铝硅酸盐矿物、玻璃和熔体结构的Raman光谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硅酸盐熔体和硅酸盐矿物材料在冶金、材料和地球科学领域中应用非常广泛,硅酸盐矿物及硅酸盐熔体微结构的研究一直是冶金、材料和地球科学中一个重要的研究方向。拉曼(Raman)光谱和高温Raman光谱技术作为现代物质分子结构研究的重要方法,广泛应用于硅酸盐微结构的研究领域,并获得大量研究成果。
     本论文是依托上海大学、中国地质大学(北京)和北京大学共同申请和执行的国家自然科学基金重点项目“高温Raman谱创新技术及高温下物质微结构与性能”完成的。其研究目标和任务是应用Raman光谱和高温Raman光谱技术,对硅酸盐矿物及其熔体的结构进行研究,原位和实时地测定硅酸盐及铝硅酸盐体系在升温和冷却过程中的Raman光谱,并结合量子力学和量子化学从头计算的方法,探讨铝对硅酸盐Raman光谱的影响及铝硅酸盐Raman光谱中各特征谱峰的结构含义,为阐明Al~(3+)(包含四配位和六配位两种情况)在硅酸盐结构中的作用提供可靠的分析资料和拉曼光谱数据,也为硅酸赫熔体结构和矿物结构的研究提供了方法学方面的借鉴和参考。本论文取得的主要进展如下:
     对11种具代表性的铝硅酸盐矿物品体进行了Raman光谱测定,采用Materials studio软件中的Dmol~3密度泛函(DFT)量子力学软件对各个矿物晶体的晶胞单元进行模拟计算,并对实验和计算所得Raman光谱进行了对比分析。按照K_2O-Al_2O_3-SiO_2三元系相图,配置了具不同摩尔比的钾铝硅酸盐玻璃样品,分别在常温和高温下测定了这些样品的玻璃态与熔体态的Raman光谱。运用Gaussian98W软件,对一组成分上具有递变规律的(Si,Al)-O四面体聚集体结构模型进行了量子化学从头计算,并对实验和计算所得Raman光谱进行了对比分析。研究表明:
     1、铝硅酸盐矿物晶体、玻璃和熔体的Raman谱图具有相似的变化规律:随四配位铝进入硅氧四面体数量的增多,800-1200cm~(-1)波数区间内特征谱峰明显地向低频方向移动,700-800cm~(-1)波数区间内出现谱峰,且光谱振动逐渐增强。前者的谱峰是由Si-O_(nb)间非桥氧的对称伸缩振动引起,但Al~Ⅳ-O四配位铝的振动并不在800-1200cm~(-1)波数区间,后者的谱峰归属于Al~Ⅳ-O_(nb)间非桥氧引起的对称伸缩振动;当六配位铝作为金属阳离子起网络修饰子作用时,会引起800-1200cm~(-1)波数区间内的谱峰向高频方向迁移。
     2、在K_2O-Al_2O_3-SiO_2三元钾铝硅酸盐玻璃体系中,Al~(3+)呈四配位作为网络形成子时,随Al_2O_3替代SiO_2含量的增加,体系的聚合程度增强,它在铝硅酸盐中起聚合作用。800-1200cm~(-1)波数区间内,较宽的谱峰包络线中含有丰富的结构单元Q_2、Q_3和Q_4,其中Q_3含量>50%占主导地位,表明结构体系内含有大量以不同方式连接的Q_3结构单元,而解谱所得1150cm~(-1)波数的谱峰应是Q_3和Q_4协同作用的结果。
     3、熔体与玻璃具有相似的结构,但也存在差别。在钾铝硅酸盐熔体微结构中,存在的Q_4,Q_3和Q_2三种结构单元处于动态平衡之中(如2Q_3<=>Q_4+Q_2),随温度升高将使反应向右进行。
Silicate melts and minerals are widely applied to metallurgy, material science and geology. Thus studies on the structure and properties of silicate minerals, glasses and melts are of great importance in these fields. Raman spectroscopy and high-temperature Raman spectroscopy (HTRS) have widely been recognized as one of the most effective methods to study silicate microstructure, especially structure of silicate melts. Many significant research achievements have been obtained.
    This dissertation is supported by the Key Project of the National Natural Science Foundation of China "High-temperature Raman Spectroscopy (HTRS) and the Structure and Properties of Substance in High-temperature", which are jointly carried out by Shanghai University, China University of Geosciences (Beijing) and Peking University. The research intends to conduct studies on microstructure of silicate minerals and melts by using Raman and high-temperature Raman spectroscopy, including measuring Raman spectra of silicate and aluminosilicate minerals, glass and melts, calculating structure models by quantum mechanics and ab initio calculation of quantum chemistry and then comparing both experimental and calculating results. It aims to get better understanding about the role of Al~(3+) (including four-coordinate, six-coordinate) in silicate microstructure and its effects on the characteristics of Raman spectra of aluminosilicates, and to provide a hint in methodology for study of melt structure of silicates as well.
