基于水势的玉米真空干燥传热传质模型及介电特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前粮食真空连续干燥机械装置已经研制成功,粮食低温真空连续干燥的有效性得到证实,而该技术的深入发展受到自动检测和控制技术落后的严重制约。粮食低温真空连续自动检测和控制技术的基础是真空条件下生物多孔介质介电特性和传热传质的研究,这方面的基础研究相当缺乏。而真空条件粮食介电特性的测量与粮食在常规条件下的介电特性有很大的区别。与普通热风干燥条件下的介电特性比较,在真空连续干燥条件下的介电特性存在影响因素更多、数学模型建立难度大、过程参数探测难度大、信号干扰大等特点,另外,由于真空压强的介入,粮食颗粒传热传质的分析也发生改变,因此,有必要研究真空干燥条件下粮食的介电特性和传热传质特性,进而为改进真空干燥技术和连续干燥设备,优化干噪工艺,提高粮食干燥品质和干燥效率提供依据和参考,为实现粮食真空干燥自动化控制奠定基础。
     本文基于水势分析了真空干燥条件下玉米传热传质和应力的变化情况,并在设计叉指式平板电容介电参数检测元件的基础上,构建了真空状态下的介电测试系统,实验研究了玉米介电特性的变化规律,为真空干燥过程测试控制提供了基础。本文的研究工作是依托于国家自然基金项目“低温真空连续干燥条件下粮食介电特性及水分检测和控制”中的部分内容,从理论和试验两方面研究真空干燥介电特性变化、传热传质和应力变化过程。
     全文的主要内容如下:
     1)基于水势理论,根据热力学第一定律分析了单粒玉米真空干燥传热传质特性,建立了数学模型并利用差分解析法进行数值解析,得到真空干燥条件下传热传质的模拟系统,该系统操作性强,性能可靠,可通过输入初始物料物理参数和干燥条件,直接模拟出玉米内部温度、水分、压强及水势的分布情况和该籽粒的平均温度和平均水分值,由于对于单粒玉米来说,真空干燥室内提供的能量足够大,粮温的变化表现出的是持续增加的趋势直至达到干燥箱温度。
     2)在单粒玉米真空干燥传热传质的基础上,分析了深床玉米真空干燥传热传质特性,并进行模拟分析,与单粒玉米传热传质分析相比,粮温的变化有一恒温阶段,是由于真空干燥室内提供的热量有一段时间全部用来水分蒸发,所以在研究深床真空干燥时加入了该条件的限制,该模型能较好的模拟传热传质过程。建立了真空干燥过程中质热传递的模拟系统。由于该模型综合考虑了压强、温度和水分对质热传递的影响,输入其他物料的初始参数,也可应用于其他物料的真空干燥。另外,模型经变形亦可应用于其他干燥方式,如热风干燥、微波干燥等。
     3)基于水势理论对真空干燥的玉米进行应力分析和预测,真空干燥的玉米颗粒内部应力比热风干燥所受应力小得多,为了更好的避免应力裂纹的产生,对真空干燥加入缓苏阶段,并可通过模型对缓苏时间进行确定,即可保证干燥品质又可保证干燥效率。
     4)以叉指式电容板作为水分传感器的主要元件,利用LCR测试仪检测玉米真空干燥条件下的介电特性,结果表明,真空度对粮食介电特性有较大的影响,为了更好的考虑综合因素对粮食介电特性的影响,在这里引入了水势的概念,得到玉米水势与介电特性的关系,并分析了粮食的介电特性在真空中和大气压下介电特性的差别。
     5)根据介电特性的试验数据,利用剔除粗大误差的方法得到有效数据,再对有效数据进行神经网络数据融合,并通过试验进行了验证分析。
Present, continuous vacuum drying machine has been developed, and the effectiveness of continuous vacuum drying of grain at low temperature is confirmed. But the further development of this technology is seriously constrained by the automatic detection and behindhand control technology. Grain cryogenic vacuum continuous automatic detection and control technology is based on the vacuum dielectric properties of biological porous media and heat and mass transfer research, and the basic research in this area is scarce. There is great different between the vacuum measurement of dielectric properties and conventional dielectric measurement. Compared to the dielectric measurements under ordinary drying conditions, the dielectric measurement under the condition of continuous vacuum drying has the properties of more effect factors, more difficult mathematical modeling, more difficult to detect process Parameters and larger signal interference. In addition, because of the vacuum pressure intervention, grain Particles heat and mass transfer analysis is also changed, therefore, it is necessary to study the dielectric properties and heat and mass transfer characteristics under the conditions of vacuum drying, and thus to improve the vacuum drying and continuous drying equipment, optimize drying technology, improve grain quality and drying efficiency, and provide the basis for the realization of automatic control of grain vacuum drying.
