三亚红沙港海水生物要素监测与赤潮藻的分类鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
红沙港地处于三亚市,该港的面积约4km2 ,海水体积约1200万m3~1600万m3。是三亚目前最重要的渔港之一。本研究小组于2006年3~11月对红沙港生态系统的结构进行了综合调查与现场监测,内容涉及浮游植物、微生物、水化因子等,本文将详细介绍在这一综合调查中有关微生物污染情况、浮游植物群落结构特征、赤潮藻的分类鉴定和赤潮生消过程的调查研究结果。评价和分析调查海域赤潮发生的生态背景以及生态环境的现状,为研究赤潮发生的生态学和海洋学机制,制订防治措施提供基础参数。从而为红沙港海水养殖业的可持续发展和热带海湾生态保护策略提供理论依据。
     调查表明,红沙港浮游植物种类比较少,共鉴定浮游植物有4门23属43种。其中硅藻门14属30种,占总数的70 %;甲藻门7属11种,占总数的26 %;黄藻门1属1种;金藻门1属1种。硅藻以角毛藻属和根管藻属的种类最多,共6种,其次是圆筛藻属,有3种。硅藻为最优势类群。在硅藻中,又以中肋骨条藻为优势种,其数量在浮游植物群落总细胞数中的百分比均值达68.6%。红沙港浮游植物群落数量的时空变动在很大程度上取决于中肋骨条藻的种群动态。
     在空间分布上,调查海区浮游植物群落种类数、多样性指数与均匀度都表现为港外高于港内;浮游植物总细胞数和叶绿素a含量的平面分布呈现港内高于港外。在时间分布上,浮游植物总细胞数和叶绿素a的时间变化模式表现为双峰型。
     调查期间,红沙港海域浮游植物总细胞数量的总平均值为1.50×106cells/L;叶绿素a浓度实测值的变化范围为0.23~9.9μg/L ,总平均值为2.89μg/L,属于较高水平;而群落的多样指数实测值的变化范围为0.05~3.16,总平均值为1.39;均匀度实测值的变化范围为0.03~0.88,总平均值为0.46。
     调查海区海水中异养细菌和粪大肠杆菌超标严重,海水受到了一定的污染。并且该浮游植物群落具有低种类、高密度的特点,浮游植物群落结构简单。生态系统脆弱,存在着爆发赤潮的潜在威胁,调查期间监测到一次赤潮的生消过程,其赤潮生物主要为中肋骨条藻,其形态特征有地理上的差异。
Hong Sha Harbor with water area of 4km2 and volume of 1.2×107 ~1.6×107 cubic meters is one of the most important port in San Ya , the city of Hai Nan province . Our research group had finished study on the structure ecosystem and field monitoring, Covering phytoplankton,microorganisms,nutrients etc, This paper will describe in more detail in the comprehensive survey of microorganisms, phytoplankton ecology and the occurrence of red tide in the course of the investigation findings. Evaluated and analysed the ecological background and the status of the ecological environment of the occurrence of red tide with the ecological point, in order to provide the basic parameters for study the ecological and oceanographic mechanisms of red tide and formulate preventive measures.
     Through this investigation,we identified 43 species representing 23 genera.A- mong these, Bacillariophyta (30 species,representing 14 genera)accounted for 70%; followed by dinoflagellates(11 species,representing 7 genera)accounted for 26%; Bacillariophyta were the largest group ,in which the dominant population in the area was Skeletonema coatatum,and it accounted for 68.6% of the total phytoplankton. Therefore the horizontal and seasonal distributions patterns of Skeletonema coatatum dominated the patterns of the total phytoplankton.
     In the spatial distribution, species, the diversity index (H’) and evenness(J) of phytoplankton community increased gradually from inside of the harbor to outside of the harbor; The density of total cell number and Chlorophy ll a increased from outside of the harbor to inside of the harbor. In the time distribution , the monthly averages the density of phytoplankton and Chl.a showed two peaks.
     During the investigation, Phytoplankton cells in the total number of overall average of 1.50×10~6cells/L ; the values of chlorophyll a in the range of 0.23~9.9μg/L , with overall average of 2.89μg/L. belonging to a higher level; the diversity index (H’) in the range of 0.05~3.16, with overall average of 1.39; the evenness(J) in the range of 0.03~0.88; with overall average of 0.46.