    Raman spectra of eleven typical aluminosilicate minerals were measured. By employing Dmol~3 Density Functional Theory (DFT) software in Materials Studio3.1 packet, corresponding modeling was also conducted and then compared with the experimental results. Aluminosilicate glass samples with different compositions and mole ratios in K_2O-Al_2O_3-SiO_2 system were prepared and then measured with Raman spectrometer and High-temperature Raman spectrometer to get Ramam spectra for glass and melts, respectively. Meanwhile, polymerization models with various combinations of (Si, Al)-0 tetrahedrons were calculated by using software Gaussian 98W, i.e., ab-initio calculation of the quantum chemistry, and Compared with experimental results. The following conclusions can be reached on the basis of studies mentioned above.
    1. Similarities of Raman spectra among aluminosilicate crystals, glass and melts have been found. While frequencies of the characteristic peaks considerably decrease within the range of 800-1200 cm~(-1), intensities of vibration increase within the range of 700-800 cm~(-1) with increasing content of four-coordinated Al cations. While Raman scattering bands in the former range are assigned to Si-O_(nb) symmetric stretching vibrations, those in the range of 700-800 cm~(-1) attributed to Al-O_(nb) symmetric stretching vibrations. The Raman bands within the range of 800-1200 cm~(-1) shift to higher frequency if Al are six-coordinated cations as network modifiers.
引文
[1] Friedrich L. Structural Chemistry of Silicates: Structure, Bonding and Classification (Berlin: Springer). 1985
    [2] Mysen BO and Frantz JD. Structure of haplobasaltic liquids at magmatic temperatures: In situ, high-temperature study of melts on the join Na_2Si_2O_5-Na_2(NaAl)_2O_5. Geochimica et Cosmochimica Acta, 1994,58:1711-1733
    [3] Iguchi Y. Raman spectroscopic study on the structure of silicate slags. Canadian Metallurgical Quarterly, 1981,20:51-56
    [4] McMillan P, Piriou B, Navrotaky A. A Raman spectroscopic study of glasses along the joins silica-calcium aluminate, silics-sodium aluminate and silica-potassium aluminate. Geochim & Cosmochim Acta, 1982,46: 2021-2037
    [5] McMillan P. Raman spectroscopy of calcium aluminate glasses and crystals. J. Non-Cryst. Solids, 1983,55:221-242
    [6] Mysen BO. Effect of pressure, temperature and bulk composition on the structure and species distribution in depolymerized alkali aluminosilicate melts and quenched melts. Journal of Geophysical Research, 1990, 95:15733-15744
    [7] Mysen BO. Role of Al in depolymerized, peralkaline aluinosilicate melts in systems Li_2O-Al_2O_3-SiO_2, Na_2O-Al_2O_3-SiO_2 and K_2O-Al_2O_3-SiO_2. American Mineralogist. 1990, 75: 120-134
    [8] Mysen BO. Peralkalinity Al=Si substitution and solubility mechanism of H_2O in aluminosilicate melts. Journal of Petrology. 1992, 33: 347-375
    [9] Mysen BO and Frantz JD. Structure of haplobasaltic liquids at magmatic temperatures: In situ, high-temperature study of melts on the join Na_2Si_2O_5-Na_2(NaAl)_2O_5. Geochimica et Cosmochimica Acta, 1994,58:1711-1733
    [10] Mysen B.O. Structural behavior of Al~(3+) in silicate melts: In-situ, high-temperature measurements as a function of bulk chemical composition. Chem. Geol. 1995, 98: 175-202
    
