不同贮藏方式下黄瓜阻抗谱、近红外光谱特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从果蔬采后生理的角度,运用非损伤技术手段,研究了黄瓜在不同贮藏保鲜条件下的水分散失及品质变化,从而将贮藏方法的评价和选取标准数量化,为贮藏黄瓜的品质鉴定和改进贮藏方法提供科学依据。研究结果表明:
     1、室温条件下,随着贮藏时间的延长,失水程度逐渐加深,从第2天开始黄瓜的阻抗值开始增大;容抗值从第3天开始减小。在保鲜膜条件下,黄瓜的阻抗值在开始的4天内变化相对较小,第5天阻抗值明显增大,第6天之后又趋于平衡状态。在冷藏条件下,黄瓜的阻抗值在前3天表现出增大的趋势,而从第4天开始随水分的散失,阻抗值反而减小。通过对不同贮藏过程中特征频率的研究发现:在室温条件下,随贮藏时间的延长,水分的不断散失,特征频率逐渐减小,而保鲜膜和冷藏条件下的变化较小。通过比较50Hz下旱黄瓜与密刺黄瓜在不同贮藏方式下阻抗特性的变化发现:旱黄瓜的保水能力和抗冻能力比密刺黄瓜强。
     2、冷藏条件下测得的黄瓜的相对电导率较高,且从第3天开始出现明显的升高趋势,而室温和保鲜膜条件下黄瓜的相对电导率变化不明显。
     3、室温条件下测得的呼吸强度从第4天开始明显增强,说明此时黄瓜的品质正在发生变化;保鲜膜条件下,黄瓜的呼吸强度始终相对较稳定;冷藏条件下,在开始的前5天内,呼吸相对较稳定,而从第6天开始呼吸强度减弱。
     4、黄瓜在不同贮藏条件下的近红外光谱图变化不同,室温和保鲜膜条件下,近红外光谱的吸收峰都随贮藏时间的延长而降低,室温下吸收峰的变化远远高于保鲜膜条件。冷藏条件下,开始的一段时间内吸收峰逐渐降低,之后又升高。
     5、黄瓜中总可溶性糖、可溶性蛋白,维生素C三种营养成分的变化趋势基本一致,且与失水量的变化呈显著负相关,相关系数分别为-0.941*,-0.947*,-0.913*(*:在0.05水平上显著相关)。
     通过实验证明了用阻抗谱参数反应黄瓜在贮藏保鲜过程中品质变化的可行性。
This research subject was aimed at study the relationship between impedance spectroscopy characteristic, respiration, conductivity, near-infrared spectroscopy, total soluble sugar, soluble protein, vitamin C and water loss under different conditions.
     The results showed that:the change variation of impedance spectrum characteristic with the loss of water was different under different storage conditions. At room temperature, the Rp began to increase from the second day with the degree of water loss gradually deepened; the Cp began to decrease from the third day. Under the condition of plastic wrap, the Rp of cucumber changed little at the first four days, but increased significantly at the fifth day, then became equilibrium state. Under the condition of refrigerated, the Rp increased during the first three days; but, from the fourth day it decreased with moisture loss. The change of characteristic frequency was also different. By comparison different varieties of cucumber's impedance characteristic, found that, we could compare their water-retention and freezing capacity.
     The relative conductivity changed greatly by refrigerated from the third day. It changed little under the condition of refrigerated and plastic wrap. The breathing intensity changed greatly at room temperature from the fourth day. At this time, the quality of cucumber had changed, and even became decay. Under refrigeration the respiration intensity decreased from the sixth day.
     The near-infrared spectra of cucumber under different storage conditions changed differently. The absorption peak decreased with the extension of storage time. At room temperature, the absorption peak changed most than other two conditions. It drop at the beginning then lift by refrigerated.
     The three nutrients:soluble sugar, soluble protein and vitamin C's trend were basically same, and linearly with the loss of water.