     In the area , heterotrophic bacteria and coliform bacteria of sea water exceed serious , this showed the water be polluted. Addition , phytoplankton community with a low types ,high-density characteristics and phytoplankton community structure is simple. there is the potential outbreak of red tide .during the investigation period, a harmless red tide occurred , The causative species was Skeletonema coatatum.
引文
[1] 程兆第,高亚辉,刘师成.福建沿海微型硅藻[J].海洋出版社.1993.10-12.
    [2] 大连水产院主编.淡水生物学(下册)(淡水生态学部分)[M].农业出版社.1989.
    [3] 刁洪成,江建华.浅谈赤潮的危害及防治[J]. 山东环境.1998,27(5):52-53.
    [4] 杜虹,黄长江,陈善文,朱琳,张瑜斌,董巧香.2001-2002 年粤东拓林湾浮游植物的生态学研究.海洋与湖沼.2003.34(6):604-606.
    [5] 高东阳,李纯厚.北部湾海域浮游植物的种类组成与数量分布[J].湛江海洋大学学报.2001,21(3):13-18.
    [6] 郭玉洁,钱树本.中国海藻志.硅藻门(中心纲).科学出版社.2003.216-224.
    [7] 郭玉洁,杨则禹.浮游植物.见:刘瑞玉主编.胶州湾生态系与生物资源.科学出版社,1992,136-169.
    [8] 国家海洋局.赤潮监测技术规程.海洋出版社.2005
    [9] 国家海洋局.海水增养殖区监测技术规程.海洋出版社.2002.
    [10] 国家海洋局.海水增养殖区监测技术规程.海洋出版社.2002.
    [11] 国家质量技术监督局.海洋监测规范.中国标准出版社.1998.
    [12] 韩笑天,王娴,郑立,俞至明,宋秀贤,刘洁生,邹景忠.生态学报.2004.24(11):2063-2064.
    [13] 何池全,叶居新.石菖蒲净化富营养化水体的研究[J].南昌大学学报.1999.23(1):73-76.
    [14] 洪君超,黄秀清,蒋晓山.长江口中肋骨条藻赤潮发生过程环境要素分析--营养盐状况.海洋与湖沼.1994.25(2):179-184.
    [15] 洪君超,黄秀清,蒋晓山.长江口赤潮多发区的一次中肋骨条藻赤潮现象观察.海洋环境科学.1992.11(3):75-79.
    [16] 洪君超.长江口中肋骨条藻赤潮发生全过程调查报告--浮游植物群落结构及细胞形态研究 . 海洋与湖沼. 1994 . 25(6): 591-595.
    [17] 霍文毅,俞志明,邹景忠.胶州湾中肋骨条藻赤潮与环境因子的关系.海洋与湖沼. 2001 . 32(3): 311-318.
    [18] 金德祥,陈金环,黄凯歌. 中国海洋浮游硅藻类.上海科学出版社. 1965 . 1-230.
    [19] 金德祥,陈金环,黄凯歌.中国海洋浮游硅藻类.上海科学技术出版社.1964.63-65.
    [20] 康元德.渤海浮游植物的数量分布和季节变化.海洋水产研究. 1991 . 12 : 31-44.
    [21] 刘新尧,石苗,廖永红.食藻原生动物及其在治理蓝藻水华中的应 用前景[ J].水生生物学报. 2005 . 26(4): 456-461 .
    [22] 罗岳平,李益健,谭智群.细菌和藻类的粘附行为及其生态学意义.生态学杂志.1996.15(5): 55-61.
    [23] 马宁,肖利红.不同污染指示菌对河流的细菌学评价.环境监测管理与技术.2002.14(1):24-26.
    [24] 倪纯治.赤潮与海洋微生物.海洋环境科学. 1988 . 7(2): 40-43.
    [25] 潘克厚,姜广信.有害藻华( HAB)的发生、生态学影响和对策,中国海洋大学学报. 2004.34 ( 5 ): 781-786.
    [26] 潘蔚明.海洋渔业环境监测中的细菌监测, 海洋水产科技. 1994.47(1): 38-41.
    [27] 蒲新明,吴玉霖.浮游植物的营养限制研究进展.海洋科学. 2000.24 (2): 27-30.
    [28] 齐雨藻,洪英,吕颂辉.南海大鹏湾海洋褐胞藻赤潮及其成因,海洋与湖沼.1994. 25 ( 2 ): 132-137.
    [29] 齐雨藻,钱峰,陈菊芳.赤潮生物的分类.见:齐雨藻主编.中国沿海赤潮.科学出版社. 2003 . 34-37.