    [11] Mysen B.O. Haploandeitic melts at magmatic temperatures: In situ, high-temperature structure and properties of melts along the join K_2Si_4O_9-K_2(KAl)_4O_9 to 1236℃ at atmospheric pressure. Geochimica et Cosmochimica Acta, 1996, Vol. 60, No.19, pp. 3665-3685
    [12] Materials Studio Modeling version 3.1
    
    [13] Gaussian98W, Revision A.3. Gaussian Inc.
    
    [14] Bjorn O. Mysen, David Virgo & Christopher M. Scarfe. Relations between the anionic structure and viscosity of silicate melts-A Raman spectroscopic study. Am. Minerals, 1980, 65: 690-710
    
    [16] G Tamman. Aggregatzustande Leipzig. 1932
    
    [17] A.GToll, J.C.Eichlin. J. Amer. Cer. Soc, 1925, 8: 1
    
    [18] R. B. Sockman. J. Frankl. Inst., 1922,194:711
    
    [19] W. Eitel. Angew. Chem., 1933, 46: 803
    
    [20] J. T. Randall. The diffraction of X-rays and electrons by amorphous solids, liquids and glasses. Wiley, New York, 1934,290
    [21] Mcmilan P F, Wolf G H and Poe B T. Vibrational spectroscopy of silicate liquids and glasses. Chemical Geology, 1992,96: 351-366
    [22] Serfert F A, Mysen BO and Virgo D. Structure similarity between glassed and melts relevant to petrological processes. Geochimica et Cosmochimica Acta, 1981, 45: 1879-1884 2003, 31(10): 998-1002
    [23] Mysen BO and Frantz JD. Raman spectroscopy of silicate melt at magmatic temperature: Na_2O-SiO_2, K_2O-SiO_2 and Li_2O-SiO_2 binary compositions in the temperature range 25℃ -1475℃. Chemical Geology, 1992, 96: 321-332
    [24] Mysen BO. Structure and properties of magmatic liquids: From haplobasalt to haploandesite. Geochimica et Cosmochimica Acta, 1999, 63: 95-112
    [25] Akaogi M, Ross NL, McMillan P, Natvrotsky A. The Mg_2SiO_4 polymorphs(olivine, modified spinel, and spinel)-thermodynamic properties from oxide melt solution calorimetry, phase relations, and models of lattice vibrations. Am.Mineral, 1984, 69: 499
    [26] Xu KD, Jiang GC, Huang SP, et al. A study on the bonding structure of CaO-SiO_2 slag by means of molecular dynamics simulation. Sci. China (E), 1999,22:77.
    [27] Jinglin You, Guochang Jiang, Huaiyu Hou, et al. Quantum chemistry study on superstructure and Raman spectra of binary sodium silicates. J. Raman Spectrosc, 2004, 36(3): 237-249
    [28] Sharma S. K., Virgo D. and Mysen B. Carnegie Inst. Year Book 77,1977-1978: 649
    