     It was proved that it was practicably to react the quality changes of cucumber through impedance spectroscopy parameters, the correlation coefficients were:-0.941*,-0.967*,-0.913*(*:at0.05level was significantly related)
引文
[1]毕世春.原所佳.植物阻抗测量的技术方法[J].山东农业大学学报,1997,28(1):45-47
    [2]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2002
    [3]查全性.电极过程动力学导论[M].北京:科学出版社,1976
    [4]陈志远,张继澍,刘亚龙,等.番茄成熟度与其电学参数关系的研究[J].西北植物学报,2008,28(4):826-830.
    [5]崔晓莉,江志裕.交流阻抗谱的表示及应用[J].上海师范大学学报(自然科学版),2001,30(4):53-61
    [6]田昭武.电化学研究方法[M].北京:科学出版社,1984
    [7]丁钟荣.用电阻法测定冬小麦品种抗寒性的研究[J].植物生理学通讯,1984,16(1):26-28
    [8]付峰,臧益民,董秀珍,王跃民.部分离体动物组织复阻抗频率特性测量系统及初步测量结果[J].第四军医大学学报,1999,20(3):220-222
    [9]顾其芳,周培君,王颖,等.阻抗法快速定量测定食品中的乳酸菌方法探索[J].中国卫生检验杂志,2000,10(5):513-514.
    [10]郭文川,朱新华,王转卫,等:基于介电特性的果品种类识别试验[J].农业机械学报,2005,36(7):158-160.
    [11]韩东海.用X射线自动检测柑橘皱皮果的研究[J].农业机械学报,1998,29(4):97-101
    [12]韩东海,周志恩.日本的水果分级检测高新技术[J].世界农业,2000,12:27-29.
    [13]韩东海,刘新鑫,涂润林.果品无损检测技术在苹果生产和分级中的应用[J].世界农业,2003,1:42-44.
    [14]韩东海,刘新鑫,等.苹果水心病的光学无损检测[J].农业机械学报,2004,35(5):143-146.
    [15]韩东海,涂润林,刘新鑫,等.鸭梨黑心病与其果皮颜色、硬度和糖度的方差分析[J].农业机械学报,2005,36(3):71-74.
    [16]胡珂文,王剑平,盖玲,等.电化学方法在微生物快速检测中的应用[J].食品科学,2007,28(12):526-530.
    [17]胡珂文,盖玲,叶尊忠,等.阻抗谱测量在微生物快速检测研究中的应用[J].中国食品学报,2009,9(3):162-167
    [18]金同铭.西红柿中糖酸等含量的非破坏分析[J].仪器仪表与分析监测,1996,(1):53-57.
    [19]金同铭.非破坏评价西红柿的营养成分:Ⅰ.蔗糖,葡萄糖,果糖蝗近红外分析[J].仪器仪表与分析监测,1997,(2):32-36.
    [20]金同铭.非破坏评价西红柿的营养成分:Ⅱ.柠檬酸,平果酸,琥珀酸,抗坏血酸的近红外分析[J].仪器仪表与分析监测,1997,(3):49-54.
    [21]金同铭.南瓜中p-胡萝卜素和维生素E的非破坏分析[J].仪器仪表与分析监测,1998,(2):61-63.
    [22]金同铭,崔洪昌.苹果中蔗糖,葡萄糖,果糖,苹果酸的非破坏检测[J].华北农学报,1997,12(1):91-96.
    [23]李里特.食品物性学[M].北京:中国农业出版社,2001,96-100.
    [24]李建平,傅霞萍,周莹,等.近红外光谱定量分析技术在枇杷可溶性固形物无损检测中的应用[J].光谱学与光谱分析,2006,26(9):1605-1609.
    [25]李英,宋景玲,韩秋燕.桃子电特性与内部品质指标关系的研究[J].农机化研究,2007,29(8):123-124.