    [30] 齐雨藻.中国沿海赤潮,科学出版社.2003.221-223.
    [31] 邱耀文,王肇鼎,朱良生.大亚湾海域营养盐与叶绿素含量的变化趋势及其对生态环境的影响.台湾海峡.2005 . 24 ( 2 ): 131-139.
    [32] 苏纪兰,唐启升 .中国海洋生态系统动力学研究-II渤海系统动力学过程,科学出版社. 2002.92-113.
    [33] 孙军,刘东艳,杨世民.渤海中部和渤海海峡及邻近海域浮游植物群落结构的初步研究海洋与湖沼. 2002.33 (5): 461-472.
    [34] 汤坤贤,袁东星,林泗彬.江蓠对赤潮消亡及主要水质指标的影响[J],海洋环境科学.2003.22(2):24-27.
    [35] 王朝晖,陈菊芳 . 大亚湾甲藻种群的季节变化与环境条件的关系 [J].生态学报. 2001 . 21(11): 1825-1832.
    [36] 王俊,康元德.渤海浮游植物种群动态的研究,海洋水产研究.1998,19(1): 51-59.
    [37] 王俊,李洪志.渤海近岸叶绿素和初级生产力研究.海洋水产研究.2002.23( 1):23-28.
    [38] 王文琪,钱振儒.胶州湾水域异养细菌、大肠菌群和石油降解的生态分布[ J],海洋科学. 2000.24(1): 37-39.
    [39] 王勇,焦念志.营养盐对浮游植物生长上行效应机制的研究进展,海洋科学.2000.24(10):30-33.
    [40] 韦桂峰,王肇鼎,练健生.大亚湾大鹏澳水域春季浮游植物优势种的演替.生态学报. 2003 . 23(11): 2285-2292 .
    [41] 吴国文.三 亚六道湾海洋生态现状调查与初步研究[ J],海南师范学院学报(自然科学版) 2005.18 ( 1 ): 56-70.
    [42] 相建海.海洋生物学,北京出版社. 2003 , 13-235.
    [43] 项福亭,曲维功,张益额.庙岛海峡以东浅海养殖结构调整地研究,齐鲁渔业.1996, 13 ( 2 ): 1-4.
    [44] 辛琨,赵广孺,孙娟.红树林土壤吸附重金属生态功能价值估算 [J],生态学杂志. 2005 , 24(2): 206-208.
    [45] 薛延耀.海洋细菌学 [M],科学出版社.
    [46] 杨东方,李宏,张越美.浅析浮游植物生长的营养盐限制及其判别方法.海洋科学.2005 24 (12):47-50.
    [47] 杨红生,周毅.滤食性贝类对养殖海区环境影响的研究进展.海洋科学.1998.(2):42-44.
    [48] 俞建銮,李瑞香.渤海、黄海浮游植物生态的研究,黄渤海海洋.1993,11(3): 52-59.
    [49] 张芝勤.利用微生物评价水质的研究进展,上海环境科学. 2001 , 20(6): 259-262.
    [50] 郑天凌 .微生物在碳的海洋生物地球化学循环中的作用,生态学杂志.1994.13(4):47-50.
    [51] 郑天凌 .厦门西海域微生物 生态特点研究 II细菌丰度、生物量、生产力及大肠杆菌的时空分布.见: 厦门西海域生态研究,厦门大学出版社. 1994.
    [52] 郑重,李少箐,许振祖.海洋浮游生物学,海洋出版. 1984.8-15.
    [53] 中华人民共和国国家标准 .海 洋调查规范 (GB12763.6-91),中国标准出版.1991.24-29.
    [54] 周凯,黄长江,姜胜.拓林湾浮游植物群落结构及数量变动的周年调查,生态学报. 2002 , 22 ( 5 ): 688-698.
    [55] 周玉航,潘建明,叶瑛.细菌、病毒与浮游植物相互关系及其对海洋地球化学循环的作用,台湾海峡. 2001.20(3): 340-345.
    [56] 朱从举.铁 、氮、磷、维生素 B1 和 B12对海洋原甲藻的生长效应,海洋与湖沼.1994. 25 ( 2 ): 168-172.
    [57] 朱树屏,郭玉洁.我国十年的海洋浮游植物研究.海洋与湖沼.1959.2(4):223-232.