     In this Paper, the vacuum dielectric test system was constructed based on the design of comb plate caPacitor dielectric Parameters detection device. The change rule of dielectric properties was studied to provide a basis for test control during vacuum drying process. The heat and mass transfer and stress changes were analsized under vacuum drying conditions and based on water potential. This research is relying on the National Natural Science Foundation project "The dielectric properties of grain and moisture detection and control under continuous low-temperature vacuum drying conditions" and the changes of vacuum drying dielectric properties, heat and mass process and stress were investigated in both theoretical and experimental aspects.
     The main contents are as follows:
     1) Based on water potential theory and due to the first law of thermodynamics, vacuum drying heat and mass transfer characteristics of a single grain were analyzed, a mathematical model was built and. using analytic method for numerical solution of differential. The heat and mass transfer simulation system under vacuum dry conditions was obtained. This system operable, performance and reliable, which can input physical Parameters and drying conditions of initial material and simulate internal temperature, moisture, pressure, water potential distribution and average temperature and moisture directly. Because the vacuum drying chamber is large enough to provide energy, food temperature is shown increasing trend until to dryer temperature.
     2) Based on vacuum drying heat and mass transfer in a single grain, the heat and mass transfer characteristics of the deep vacuum drying were analyzed, and did simulation analysis. ComPared to heat and mass transfer of single grain, the grain temperature presented a constant phase. Because the heat of drying chamber was all used to water evaporation, this conditional limit was added to deep vacuum drying. ComParison of simulation results with the experimental results, the model is caPable of simulating heat and mass transfer. As the model took into account the imPact of pressure, temperature and moisture on heat and mass transfer, enter the initial Parameters of other materials can also be applied to vacuum drying of other materials. In addition, the model after deformation can be applied to other drying methods, such as microwave drying.
     3) Based on water potential theory, stress analysis and forecasting for vacuum drying were carried out. The inner stress of vacuum drying grain is much smaller than hot air drying. In order to avoid the stress cracks, on the stage of vacuum drying to join tempering stage and may determine tempering time through the model. It can guarantee drying quality and efficiency.
     4) Take interdigital electrode as the main moisture sensor component and use of LCR, the dielectric properties was detected under the conditions of vacuum drying. The results show that the vacuum has a greater influence on dielectric properties of grain. In order to take into account for the effect of factors on dielectric properties, the concept of water potential was introduced, the relationship of water potential and dielectric properties was obtained, and the differences of dielectric properties between a vacuum and the atmospheric pressure was analyzed.
     5) According to test data of the dielectric properties, the method was used to eliminate the careless error and got the effective data, did data fusion for the effective data, and the model verified by tests.
引文
[1]赵祥涛.真空技术在粮食行业的应用与发展[J].干燥技术与设备.2006,4(3):169-172.
    [2]惠东,王军,王铮.粮食真空低温干燥新技术的优势[J].干燥技术与设备.2007,5(5):265-266.
    [3]何翔,王军.低温真空连续干燥技术及其塔形设备研制初步探讨[J].干燥技术与装备.2006,4(3):158-161.
