子技术. 1998, (3): 1~6
    68冯德军,王雪松,肖顺平.弹道目标中段雷达成像仿真研究.系统仿真学报. 2004, 16(11): 2511~2516
    69陈磊,吴瑞林,王军.战术弹道导弹的性能推测及仿真实现.现代防御技术. 2000, 28(1): 57~62
    70李群章.弹道导弹弹道中段和再入段弹头红外光学识别方法研究.红外与激光工程. 1999, 28(5):1~6
    71杨华,凌永顺,杜为民.制冷弹头的红外隐身效果研究.红外技术. 2002, 24(2): 22~24
    72李玉波,路远,凌永顺.卫星光学特征及其隐身技术初探. 2004, 17(4): 63~65
    73韩玉阁,宣益民.卫星的红外辐射特征研究.红外与激光工程. 2005, 34(1): 34~37
    74舒锐,周彦平,陶坤宇,姜义军.空间目标红外辐射特征研究.光学技术. 2006, 32(2): 196~199
    75何捍卫,周科朝,熊翔.红外-可见光的上转换材料研究进展.中国稀土学报. 2003, 21(2): 123~127
    76 Gudel H, Pollnau M. Near-infrared to Visible Photon Upconversion Processes in Lanthanide Doped Chliride B. Bromide and Iodidi Lattices. J. Alloys and Compounds. 2000: 303~307
    77马超杰,李晓霞,林志丹.基于表面设计的红外辐射特征控制技术.红外技术. 2006, 28(3): 157~160
    78 De Steese, et al. Structure and Method for Controlling the Thermal Emissivity of a Radiating Object. U. S. Patent6: 713~774
    79吴丹,李玉波,路远.目标表面辐射温度控制研究.红外技术. 2006, 28(6): 353~355
    80乔亚.目标红外辐射控制技术研究.激光与红外. 2006, 36(2): 138~140
    81 Jeffrey S Hale, John A Woollam. Prospects for IR Emissivity Control Using Electrochromic Structures. Thin Solid Films. 1999, (339):174~180
    82王忆锋,冯炽焘,李茜.坦克红外特征控制技术评述.红外技术. 1998, 20(4): 1~4
    83蔡奎,薛南斌,王秋贵.对军用车辆红外辐射控制技术的研究.军用光学仪器与技术. 2001, (7): 34~38
    84袁江涛,杨立,陈翾.现代舰船红外辐射及其控制策略分析.激光与红外. 2006, 36(10): 943~947
    85王军.弹道目标空间反识别措施发展态势浅析.系统工程与电子技术. 2002, 24(7): 53~57
    86王国强,陈涛,王建立.地基空间目标探测与识别技术.长春理工大学学报(自然科学版). 2009, 32(2): 197~199
    87张景旭.国外地基光电系统空间目标探测的进展.中国光学与应用光学.2009, 2(1): 10~16
    88张小英,朱定强,蔡国飙.中段目标的可见光辐射特性计算研究.应用光学. 2008, 29(3): 444~447
    89 P. Beckmann, A. Spizzichino. The Scattering of Electromagnetic Waves from Rough Surface. Pergamon, New York, 1963: 23~34
    90 E. W. Rork, S. S. Lin, A. J. Yakutis. Ground-based Electro-optical Detection of Artificial Satellites in Daylight from Reflected Sunlight. AD-A 117413. 1982: 473~479
    91 J. D. Rask. Modeling of Diffuse Photometric Signatures of Satellites for Space Object Identification. AD-A 127415. 1983: 177~190
    92 K. N. Shree, I. Katsushi, K. Takeo. Determining Shape and Reflectance of Lambertian, Secular, and Hybrid Surfaces using Extended Sources. IEEE Trans on MIV-89. 1989, (1): 169~175
    93吴振森,窦玉红.空间目标的可见光散射与红外辐射.应用光学. 2004, 25(1): 1~4
    94陈荣利,韩乐,车驰骋.非自发光空间目标的可见光探测技术研究.光子学报. 2005, 34(9): 1438~1440
    95张科科,周峰,傅丹鹰.天基空间目标监视可见光遥感器研究.航天返回与遥感. 2005, 26(4): 10~14
    96柳军,石安华,乐嘉陵.弹道靶中球模型非平衡可见光辐射的测量.实验流体力学. 2006, 20(2): 58~62
    97张伟,汪洪源,王治乐,孙成明.空间目标可见光散射特性建模方法研究.光子学报. 2008, 37(2): 2462~2467
    98刘云猛,柴金广,王旭辉,张宝龙.空间目标可见光特性与探测距离估算.红外技术. 2009, 31(1): 23~26
    99谭碧涛,景春元,张新,关小伟.光电系统对空间目标成像建模仿真研究计.算机仿真. 2009, 26(5): 240~243
    100 R. Hossein, R. Edwin. Lambertian Reflectance Correction for Rough and Shiny Surfaces. IEEE Trans on ICIP. 2002, (2): 553~556
    101 J. Jan, O. K. Koenderink, J. D. Andrea. Shading in the Case of Translucent Objects. Proc of SPIE. 2001, 4299: 312~320
    102范夕萍,窦建芝,郭瑞萍.国外可见光隐身材料的研究现状及最新进展.化工新型材料. 2009, 37(5): 9~11
    103金伟,路远,同武勤,杨丽.可见光隐身技术的现状与研究动态.飞航导弹. 2007, 8:12~15.