    [29] McMillan P F. Structural studies of silicate glasses and melts—applications and limitations of Raman spectroscopy. Am. Minerals, 1984,69: 622-644
    [30] Handbook on Synchrotron Radiation, Vol. 3, eds GS Brown and D.E. Moncton, North-Holland, Amsterdam, 1991.
    [31] Baberschke K, Koningsberger D. XAFS and thin film magnetism, Applications of XAFS to catalysis. In:Chapman D, Bunker B eds., Proceeding Abstracts of the 10th International Conference on X-ray Absorption Fine Structure, Chicago
    [32] Chakoumakos B C. A Molecular Orbital Study of Rings in Silicates and Siloxances. Amer.Mineral, 1981,86:1237-1245
    [33] A. Navrotsky, K.L. Geisinger, P.F. McMillan and GV. Gibbs. The tetrahedral framework in glasses and melts - inferences from molecular orbital calculations and implications for structure, thermodynamics and physical properties. Phys. Chem. Mineral., 1985.11: 284-298
    [34] M. Murakami, S. Sakka. Ab initio molecular orbital study on the vibrational spectra of silicate glass. J. Non-Cryst. Solids, 1987,95:225-232
    [35] T. Uchino, M. Iwasaki, T. Sakka and Y. Ogata. Ab initio molecular orbital calculations on the electronic structure of sodium silicate glasses. J. Phys. Chem., 1991,95: 5455-5462
    [36] T. Uchino, T. Sakka, Y. Ogata, and M. Iwasaki. Local Structure of Sodium Aluminosilicate Glasses: An ab Initio Molecular Orbital Study. J. Phys. Chem. 1993,97: 9642-49
    [37] T. Uchino. T. Sakka, Y. Ogata and M. Iwasaki. Changes in the Structure of Alkali-Metal Silicate Glasses with the Type of Network Modifier Cation: An ab Initio Molecular Orbital Study. J. Phys. Chem. 1992,96: 2455-63
    [38] T. Uchino, T. Sakka, Y. Ogata and M. Iwasaki. A New Model of Ionic Transport for Single and Mixed Alkali Oxide Glasses Based on ab Initio Molecular Orbital Calculations. J. Non-Cryst. Solids 1992,146: 26-42
    [39] T. Uchino and T. Yoko. Structure and Vibrational Properties of Sodium Disilicate Glass from ab Initio Molecular Orbital Calculations. J. Phys. Chem. B 1998,102: 8372-8378
    [40] T. Uchino, Y. Kitagawa and T. Yoko. Structre, Energies and Vibrational Properties of Silica Rings in SiO2 Glass. Phys. Rev. B 2000, 61: 234-240
    [41] Kechen Wu, Chuangtian Chen. Theoretical studies for novel non-linear optical crystals. Journal of Crystal Growth, 1996,166: 533-536
    [42] Dorigo A. E., Houk K. N. On the Origin of Proximity Effects on Reactivity: A Modified MM2 Model for the Rates of Acid Catalyzed Lactonizations of Hydroxyacids. Am. Chem.Soc, 1987,109: 3698
    [43] Dinur U., Hagler., Arold T. New Approaches to Empirical Force Fields. Rev. Comput. Chem. 1991,2: 99-164
    [44] Andrew R L. Molecular Modeling: Principle and Practice, Berlin Heidelberg: Springer-Verlag, 1996,357-359
    [45] Nguyen T, Ho P S, Kwok T. Grain boundary melting transition in an atomistic simulation model. Physical Review Letters, 1986,57(15): 1919-1922
    [46] Honeycutt J D and Andersen H C. Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. Journal of Physical Chemistry, 1987,91:4950-4963
    [47] Woodcock, L. V., C. A. Angell, and P. Cheeseman. Molecular dynamics studies of the vitreous state: Simple ionic systems and silica. The Journal of Physics, 65[4], 1565-77 (1976).
    [48] Smith, W., G N. Greaves, and M. J. Gillan. Computer simulation of sodium disilicate glass. J. Chem. Phys., 103[8], 3091 (1995)
    [49] Melman, H. and S. H. Garofalini. Microstructural evaluation of simulated sodium silicate glasses. Journal of Non-Crystalline Solids, 134,107-15 (1991)
    [50] Mitra, S. K. and R. W. Hockney. Molecular dynamics simulation of the structure of soda silica. Philosophical Magazine, 48[2], 151-167 (1983)
    [51] D. Nevins and F.J. Spera. Molecular dynamics simulations of molten CaAl_2Si_2O_8: Dependence of structure and properties on pressure. Am. Mineral. 1998, 83, 1220
    [52] J.M. Delaye, V. Louis-Achille, and D. Ghaleb. Modeling Oxide Glass with Born-Mayer-Huggins Potentials: Effect of Composition on Structural Changes. Non-Cryst. Solids, 1997, 210, 232
    