    [4]曹崇文.微波真空干燥技术现状[J].干燥技术与设备.2004,2(3):5-9.
    [5]徐成海,张世伟,关奎之.真空干燥[M].北京:化学工业出版社,2005.
    [6]丁贤玉.玉米低温真空干燥的分析[J].粮食储藏.2004,(4):22-23.
    [7]国家粮食储备局郑州科学研究设计院玉米低温真空干燥技术研究开发课题组.玉米低温真空干燥新技术研究与开发初探[J].干燥技术与设备.2005,3(1):24-26.
    [8]赵祥涛 申保庆,何翔.低温真空干燥技术与设备的发展前景与适用范围[J].粮食储藏.2004,(4):32-33.
    [9]苏娅刘勇献.高水分玉米低温真空干燥新技术研究及应用[J].粮食储藏.2006,35(6):20-23.
    [10]徐成海张志军,张世伟等.玉米低温塔式真空干燥技术与设备的研究[C].第八届全国真空冶金与表明工程学术会议论文集.沈阳,2005.
    [11]徐成海张志军,张世伟等.粮食真空干燥的技术经济与环境分析[J].节能.2006,289(6):1-13.
    [12]徐成海张志军,张世伟.玉米真空干燥特性的实验研究[J].真空.2007,44(4):55-58.
    [13]殷涌光徐泽敏.稻谷低温真空干燥的发展前景[J].农机化研究.2007,(4):9-12.
    [14]殷涌光徐泽敏,杨松波等.基于水势的稻谷真空干燥过程中水分迁移的试验研究[J].粮油加工.2007,(10):110-112.
    [15]尹丽妍,于辅超,吴文福等.谷物低温真空干燥机理的探讨[J].中国粮油学报.2006,21(5):129-132.
    [16]Nelson S 0. Electrical properties of agricultural products a critical review[J]. Tran Of the ASAE.1973,16(2):384-340.
    [17]方俊鑫,殷之文.电介质物理学[M].北京:科学出版社,1989.
    [18]Kandala C V K Nelson S 0, Lawrence K C. Moisture determination in single grain kernels and nuts by RF impedance measurements[J]. IEEE Transactions on Instrumentation and Measurement.1992,41 (6):1027-1031.
    [19]Samir. Nelson S.O.; Trabelsi. Method for the simultaneous and independent determination of moisture content and density of Particulate materials from radio-frequency permittivity measurements:U.S,6147503[P].2000.
    [20]Nelson. S.O. Density-permittivity relationships for powdered and granular materials[J]. IEEE Transactions on Instrumentation and Measurment.2005,54(4): 2033-2040.
    [21]Trabelsi Samir Nelson. S.O.. Dielectric spectroscopy of wheat from 10 MHz to 1.8 GHz[J]. Measurement Science and technology.2006,17:2294-2298.
    [22]Samir;Kraszewski Trabelsi, Andrzej W. Dielectric calibration methods for industrial microwave moisture sensors [J]. Ceramic ransactions.2001, (1):381-389.
    [23]Nelson S.O. Trabelsi Samir Temperature-dependent behaviour of dielectric properties of bound water in grain at microwave frequencies [J]. Measurement science and technology.2006, (17):2289-2293.
    [24]Samir; Kraszewski Trabelsi, Andrzej W.; Nelson S.O. Nondestructive microwave characterization for determining the bulk density and moisture content of shelled corn[J]. Measurement Science & Technology.1998,9:1548-1556.
    [25]Samir; Kraszewski Trabelsi, Andrzej W. Microwave dielectric sensing of bulk density of granular materials[J]. Measurement Science & Technology.2001,12: 2192-2197.
    [26]Samir Trabelsi, Nelson S.O. Microwave sensing technique for nondestructive determination of bulk density and moisture content in unshelled and shelled peanuts[J]. Transactions of ASABE.2006,49(5):1563-1568.