    [26]刘亚平,李红波.物性分析仪及TPA在果蔬质构测试中的应用综述[J].山西农业大学学报:自然科学版,2010,30(2):188-192.
    [27]刘兴华.果品蔬菜贮藏运销学[M].北京:中国农业出版社,2002.
    [28]陆静梅,朱俊义,等.松嫩平原4种盐生植物根的结构研究[J].生态学报,1998,18(3):335-337
    [29]卢善发.植物组织电阻及其应用[J].生物学杂志,1994(5):4-6
    [30]马海军,宋长冰,张继澍,等.电激励信号频率对红点病苹果采后电学特性影响[J].农业机械学报,2009,43(10):97-102.
    [31]马广,傅霞萍,周莹,等.大白桃糖度的近红外漫反射光谱无损检测试验研究[J].光谱学与光谱分析,2007,27(5):907-910.
    [32]前田弘.利用近红外分光法非破坏测定水果内部质量[J].红外,2001,2:33-37.
    [33]邵晓蕾,黄森,于春阳,等.尖柿果实采后电学特性和品质指标的关系[J].西北植物学报,2010,19(9):80-87.
    [34]覃方丽,闵顺耕,石正强,等.鲜辣椒中糖份和维生素C含量的近红外光谱非破坏性测定[J].分析试验室,2003,22(4):59-61
    [35]王多加,钟娇娥,胡祥娜,等.用傅里叶变换近红外光谱和偏最小二乘法测定蔬菜中硝酸盐含量[J].分析化学,2003,31(7):892-892
    [36]王玲,黄森,张继澍,等.‘嘎拉’苹果果实品质的电学特性研究[J].西北植物学报,2009,29(2):402-407.
    [37]王瑞庆,张继澍,马书尚,等.基于电学参数的货架期红巴梨无损检测[J].农业工程学报,2009,25(4):243-247.
    [38]吴颖,邓云,李云飞.高氧对巨峰葡萄冷藏和货架期品质的影响[J].农业工程学报,2005,21(8):184-186.
    [39]武维华,娄成后.植物鲜嫩组织电阻的构成[J].植物生理学报,1988,14(1):74-80
    [40]徐广通,袁洪福,陆婉珍.现代近红外光谱技术及应用进展[J].光谱学与光谱分析,2000,20(2):134-142.
    [41]严衍禄,赵龙莲,韩东海,等.近红外光谱分析基础与应用[M].北京:中国轻工业出版社,2005.
    [42]叶齐政,姚宏霖,李黎,等.根据水果阻抗的特性频率变化测定采后水果成熟度的方法[J].植物生理学通讯,1999,35(4):304-307.
    [43]易敏英,李志勇.电阻抗法快速检测鲜牛奶中细菌总数[J].中国乳品工业,2001,29(3):30-31
    [44]殷均斐,彭承琳.阻抗法人体成分测量装置的研制[J].中国医疗器械杂志,1997,21(2):87-90
    [45]应义斌,刘燕德,傅霞萍.基于小波变换的水果糖度近红外光谱检测研究[J].光谱学与光谱分析,2006,26(1):63-66.
    [46]余叔文等.植物的热害和叶组织电阻的变化[J].植物学报,1984,26(4):397-404
    [47]俞子文,杨惠东,余叔文等.SO2伤害与叶组织电阻的变化[J].环境科学学报,1982,2(4):358-362
    [48]张德双,金同铭,徐家炳,等.几种主要营养成分在大白菜不同叶片及部位中的分布规律[J].华北农学报,2000,15(1):108-111.
    [49]周向华,叶兴乾,刘东红,等.电阻抗法在食品微生物快速检测中的应用[J].粮油加工,2003,(10):73-75.
    [50]周永洪,黄森,张继澍,等.火柿果实采后电学特性研究[J].西北农林科技大学学报自然科学版,2008,36(4):117-122.
    [51]朱新华,郭文川,郭康权,等.电激励信号对果品电参数的影响[J],西北农林科技大学学报: 自然科学版,2004,32(11):125-128.