    [53] J. Oviedo and J. Fernandez Sanz. Phys. Rev. B, 1998, 58, 9047
    
    [54] C. A. Angell, P. A. Cheeseman and R. R. Kadiyala. Diffusivity and Thermodynamic Properties of Diopside and Jadeite Melts by Computer Simulation Studies. Chemical Geology, 62, 85-95 (1987)
    [55] C. A. Angell, P. A. Cheeseman and S. Tamaddon. Pressure Enhancement of Ion Mobilities in Liquid Silicates from Computer Simulation Studies to 800kbar. Science, 218, 885 (1982)
    [56] Yu. K. Universal viscosity-equation for silicate melts over wide temperature and pressure ranges. Growth of Crystals, Vol.16, No.8,1991: pp199-202
    [57] Iguchi.et al. Canadian Metallurgical Quarterly. 1981,20(1): 51
    
    [58] Yashima,M., Kakihana,M., Shimidzu.R., et al. Ultraviolet-363.8 nm Raman Spectroscopic System for in situ Measurements at High Temperatures. Applied Spectroscopy, 1997,51(8): 1224
    
    [59] Delhaye M, Dhamelincourt P. J. Raman Spectroscopy. 1975,3:33
    [60] Rosasco G J. In:Clark R.J.H., Hester R.E. ed. Advances in Infrared and Raman Spectroscopy. London: Heyden 223
    
    [61] Gillet,R, Biellmann, C, Reynard. B. et al. Raman, spectroscopic studies of carbonates. Phys.Chem.Minerals. 1993a, 20:1
    [62] Mysen, B. O., and J. D. Frantz. Structure of silicate melts at high temperature: In-situ measurements in the system BaO-SiO_2 to 1669℃. Am. Min., 1993,78,699-709
    [63] P.Gillet. Raman spectroscopy at high pressure and high temperature. Phase transitions and thermodynamic properties of minerals.Phys.Chem.Minerals. 1996, 23: 263
    [64] Yu.K.Voron'ko, et al. ed. Growth of Crystals. Vol.16,N.Y.& London: Consultants Bureau,1991:199
    [65] Yu.K.Voron'ko, A.B. Kudryavtsev, V.V. Osiko, et al. Study of crystallization of superheated melts in the Sm_2O_3-Ga_2O_3 system by Raman scattering. Dokl. Akad. Nauk SSSR, 1988, 298(1): 87-91
    [66] Yu.K.Voron'ko, A.V. Gorbachev, V.V. Osiko, et al. Study of the boron-oxygen units in crystalline and molten barium metaborate by high temperature Raman spectroscopy. J. Phys. Chem. Solids, 1993,54(11): 1579-1585
    
    [67] B.O. Mysen. structure and properties of silicate melts. Elsevier Science Publishers B.V., 1988
    [68] B.H.W.S.DE Jone, C.M.Schramm, V.E.Parziale. Polymerization of Silicate and Aluminate Tetrahedra in Glasses, Melts, and Aqueous Solutions--IV. Aluminum Coordination in Glasses and Aqeous Solutions and Comments on the Alumium Avoidance Principle. Geochim.Cosmochim Acta, 1983,47:1223-1236
    [69] Mysen B O, Virgo D, Kushiro I. The structure role of aluminum in silicate melts - a Raman spectroscopic study at 1 atmosphere. Am. Mineral, 1981, 66: 678-701
    [70] XTALDRAW, Beta Version. Bob Downs, Kausik Sinnaswamy, Kurt Bartelmehs. Aug 1, 2001.
    