    [27]Samir Trabelsi, Nelson S.O. Nondestructive sensing of physical properties of granular materials by microwave permittivity measurement[J]. IEEE Transactions on Instrumentation and Measurement.2006,55(1):953-963.
    [28]Samir Trabelsi, Nelson S.O. Influence of nonequilibrated water on microwave dielectric properties of wheat and related errors in moisture sensing[J]. IEEE Transactions on Instrumentation and Measurement.2007,56(1):194-198.
    [29]Kraszewski Andrzej W; Nelson Stuart. Microwave permittivity determination in agricultural products[J]. Journal of microwave power and electromagnetic energy. 2004,39(1):41-52.
    [30]Nelson S.O. Trabelsi Samir. Unified microwave moisture sensing technique for grain and seed[J]. Measurement science and technology.2007,18:997-1003.
    [31]Martinez-Navarrete N Martin-EsParza M. E, Chiralt A, et al. Dielectric behavior of apple (var. Granny smith) at different moisture contents effect of vacuum impregnation[J]. Journal of food engineering.2006,77(1):51-56.
    [32]P. A. Berbert, Stenning, B. C. On-line moisture content measurement of wheat[J]. Journal of Agriculture Engineering Research.1996,65:287-296.
    [33]P.A. Berbert, Viana, A.P., Dionello R.G. et al. Three dielectric models for estimation common bean moisture content [C]. Proceedings of the 14th International Drying Symposium,2004:1502-1509.
    [34]C. V. Kandala. Estimating the moisture content of grain from impedance and phase angle measurements,//. IEEE Sensors Applications Symposium[C]. Institute of Electrical and Electronics Engineers. New York,2009:61-69.
    [35]沈以煦.水稻小麦油菜籽电特性的测试[J].北京农业工程大学学报.1992,(3):1-6.
    [36]徐保江,张本华.根据物料的电特性快速测定含水率的试验研究[J].沈阳农业大学学报.1998,25(1):65-68.
    [37]程卫东,柏雪源,王相友.干燥过程中谷物水分在线测量系统[J].农业机械学报.2001,31(2):86-88.
    [38]李振涛,张阳,张丽梅.粮食水分在线检测传感器[J].辽宁大学学报.2006,33(3):241-243.
    [39]郝晓丽,张本华,孟淑洁等.介电特性粮食含水率检测中的应用研究[J].农机化研究.2006,2:121-123.
    [40]刘嫣红,毛志怀,杨柳.电容式谷物水分传感器测量的影响因素研究[C].中国仪器仪表与测控技术交流大会论文集(二),2007:384-338.
    [41]阮欢,罗锡文,胡钧万.电容式稻谷水分测量电路激励频率的研究[C].中国农业机械学会,2008:50-53.
    [42]陶斌斌.多孔介质对流干燥传热传质机理的研究及其数值模拟[D]:河北工业大学, 2004.
    [43]刘相东,杨彬彬.多孔介质干燥理论的回顾与展望[J].中国农业大学学报.2005,10(4):81-92.
    [44]Luikov A V. Drying Theory[M]. Moscow:Energia,1986.
    [45]卢涛,沈胜强.薄层毛细多孔介质湿区干燥过程相变传热传质常压模型[J].热能动力工程.2003,18(103):51-52.
    [46]丁小明.多孔介质干燥的孔道网络模拟及试验[D].北京:中国农业大学,2003.
    [47]林建海魏琪.含湿多孔介质内部热质传递规律的国内外研究概况[J].四川工业学院学报.1995,14(2):121-124.
    [48]Nobel P S.生物物理的植物生理学导论[M].北京:科学出版社,1984.
    [49]李伟昌习岗.现代农业和生物学中的物理学[M].北京:科学出版社,2001.
    [50]高俊凤,白锦鳞,张一平等.不同水分状况下SPAC水分热力学函数特征和水势温度效应[J].西北农业大学学报.1990,18(4):51-55.
    [51]何文博.植物内水分传输机理和模拟研究[D].西安:西安建筑科技大学,2009.