    [52]甄立平,刘鸿先.水稻幼苗的低温伤害与叶片组织电阻的变化[J].植物生理学通讯,1985,6(4):27-29
    [53]周向阳,林纯忠,胡祥娜,等.近红外光谱法(NIR)快速诊断蔬菜中有机磷农药残留[J].食品科学,2004,25(5):151-154.
    [54]祝宗岭,娄成后.在稳流下测量植物组织电阻的中段电压降法[J].植物生理学通讯,1982,5(1):54-58
    [55]张钢,陈段芬.测定植物抗寒性的电阻抗图谱法[J].植物生理与分子生物学学报,2005,31(1):
    [56][56] Alley E W, David R M, Judith A A. Relationship between sensory evaluations and nondestructive optical measurements of apple quality.1985,7(3):219-226.
    [57]Andre M K Pedro, Marcia M C Ferreira. Nondestructive determination of solids and carotenoids in tomato products by near-infrared spectroscopy and multivariate calibration. Anal.Chem,2005, 77:2505-2511.
    [58]A. Soley, et al., On-line monitoring of yeast cell growth by impedance spectroscopy, J. Biotechnol. 118(2005)398-405.
    [59]A.D. Bauchot, F.R. Harker, W.M. Arnold, The use of electrical impedance spectroscopy to assess the physiological condition of kiwifruit, Postharvest Biotechnol. Technol.18 (2000) 9-18.
    [60]Barcelon E G. X-ray Computed Tomography for Internal Quality Evaluation of Peaches. Journa 1 of Agriculture Engineering Research,1999,73(4):323-330.
    [61][57] Birth G S, Olsen K L. Nondestructive detection of water core Delicious apples. Proceedings of American Society for Horticultural Science,1964,85:74-84.
    [62]B.H. Brown, et al., Detection of cervical intraepithelial neoplasia using impedance spectroscopy:a prospective study, BJOG:An Int. J. Obstet. Gynaecol.112 (2005) 802-806.
    [63]Clark C J, McGlone V A,Jordan, R B, et al. Detection of brownheart in'braeburn'apple by transmission NIR spectroscopy. Postharvest Biology and Technology,2003,(28):87-96.
    [64]Chalucova R, Krivoshiev G, Mukarev M, et a 1.Determination of Green Pea Maturity by Measurement of Whole Pea Transmittance in the NIR Region. Lebensmittel-Wissenschaft und-Technologie,2000,33(7):489-498.
    [65]C. Capaccio, Induced electric fields and plasmid transport in the rat mesenteric vasculature during electroporation:a mathematical modeling and in vivo analysis, MS Thesis, Northwestern University,2005.
    [66]D.A. Dean, D. Machado-Aranda, K. Blair-Parks, A.V. Yeldandi, J.L. Young, Electroporation as a method for high-level nonviral genetransfer to the lung, Gene Ther.10 (2003) 1608-1615.
    [67]E. Gersing, Impedance spectroscopy on living tissue for determination of the state of organs, Bioelectrochem. Bioenerg.45 (1998) 145-149.
    [68]H.P. Schwan, Electrical properties of tissues and cell suspensions, Adv. Biol. Med. Phys.5 (1957) 147-209.
    [69]J. Glahder, et al., Transfection of HeLa-cells with pEGFP plasmid by impedance power-assisted electroporation, Biotechnol. Bioeng.92 (3)(2005) 267-276.
    [70]J.L. Young, J.N. Benoit, D.A. Dean, Effect of a DNA nuclear targeting sequence on gene transfer and expression of plasmids in the intact vasculature, Gene. Ther.10 (2003) 1465-1470.
    [71]Kawano S, Fujiwara T, Iwamoto M. Nondestructive determination of sugar content in satsuma mandarin using near infrared (NIR) transmittance. Journal of the Japanese Society for Horticultural Science,1993,62(2):465-470.