    [58] 邹景忠,董丽萍.中国近海赤潮生物研究Ⅰ.渤海湾赤潮生物种类演替及其增殖竞争.赤潮研究学术讨论会论文集.海洋出版社. 1989.
    [59] 邹景忠,董丽萍.中国近海赤潮生物研究Ⅰ.中肋骨条藻生理生态特性研究.赤潮研究学术讨论会论文集.海洋出版社. 1989.
    [60] Augusti S, Satta MP, and Mura MP. Dissolved esterase activity as a tracer of ytoplankton lysis evidence of high phytoplankton lysis rates in the northwestern Mediterranean[J].Limnol Oceanog.1998.43(8):1836-1849.
    [61] Azam F, Fenchel T, Gray J, et al. The ecological role of water-column microbes in the sea[J]. Mar Ecol Prog Ser. 1983. 10:257.
    [62] Banin E, Khare SK, Naider F. Proline-rich. peptide from the coral pathogen Vibrio shiloi that inhibits. photosynthesis of zooxanthellae[J]. Appl Environ Microbiol. 2001,67(4):1536-1541.
    [63] Bergh Q, Borsheim KY,and Bratbak G.,et al.High abudance of viruses found in aquatic environment[J].Nature. 1989.340(6233):467-468.
    [64] Borkman D., Smayda TJ. Long-term patterns of Narragansett Bay phytoplankton driven by decadal shifts in phytoplankton habitat, 2nd Symposium on Harmful Marine Algae in the U.S., Woods Hole .MA(USA). 2003. 8-13.
    [65] Breaux A., Farber S.,and Day J.,et al. Using Natural Coastal Wetlands Systems for Wastewater Treatment:An Economic Benefit Analysis[J].Journal of Environmental Management. 2005.44(33):285-291.
    [66] Cerco F. Simulation of Long-term Trends in Chesapeake Bay Eutrophication[J]. Journal of Environmental Engineering. 1995.121 (4) :298-310.
    [67] Cole J, Pace M .Bacteria production in fresh and saltwater ecosystem overview[J]. Mar Ecol Prog er. 2005. 43:1-10.
    [68] Connie Lovejoy, Louis Legendre,Jean-Claude Therriault, et al. Growth and distribution of marine bacteria in relation to nanoplankton community structure. Deep-Sea Research II 2000.47:461-487.
    [69] Daft, MJ, SD McCord, and WDP Stewart. Ecological studies on algal lysing bacteria in fresh waters[J]. Freshwater Biol. 1975. 5(1):577-596.
    [70] Dakhama A, Noue J, and Lavoie MC. Isolation and identification of antialgal substances produced by Pseudomonas aeruginosa[J].appl. Phycol. 1993. 5(9): 297-306.
    [71] Darwin D, Journal of Research into the Geology and Natural History of the Various Countries Visited by HMS Beagle under the Command of Cap. Henry.Colburn London.1839.615(16):1832-1836
    [72] De Baar H.J.W, Jong J.T.M., Bakker D.C.E.et al., Importance of iron for plankton blooms and carbondioxide drawdown in the Southern Ocean[J]. Nature. 1995. 373:412-415.
    [73] Dortch.. Effect of growth conditions on accumulation of internal nitrate ammonium, amino acids, and protein in three marine diatoms[J].Exp Mar Biol Ecol. 1982. 61:243~264.
    [74] Dwivedii S N, Padkumar K G. Ecology of a mangrove swamp near Juhu beach, Bombay with reference to sewage pollution[A].In:Teas H J.Biology and Ecology of Mangrove[C]. Lancaster: Dr W. Junk Publishers. 1983. 163-179.
    [75] Elser J.J, Hassett R.P, A stoichiometric analysis of the zooplankton-phytoplankton interaction in marine and freshwater ecosystems [J]. Nature, 1994, 370: 211-213.
    [76] Elsevier North Holl, Inc Shio M. Lysis of blue-green algae by myxobacter [J]. J Bacteriol. 1970, 140(1):453-461.
    [77] Fandino, L.B., Riemann, L., and Steward. Variations in bacterial community structure during a dino-agellate bloom analyzed by DGGE and 16S rDNA sequencing[J]. Aquat. Microb. Ecol. 2005. 23:119-130.
    [78] Fisher T R, Peele E R, and Ammerman J W. Nutrient limitation in Chesapeake Bay [J] .Mar Ecol Prog Ser.1992.82:51-63.