    [52]尹丽妍.玉米低温真空干燥特性及数学模型的研究[D].长春:吉林大学,2007.
    [53]彭润玲,徐成海,张世伟等.真空冷冻干燥过程传热传值理论研究的动态[J]:真空与低温,2006,12(3):51-61.
    [54]贺友多.传输过程的数值方法[M].北京:冶金工业出版社,1991.
    [55]D.R.克罗夫特,D.G.利利著,张风禄译.传热的有限差分方程计算[M].北京:冶金工业出版社,1982.
    [56]程洪亮.油藏数值模拟温度场问题研究[D]:吉林大学,2008.
    [57]林瑞泰.多孔介质传热传质引论[M].北京:科学出版社,1995.
    [58]Prat M. Recent advances in pore-scale models for drying of porous media[J]. Chemical Engineering Journal.2002,86:153-164.
    [59]胡玉坤,丁静.多孔介质内部传热传质规律的研究进展[J].广东化工.2006,33(11):44-47.
    [60]伍培,郑洁,张卫华等.果蔬减压冷却过程中的传热与传质分析[J].制冷与空调.2009,23(2):10-16.
    [61]肖辉.高频真空干燥过程中木材的热质传递特性[D]:东北林业大学,2009.
    [62]杨历,陶斌斌.多孔介质干燥过程传热传质研究[J].农业工程学报.2005,21(1):27-30.
    [63]苏杭.多孔介质干燥过程传热传质的理论分析与实验研究[D].保定:华北电力大学,2008.
    [64]王馨.多孔介质超常传热传质特性与机理的研究[D].南京:东南大学,2001.
    [65]Guerman I. Efremov. DRYING KINETICS DERIVED FROM DIFFUSION EQUATION WITH FLUX-TYPE BOUNDARY CONDITIONS [J]. drying technology.2002,20(1):55-56.
    [66]贾灿纯,曹崇文.玉米颗粒内部的二维传热传质过程[J].北京农业工程大学学报.1995,15(1):45-51.
    [67]潘永康.现代干燥技术[M].北京:化学工业出版社,2001.
    [68]王俊,张京平,王剑平.洋葱干燥过程中热量传递模型[J].浙江农业学报.1998,10(5):268-270.
    [69]钱珊珠.基于人工神经网络的苜蓿固定深层太阳能干燥过程仿真[D].呼和浩特:内蒙古农业大学,2008.
    [70]李长友,邵耀间,上出顺一.颗粒农产品深床干燥过程的解析解法[J].华南农业大学学报.1998,19(3):119-123.
    [71]Baker-Arkema F W. Montross M D. Moistuer content variation and grain quality of corn dried indifferent high-temperature dryers[J]. Trans of the ASAE.37(6): 6590~6593.
    [72]李业波.水稻颗粒内部的应力分析[J].北京农业工程大学学报.1993,13(4):54-60.
    [73]朱文学曹崇文.农产品干燥工艺过程的计算机模拟[M].北京:中国农业出版社,2001.
    [74]Kunze 0 R. Sarwar G. Relative humidity increases that cause stress cracks in corn[J]. Trans of the ASAE.1989,32(5):1737-1743.
    [75]刘勇献,申保庆,赵祥涛谷物缓苏保质低温真空连续干燥装置,[P].2007.
    [76]奚河滨.水稻顺流干燥工艺缓苏过程的研究[J]. Transactions of CSAE.1998,4:208-212.
    [77]张玉荣,周显青,刘通等.高水分玉米热风和真空干燥过程中品质特性的动态变化规律[J].粮食与饲料工业.2009,(8):11-14.
    [78]C. V. Kandala, Butts, C. L. Phase angle and impedance measurements for nondestructive moisture content determination of in-shellpeanuts using a cylindrical sample holder[C]. ASABE,2007:Paper Number:076215.
    [79]C. V. Kandala. Estimating the moisture content of grain from impedance and phase angle measurements[J]. IEEE SAS.2009:17-19.