    [72]K.S. Osterman, Non-invasive assessment of radiation injury with electrical impedance spectroscopy, Phys. Med. Biol.49 (2004)665-683.
    [73]L.A. Geddes, E.L. Baker, The specific resistance of biological material—a compendium of data for the biomedical engineer and the physiologist, Med. Biol. Eng.5 (1967) 271-293.
    [74]Miller B K, Delwiche M J. Spectral analysis of peach surface defects. Trans of the ASAE,1991, 34(6):2509-2515.
    [75]Martin G S, Mervyn K P, Lome R A. Quality evaluation of processing potatoes by near infrared reflectance. Journal of Science of Food and Agriculture,1999,79:763-771.
    [76]M. Pavlin, et al., Effect of cell electroporation on the conductivity of a cell suspension, Biophys. J. 88 (2005) 4378-4390.
    [77]Pictiaw Chen, Nattuvetty V R. Light transmittance through a region of an intact fruit. Trans of ASAE, 1980:519-522.
    [78]P. Aberg, et al., Skin cancer identification using multifrequency electrical impedance—a potential screening tool, IEEE Trans. Biomed. Eng.51 (2004) 2097-2102.
    [79]P. Ellappan, R. Sundararajan, A simulation study of the electrical model of biological cells, J. Electrostat.63 (2005) 297-307.
    [80]Roggo Y, Duponchel L, Ruckebusch C, et al.Statistical tests for comparison of quantitative and qualitative models developed with near infrared spectral data. Journal of Molecular Structure,2003, 654(1):253-262.
    [81]R. Halter, A. Hartov, J. Heaney, K. Paulsen, A. Schned, Electrical impedance spectroscopy of the human prostate, IEEE Trans. Biomed. Eng.54 (7) (2007).
    [82]R.Y. Wang, et al., Study on fish embryo responses to the treatment of cryoprotective chemicals using impedance spectroscopy, Eur. Biophys.J. (2005).
    [83]R. Pethig, Dielectric properties of body tissues, Clin. Phys. Physiol. Meas.8 (1967).
    [84]R. Pethig, D.B. Kell, The passive electrical properties of tissues and cell suspensions, Phys. Med. Biol.3 (8) (1987) 933-970.
    [85]Slaughter D C. Nondestructive determination of internal quality in peaches and nectarines. Trans of the ASAE,1995,38(2):617-623.
    [86]S. Li, L. Liang, J. Li, N. Liu, M.A. Alim, Characterization of water absorbed epoxy insulating coating material used in ZnO varistors by dielectric measurements, Mater. Lett.60 (2006) 114-119.
    [87]Singh B, Wang N, Prasher S, et al. A Spectroscopic Technique for Water Content Determination in Potato. American Society of Agricultural Engineering (ASAE) Annual Meeting,2004.
    [88]Shyam N J, Matsuoka T. Non-destructive determination of acid-brix ratio of tomato juice using near infrared spectroscopy. International Journal of Food Science and Technology,2004, 39:425-430.
    [89]T.E. Kerner, et al., Electrical impedance spectroscopy of the breast:clinical imaging results in 26 subjects, IEEE Trans. Med. Imaging 21(6) (2002) 638-645.
    [90]T. Suselbeck, et al., Intravascular electric impedance spectroscopy of atherosclerotic lesions using a new impedance catheter system, Basic Res. Cardiol.100 (2005) 446-452.
    [91]T. Suselbeck, et al., Intravascular electric impedance spectroscopy of atherosclerotic lesions using a new impedance catheter system, Basic Res. Cardiol.100 (2005) 446-452.
    [92]U. Pliquett, M. Prausnitz, Impedance spectroscopy for rapid andnoninvasive analysis of skin electroporation, in:Mark Jaroszeski,Richard Heller, Richard Gilbert (Eds.), Electrogenetherapy, and Transdermal Delivery, New Jersey, Humana Press,2000, pp.377-406.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700