    [79] Furman J A, and Azam F. Bacteriaoplankton secondary production estimates for coastal water of british Columbia, Antarctica, and California[J]. Appl Environ Microbiol. 1980. 1085-1095.
    [80] Gameiro,C.,Cartaxana,P.,Cabrita,M.T.Variability in chlorophyll and phytoplankton composition in an estuarine system.Hydrobiologia. 2004. 525:113-124.
    [81] GibbsA.,Skotnicki AH.,and GardinerJE. A tobamo virus of green alga[J]. Virol. 1975. 64(2): 571-574.
    [82] Hagstrom A, Azam F, Anderson A et al. Micarobial loop in an obligrophric pelagic marine ecosystem[J].Mar Ecol Prg Ser. 1988.49:171-178
    [83] HasleGR, and TomasCR. Marine Diatoms. In:TomasC Red.Identifying marine phytoplankton. San Diego: AcademicPress. 1997.43-45.
    [84] Hodgkiss I. J. and S.-H. Lu. The effects of nutrients and their ratios on phytoplankton abundance in Junk Bay, Hong Kong.Hydrobiologia 512/Dev. Hydrobiol. 2004. 173: 213–227.
    [85] Holmes P.R. Tolo Harbour-the case for integrated water quality management in a coastalenvironment[J].Journal of Institute of Water and Environmental Management. 1988.2:171-179.
    [86] Iturrlaga R, and Mttchell B G. A significant component in the food wed dynamics of the open ocean [J]. Marine Ecological Series. l986. 28:291-297.
    [87] Justic, D., Rabalais, N.N., and Turner, R.E. Stoichiometric nutrient balance and origin of coastal eutrophication [J]. Mar. Pollu. Bull. 1995. 30(1): 41-46.
    [88] Kerkhof, L.J., Voytek, M.A., and Sherrell, R.M.Variability in bacterial community structure during upwelling in the coastal ocean[J]. Hydrobiology. 1999. 401:139-148.
    [89] Kormas,K.A.,Vasiliki Garamesi, and Artemis N. Size-fractionated phytoplankton chlorophyll in an Eastern Mediterranean coastal system(MaliakosGulf,Greece) [J].Helgol.Mar.Res. 2002. 56:125-133.
    [90] Kuninao,T., and Masakazu M. Standing stock and production rate of phytoplankton and a red tide outbreak in a heavily eutrophic embayment, Dokai Bay, Japan[J]. Marine pollution Bulletin.2001.42 (11):1177-1186.
    [91] Lee S O.,Kato J.,and Takiguchi N. Involvement of an Extracellular Protease in Algicidal Activity of the Marine Bacterium Pseudoalteromonas sp. Strain A28[J]. Appl Environ Microbiol. 2000. 66(10):4334-4339.
    [92] Lehman, P. W. The influence of climate on mechanistic pathways that impact lower food web production in northern San Francisco Bay estuary. Estuaries. 2004 27: 311–324.
    [93] Margalef R. Information theory in ecology[J]. Gen. Syst. 1958 .3:36-71.
    [94] Martinez-Aragon J F.,Hernandez I.,and Perez-Ljorens J L. Biofiltering efficiency in removal of dissolved nutrients by three species of estuarine macroalgae cultivated with sea base waste waters Phosphate[J]. Journal of Applied Phycology. 2002. 14(5):365-374.
    [95] Mitsutani A.,Yamasaki I.and Kitaguchi H. Analysis of algicidal proteins of a diatom-lytic marine bacterium Pseudoalteromonas sp. strain A25 by two-dimensional electrophoresis[J]. Phycologia 2001. 40(3):286-291.
    [96] Nagasaki K. Possible use of algicidal viruses as microbiological agents against harmful algal blooms[J].Microb Environ. 1998. 13:109-113.
    [97] Odum E.P. Basic Ecology, Saunders College Publishing. Philadelphia. 1971.1stedition.
    [98] Pan Y, and Rao D. Impacts of domestic sewage effluent on phyotplankton from Bedford[J]. Mar. Pollut.Bull.1997.34(12):1001-1005.
    [99] Patsch J. and Radach, G. Long-term Simulation of the Eutrophication of the North Sea Temporal development of nutrients, chlorophyll and primary production in comparison to obervations[J]. Journal cf Sea Research. 2000. 38:275~310.
    [100] Pielous EC. An introduction to mathematical ecology.New York: Wiley-Interscience. 1969. 1-286.