    [71] Sharma S. K., Virgo D. and Mysen B. Carnegie Inst. Year Book 1977-1978,77:649
    [72] Iguchi Y. Raman spectroscopic study on the structure of silicate slags. Canadian Metallurgical Quarterly, 1981, 20:51-56
    [73] McMillan P. A Raman spectroscopic study of glasses in the system CaO-MgO-SiO_2. Am. Minerals, 1984, 67:622
    [74] Piriou B, McMillan P. The High Frequency Vibrational spectra of Vitreous and Crystalline Orthosilicates. Am. Mineralogist, 1983, 68: 426-443.
    [75] Brawer S, White W B. Raman Spectroscopic Investigation of the Structure of Silicate Glasses( II): Soda Alkaline Earth Alumina Ternary and Quarternary Glasses. J. Non-Cryst. Solids, 1977, 23: 261-278.
    [76] P.F.McMillan. Structure Studies of Silicate glasses and Melts—Applications and Limitations of Raman Spectroscoopy, Am. Mineralogist, 1984,68:622-644
    [77] D.W.Matson, S.K.Sharma, J.A.Philpotts. The structure of high-silicate glasses. A Raman spectroscopic investigation. J. Non-Cryst. Solids 58(1983):323-352
    
    [78] Y.Iguchi, M.Wako, S.Ban-ya, Y.Nishina, T.Fuwa. Raman Spectroscopic Study on the Structure of CaO-MeO-SiO_2, MnO-SiO_2 and FeO-SiO_2, 2nd International Conf. on Molten Slag and Fluxes. 1984: 975-983
    [79] Y.Iguchi, S.kashio, T.Goto, Y.Nishina, T.Fuwa. Raman Spectroscopic Study on the Structure of Silicate Slags. Canada Metall. Q. 1981,20(1): 51-56
    [80] K.Fukumi, J.Hayakawa, T.Komiyama. Intensity of Raman Band in Silicate Glasses. JNCS, 1990,119:297-302
    [81] Y.Tsunawaki, N.Iwamoto, T.Hattori, A.Mitsuishi. Analysis of CaO-SiO_2 and CaO-SiO_2-CaF_2 Glasses by Raman Specroscopy. JNCS 1981,44: 369-378
    [82] B.O.Mysen, J.D.Frantz. Structure of Silicate Melts at High Temperature: In-situ Measeurement in the System BaO-SiO_2 to 1669℃. Am. Mineralogist 1993, 78: 699-709
    [83] Jinglin You, et al. Quantum chemistry study on superstructure and Raman spectra of binary sodium silicates, Journal of Raman Spectroscopy. 2004, 36(3), 237-249
    [84] Mysen BO, Virgo D. Volatiles in silicate melts at high pressure and temperature, 2. Water in melts along the join NaAlO_2-SiO_2 and a comparison of solubility mechanisms of water and fluorine. Chem. Geol. 1982,57:333-358
    [85] Serfeit FA, Mysen BO and Virgo D. Three-dimensional network structure in the system SiO_2-NaAlO_2, SiO_2-CaAl_2O_4 and SiO_2-MgAl_2O_4. American Mineralogists, 1981, 67: 696-701
    [86] Yasushi SASAKI and Kuniyoshi ISHII. Molecular dynamics Analysis of three-dimensional anionic structures of molten Al_2O_3-Na_2O-SiO_2 system. ISIJ international, 2004, Vol. 44(2004), No.1:43-49
    [87] Mysen B O, Virgo D, Scarfe C M. Relations between the anionic structure and viscosity of silicate melt-A Raman spectroscopic study. Am Miner, Vol.12, No.65,1980: pp690-702
    [88] McMillan P F. Vibrational spectroscopy of silicate liquids and glasses. Chem Geol, Vol.12, No96,1992:pp351-373
    [89] Matson, Frantz J D. Raman spectroscopy of silicate melts at magmatic temperatures: Na_2O-SiO_2, K_2O-SiO_2 and Li_2O-SiO_2 binary compositions in the temperature range 297-1473K. Chem Geol, Vol.12, No60,1992: pp321-332
    [90] You Jinglin. An Ab-Initio Calculation of Raman spectra of Binary Sodium Silicates. Chinese Physics Letters, Vol.21, No.4,2004: pp640-643
    [91] Brawer S, White W B. Raman Spectroscopic Investigation of the Structure of Silicate Glasses( II): Soda Alkaline Earth Alumina Ternary and Quarternary Glasses. J. Non-Cryst. Solids, 1977, 23: 261-278.
    [92] Piriou B, McMillan P. The High Frequency Vibrational spectra of Vitreous and Crystalline Orthosilicates. Am. Minerologist, 1983,68: 426-443.
    [93] R. J. Kirkpatrick, G L. Turner. The Short Range Structure of Sodium Phosphate Glasses. I. MAS NMR Studies. Non-Cryst. Solids, Vol.4, No116,1990: pp39-40
    [94] Bukowinski. Raman spectroscopy of silicate melt at magmatic temperature range 298-1473k. Chem. Geol, Vol.4, No96,1996: pp321-332
    