    104赵仁扬.太阳射电辐射理论.科学出版社, 1999:19~42
    105 G. K. Margaret, T. R. Christopher.空间辐照物理.曹晋滨,李磊,吴季等译.科学技术出版社, 2000: 222~250
    106 F. S. Johnson. The Solar Constant. Journal Meterollogical. 1954, 11(6): 431~439
    107 M. P. Thekaekara. Proposed Standard Values of the Solar Constant and the Solar Spectrum. The Journal of Environmental Science. 1970, 13(5): 6~9
    108沈国土,杨宝成,蔡继光,姜瑾,高景.卫星红外辐射场理论模型.中国空间科学技术. 2005, 25(2): 6~10
    109李淑军,高晓东,朱耆祥.带太阳能帆板的卫星光度特性分析.光电工程. 2004, 31(4): 1~8
    110 J. S. Francis. The Solar Constant. Journal of the Atmospheric Sciences. 1954, 11(6): 431~439
    111赵镇南.传热学.高等教育出版社. 2002: 38~41
    112闵桂荣,郭舜.空间目标热控制(第二版).科学出版社. 1998: 83~89
    113陶文铨.数值传热学(第二版).西安交通大学出版社. 2001: 125~142
    114谈和平,夏新林,刘林华,阮立明.红外辐射特性与传输的数值计算.哈尔滨工业大学出版社. 2006: 397~399
    115 V. P. Khodnenko, M. A. Melnichenko, A. P. Tyutnev. Outgassing Studies of Outer Materials Used on ELECTRO Spacecraft. Proceedings of the 7th International Symposium on Materials in Space Environment. 1997, ESA SP-399: 169~171
    116 M. M. Finckenor, R. R. Kamenetzky, J. A. Vaughn. Further Investigations of the Passive Optical Sample Assembly(PO-SA)-1 Flight Experiment. AIAA2200120098. 2001: 287~294
    117 R. L. Long, F. A. Rigby, L. E. Grimes. Distribution and Effect s of Organic Contaminations on Optical Surfaces-modeling. AIAA29822590. 1998: 453~460
    118 J. Visentine, W. Kinard, D. Brinker. Mir solar array return experiment: power performance measurement and molecular contamination analysis results. AIAA2200120684. 2001: 1377~1383
    119濮祖荫.空间物理前言进展.气象出版社, 1998: 22~39
    120 G. Ambrosi. AMS, a Particle Detector in Space: Results from the Precursor Flight and Status of AMS-02. Nuclear Physics B. 2003, (125): 236~244
    121 M. S. Andrew, M. C. John, B. Dietz. Countermeasures—A Technical Evaluation of the Operational Effectiveness of the Planned US National Missile Defense System [EB/OL].http://www.fas.org. 2000: 81~85
    122 Z. S. Wu, D. Y. Li, Y. Q. Zhang. Light Scattering and Visibility Condition of Spatial Objects. International Journal of Infrared and Millimeter Waves. 2004, 25(8): 1204~1209
    123 Z. S. Wu, A. A. Liu. Scattering of Solar and Atmospheric Background Radiation from a Target. International Journal of Infrared and Millimeter Waves. 2002, 23(6): 907~917
    124吴振森,窦玉红.空间目标的可见光散射与红外辐射.光学学报. 2003, 23(10): 1250~1254
    125张光明,郭海军.空间目标反射太阳辐射的研究.飞行器测控技术. 1994, (2): 26~31
    126 J. H. Hubbell. Photon Mass Attenuation and Energy Absorption Coefficients from 1keV to 20MeV. Int J Appl Rad Isotopes. 1982, 33(11): 1269~1290
    127 S. M. Seltzer. Calculation of Photon Mass Energytransfer and Mass Energy Absorption Coefficients. Rad Res. 1993, 136(2): 147~170
    128 J. H. Hubbell. Encyclopedia of Physical Science and Technology(Third Edition, Volume 13). USA, New York: Academic Press, 2002: 561~574.
    129 G. F. Knoll. Radiation Detection and Measurement(Third Edition). USA, New York: Wiley, 2000: 581~639
    130 Y. Harima. An historical Review and Current Status of Buildup Factor Calculation and Applications. Rad Physics Chem. 1993, 41(4/5): 631~672
    131 Youichi Nakayama, Kichiro Imagawa. Evaluation and Analysis of Thermal Control Materials under Ground Simulation Test for Space Environment Effects. High Performance Polymers. 2001, 13: S433~S451
    132 T. W. Graham Solomons and C. B .Fryhle, Organic Chemistry, Eighth Edition, John Wiley&Sons. 2004: 30~70
    133 J. Han and C. Kim. Low Earth Orbit Space Environmemt Simulation and Its Effects on Graphite/Epoxy Composites. Composite Structures. 2006, 72(2): 218~226
    134刁伟鹤,毛峡,梁晓庚.复杂背景红外成像系统作用距离估算方法.北京航空航天大学学报. 2009, 35(8): 1022~1026
    135李道勇,王增玉,张艳群.空间目标可见光散射特性与可视条件研究.光学与光电技术. 2005, 10(3): 5~8
    136张科科,阮宁娟.天基对静止轨道空间目标可见光探测的几何位置分析.红外与激光工程. 2007, 9(36): 606~609
    137 D. G. Cahill, W. K. Ford, K. D. Mahan, et al. Nanoscale Thermal Transfer. Applied physics Revives. 2003, 93(2): 793~818
    138 Z. Y. Goo, X. B. Wu. Compressibility Effect on the Gas Flow and Heat Transfer in a Microtube. International Journal of Heat Mass Transfer. 1997, 40(13): 3251~3254

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700