    [101] Provasoli L.Recent progress of toxic dinoflagellate blooms:an overview.In: ToxicDinoflagellate Blooms. Proceedings of the 2nd International Conference on Toxic Dinoflagellate Blooms. Taylor, D. L.And H. H. Seliger (ed.). 1979. 1-4.
    [102] Qi Y, Ju W,and Lei Z. The taxonomy and bloom ecology of Pseudo-nitzschia on the coasts of China. In:Proceedings IOC-WESTPAC Third Internet. Bali, Indonesia: Scientific Symp.1994. 88-95.
    [103] Qiu Jin.,Shuanglin Dong.Comparative studies on the allelopathic effects of two different strains of Ulva pertusa on Heterosigma akashiwo and Alexandrium tamarense[J].Journal of Experimental Marine Biology and Ecology, 2003, 293(1):41-55.
    [104] R.D. Roberts, T.Zohary, and M.J. Waiser. Bacterial abundance, Biomass and production in relation to hytoplankton biomass in the Levantine Basin of the southeastern Mediterranean Sea[J]. Marine Ecology Progress Series. 1999.137(1):273-281.
    [105] Riemanri, L., Steward, G.F. and Azam, F. Dynamics of bacterial community composition and activity during a mesocosm diatom bloom[J]. Appl. Environ. Microbio1,2000, 66:578-587.
    [106] Sambrotto R. N., Niebauer H. J., and Goering J. J. Relationships among vertical mixing, nitrate uptake, and phytoplankton growth during the spring bloom in the southeast Bering Sea middle shelf[J]. Continental Shelf Research. 1986. 5: 161~198.
    [107] Shannon E E, and Weaver W. The Mathematical Theory of Communication. London:Univ Illionis Press. 1949. 125.
    [108] Smayda T J. Novel and nuisance phytoplankton blooms in the sea: evidence for global epidemic. In Toxic Marine Phytoplankton(E.GraneIi, B. Sundstrom, R. Edler&D. M. Anderson, eds), Elsevier. New York. 1990. 29-40.
    [109] Tam NFY, and Wong YS. Mangrove soils as sinks for wastewater bome pollutants[J]. Hydrobiolagia,1995, 295(2):231-242.
    [110] Tett P, Heaney S.I, and Droop M. R. The redfield ratio and phytoplankton growth rate.[J]. Mar.Biol. Ass. U.K. 1985. 65: 487-504.
    [111] Tsuruta A., and Yamada M. Hydrological and biological observations in Dokai Bay northern Kyushu Japan: occurrence of nanoplankton and microplankton[J]. Shimonosekei Uni. Fish., 1979.28(1): 47-61.
    [112] Uye S.L. Replacement of large copepods by small ones with eutrophication of embayments: cause and consequence[J]. Hygrobiologica.1994. 292: 513-519.
    [113] W.K.W. Li, W.G. Harrison. Chlorophyll, bacteria and picophytoplankton in ecological provinces of the North Atlantic[J]. Deep-Sea Research II. 2001. 48:2271-2293.
    [114] Weng H-X, Sun X-W, Chen J-F, and Qin Y-C. Iron and phosphorus limitation and their synergy to the growth of Prorocentrum micans Ehrenberg and Cryptomonas sp. Prog Nat Sci.2006.16(6): 705–711.
    [115] Wang P.F., J. Martin and G..Momison. Water Quality and Eutrophication in Tampa bay, Florida. Estuarine[J].Coastal and Shelf Science. 1999. 49:1-20.
    [116] Wieters,E.A., Kaplan,D.M.,and Navarrete,S.A. Along shore and temporal variability in chla concentration in Chilean near shore waters[J]. Mar.Ecol.Prog.Ser. 2003.249:93-105.
    [117] Yanagi K, ZonesS, and Montani. Ecological Modeling as a tool for coastal zone manage ment in Dokai Bay[J]. Japan.J.Mar.System. 2005. 13:123-136.
    [118] Yarish C, He P, and Carmona R. The aquaculture of Porphyra Leucosticta for an integrated rinfish/seaweed recirculating aquaculture system in an urban application [J]. Journal of Phycology. 2002.38(1):39.
    [119] Yoshiaki Tanaka, Kiyoshi Asaoka, and Satoshi Takeda. Different feeding and gustatory responses to ecdysone and 20-hydroxyecdysone by larvae of the silkworm,Bombyx mori[J]. Journal of Chemical Ecology. 1994.20(1):125-133.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700