    [95] R. K. Brow, D. R. Tallant, J. J. Hudgens, S. W. Martin, A. D. Irwin. The Short-Range Structure, of Sodium Ultraphosphate Glasses. Non-Cryst. Solids, Vol.4, Nol77, 1994: pp221-222
    
    [96] Matson, Frantz J D. Raman spectroscopy of silicate melts at magmatic temperatures: Na_2O-SiO_2, K_2O-SiO_2 and Li_2O-SiO_2 binary compositions in the temperature range 297-1473K. Chem Geol, Vol.12, No60, 1992:pp321-332
    [97] Frantz, J. D., and B. O. Mysen: Raman spectra and structure of BaO-SiO_2, SrO-SiO_2, and CaO-SiO_2 Melts to 1600℃. Chem. Geol., 1995, 121, 155-176
    [98] 莫宣学.岩浆熔体结构.地质科技情报,1985,2:21-31
    [99] 朱永峰,张传清.硅酸盐熔体结构学.北京:地质出版社,1996:1
    [100] 潘兆橹.结晶学与矿物学(下册).北京:地质出版社,1998
    [101] 王璞等.系统矿物学(中册).北京:地质出版社,1984
    [102] 蒋国昌,尤静林.用于硅酸盐熔体微结构研究的高温Raman光谱技术.硅酸盐学报,
    [103] 徐培苍,李如璧,等.地学中的拉曼光谱.曲安:陕西科学技术出版社,1996:46
    [104] 王永强,张招崇,徐培苍,刘民武.硅酸盐熔体结构的研究进展和问题.地球科学进展,1999,14:168-171
    [105] 王祖陶.现代分子结构研究方法.1987年8月第1版,第40页
    [106] D.A.Long.喇曼光谱学.科学出版社,1983
    [107] 郑顺旋.激光喇曼光谱学.上海科学技术出版社,1985
    [108] 刘耘.地质地球化学.1996,6:123—126
    [109] 徐培苍,李如璧,等.地学中的拉曼光谱.西安:陕西科学技术出版社,1996
    [110] 蒋国吕,尤静林,余丙鲲,等.高温Raman光谱测试技术进展.光谱学与光谱分析,2000,20(2):206-209
    [111] 王永强,张招崇,徐培苍,等.SiO_2-Al_2O_3-Na_2O(K_2O)系列淬火熔体的高温高压合成及其LRM研究.岩石矿物学杂志,Vol.18,No.1,1999
    [112] 郑楚生,王英,张惠芬.拉曼光谱在宝玉石鉴定中的应用.光散射学报,2000,112(11):15-21
    [113] 李如璧,徐培苍.三元铝硅酸盐熔体化学组成对熔体结构的影响.材料导报,2003,17:81-83
    [114] 堵锡华,蔡可迎,秦正龙.链烷烃连接性指数与热力学性质关系.深圳大学学报,2002,19(1):83-89
    [115] 李安林.二元钾硅酸盐玻璃和熔体结构及其熔体粘度的相关性研究:[硕士学位论文].上海:上海大学,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700