    [80]蔡利民,孔力.圆筒形电容式粮食水分传感器的数学模型与影响因素分析[J].仪器分析.2009,(1):49-52.
    [81]米双山,高清海,李百儆.介电式种子分选机电极线径对分选效果的影响[J].农业工程学报.2004,20(5):142-146.
    [82]应火冬.谷物介电性质及其在含水量测量中的应用[J].农业工程学报.1992,8(3):18-22.
    [83]张俐,马小愚,雷得天等.农业物料电特性研究进展[J].农业工程学报.2003,19(3):18-22.
    [84]秦文.蔬菜物料的介电特性及其应用研究[D].重庆:西南大学,2006.
    [85]孙宇瑞.非饱和土壤介电特性测量理论与方法的研究[D].北京:中国农业大学,2000.
    [86]秦文,陈宗道,羽仓羲雄等.食品的介电特性在食品干燥过程中的在线无损检测技术[J].食品与发酵工业.2005,31(8):52-56.
    [87]Govindarajan Suresh Babu. Assessment of reflection and transmission techniques for determining dielectric properties of bulk wheat samples [D]. Manitoba:University of Manitoba,2005.
    [88]郭文川,朱新华.国内外农产品及食品介电特性测量技术及应用[J].农业工程学报.2009,25(2):308-311.
    [89]苏凤.电容湿度传感器性能研究[D].成都:西南交通大学,2008.
    [90]周祖锷.农业物料学[M].北京:农业出版社,1994:164-166,170-172.
    [91]滕召胜,周光俊.粮食水分快速检测中的几个关键问题[J].计算机工程与应用.2001,1:158-163.
    [92]翟宝峰,王昊.辽宁工学院学报[J].电容式粮食水分检测中的影响因素分析.2002,22(5):1-3.
    [93]Nelson Shahab Sokhansanj, S.O. Dependence of dielectric properties of whole-grain wheat on bulk density[J]. Journal of Agriculture Engineering Research. 1988,39(3):173-179.
    [94]黄勇,坎杂,王丽红等.种子介电特性的测定[J].中国种业.2005,12:52-53.
    [95]蔡志端.基于复阻抗分离法的电容式水分测量系统研究[D].景德镇:景德镇陶瓷学院,2007.
    [96]王春燕.基于模糊神经网络的粮食收购智能定等系统的研究[D].长春:吉林大学, 2005.
    [97]GB/T 10362-89玉米水分测定法[S].
    [98]马海军,宋长冰,张继澍等.电激励信号频率对红点病苹果采后电学特性影响[J].农业机械学报.2009,40(10):97-101.
    [99]秦文,张惠,邓伯勋等.部分农产品水分含量与其介电常数关系模型的建立[J].2008,8(3):62-67.
    [100]宋金亚.基于介电特性和灰色理论的苹果内部品质无损检测方法研究[D]:浙江工业大学,2004.
    [101]郭红利.猕猴桃的电特性与无损检测技术的研究[D].陕西:西北农林科技大学,2004.
    [102]杨德.试验设计与分析[M].北京:中国农业出版社,2002.
    [103]魏治文,程琳,来记桃等.几种异常值判别准则在安全监测数据处理中的应用[J].大坝与安全.2009,1:67-69.
    [104]韦以明.基于神经网络的传感器数据融合处理[J].数据采集与处理.2006,21:218-221.
    [105]翟宝峰.基于数据融合的粮食水分检测技术的研究[D].沈阳:沈阳工业大学,2002.
    [106]芦湘冬.模拟电路故障诊断神经网络数据融合方法[D].湖南:湖南大学,2004.
    [107]付丽琴 王怡,韩焱.基于双BP神经网络数据融合的水声定位研究[J].核电子学与探测技术.2009,29(3):676-679.
    [108]葛哲学,孙志强.神经网络理论与MATLAB R2007实现[M].北京:电子工业出版社,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700