苦皮藤再生体系的建立及超声生物学效应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苦皮藤(Celastrus anyulatus Maxim)属卫矛科(Celastraceaes)南蛇藤属(Celastrus.L)多年生落叶藤状灌木,是我国特有的最具潜力的杀虫植物之一,是生产无公害农药的宝贵资源。目前已经从其根皮、种子中分离出20多种天然化合物,这些物质均具杀虫活性,近年研究表明该类化合物还具有抗肿瘤和杀菌效果。因此,开展对苦皮藤的研究工作具有重要意义。
     植物组织培养在生物技术领域中占有不可替代的地位。对苦皮藤进行组织培养并建立其再生体系具有一定的理论意义和应用价值。主要结果如下:
     1.建立了苦皮藤再生体系:MS+2,4-D 2mg/L培养基适合愈伤组织诱导;MS+6-BA 2mg/L+NAA 0.2mg/L培养基适合芽的分化;MS+6-BA 1mg/L+NAA 0.2mg/L培养基适合芽的增殖;多效唑、暗培养对根的分化是必需的,将芽转至MS+MET0.7mg/L+IBA 0.5mg/L培养基暗培养10d后,转入1/2MS培养基光下培养可形成根。
     2.观察了组织培养条件下出现的苦皮藤白化苗及黄化苗的超微结构:白化苗、黄化苗的细胞器与正常苗叶片具有明显差异。多数黄化苗细胞中叶绿体数量较少,叶绿体内含淀粉粒较少,基粒和基质片层的形态变化较大;白化苗叶绿体多呈解体状态,部分细胞线粒体解体,少数细胞核解体。
     3.研究了苦皮藤组培苗不定根的形成过程:不定根的根原基发生于维管形成层及其附近的薄壁细胞。苦皮藤茎中未发现有潜伏根原基存在,属诱发根原基类型。不定根的木质部及韧皮部与母体的木质部及韧皮部互相联结形成了连续的维管系统。
     环境应力对植物影响已成为生物力学研究领域的一个热点。超声作为一种环境应力,对植物的生长发育有重要影响。但有关超声刺激对植物组培苗影响还少有报道。本文初步研究了超声对苦皮藤组培苗的生物学效应。主要结果如下:
     1.不同频率和强度的超声刺激对苦皮藤组培苗的生长有一定影响:27KHz(250W)超声刺激3min,5min,7min可以促进苦皮藤不定芽的萌发;而1.1MHz(500W)超声刺激对苦皮藤组培苗生长有抑制作用。
     2.27KHz(250W)超声刺激影响苦皮藤组培苗的超微结构:扫描电镜下,超声处理1min~5min,气孔开张程度与时间呈正相关:处理7min~11min,气孔开张程度下降,但比对照组高。透射电镜下:短时间的超声处理,细胞膜、细胞
    
    核、叶绿体等细胞器有轻微损伤,随着处理时间的延长,细胞质与核内出现空区,
    质膜有剥离现象,说明超声对细胞的损伤随着处理时间的延长而增大。
     3.超声刺激增强了植物体内保护酶活性:27KHz超声波刺激苦皮藤组培苗
    smin和7min,处理后继续培养,并分别于od,3d,6d,gd,12d,15d,18d,21d
    测定其超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)的活性。
    结果表明,超声处理不同程度地增强了这些保护酶的活性。
Celastrus angulatus M. is a defoliated vine and used to be as traditional Chinese herbs. C. angulatus is also the valuable resources to be made of biorational pesticide. More than twenty secondary metabolites have being isolated from its bark and seed, and the most of it is the active substance. C. angulatus has a significant and bright prospects of development, so making efforts on this field is very important.
    The technologies of plant tissue culture has its unique place in biotechnology, and study of tissue culture and plant regeneration in C. anyulatus M. had significant theoretical meaning and applied value. The main contents and results of research in this thesis are as follows:
    Firstly, Study of tissue culture and plant regeneration in C. anyulatus: The MS medium containing 2,4-D2mg/L is suitable for the induction of callus. The MS medium, which contained 6-BA2mg/L and NAA0.2mg/L, is suitable for shoots differentiating from the callus. The MS medium, which contained 6-BA2mg/L and NAA0.2mg/L, is suitable for shoots growing. The MS medium with MET0.7mg/Land IBA0.5mg/L , darkness and 1/2MS medium were advantageous for the roots occurred. The survival rate of plantlet was 85% after transplanting under suitable condition.
    Secondly, the ultrastructure of leaf cells in albino seedlings, etionlated seedlings and normal seedlings of C. anyulatus was observed by ultrathin-section and electron microscopy techniques. The results showed that there were distinct differences among ultrastructure of the leaf cells in albino seedlings, etionlated seedlings and normal seedlings of C. anyulatus. The cytoplasma amount in the most cells of etionlated seedlings was few. There were few chloroplasts and the conformation of chloroplast varied from each other in the albino seedlings leaf cells. Few chloroplasts were normal and the most presented part degeneration. Some chloroplast in
    
    
    albino seedlings took on the state that part membranes were fusing. There were little difference on cell wall, and cell form among albino seedlings, etionlated seedlings and normal ones.
    Thirdly, the anatomical observation on adventitious root of C. anyulatus vitro was carried by means of paraffin section method. It is significantly clear that adventitious root primordium has not been found in the stem. The adventitious root primordium of stem initialed from the vascular cambium or phloem parenchyma cell.
    The effect of environmental stresses on the growth and development of plant cells and tissues is one of important fields in plant physiology. Ultrasound as one kind of environmental stresses, it has been found that can greatly influence the growth and development of plant. Where as, the studies about the effect of ultrasound stimulation on vitro is rare so far. In this thesis, the biology effect of ultrasound on C. anyulatus vitro was primarily explored. The results of research in this thesis are as follows:
    Firstly, when C. angulatus vitro were treated by Ultrasound with a certain intensity of 250w and frequency of 27KHz froml minute to7 minutes, the adventitious shoots from C. angulatus vitro can grow effectively. But treated by Ultrasound with a certain intensity of 500W and frequency of 1.1 MHz , the growth of the adventitious shoots were inhibited in initial stage.
    Secondly, ultrastructure of the leaf cells of C. angulatus stimulated with 27KHz ultrasonic in different time was observed by scanning electron microscope and transmission electron microscope. The result showed that the stomas in the affected surface were more opened than in the surface of normal leaves. From 1 minute to 5 minutes, the stimulated time more long, the stomas were more opened. But when stimulated from 7 minutes to llminutes, the degree of stomas opened was minish. The ultrasonic also scathed cell membrance, cytoplasm and nucleus. With stimulated longer, the cells were injured greatly.
    Thirdly, the effect of ultrasonic stimulation on protective enzymes of
    
    Celastrus angulatus vitro was explored. When Celastrus angulatus vitro were treated by Ultrasound with a certai
引文
[1] 常钰,刘涤,胡之壁.植物细胞和器官大规模培养研究进展,生物技术通报,2001,1,31-36
    [2] 周邦训,周淑训.美加两国植物药的临床应用简介,南京中医药大学学报(自),1998,14(4):254.
    [3] 陈因良,陈志宏.细胞培养工程上华东化工学院出版社,1992年1月
    [4] 潭文澄,戴策刚.观赏植物组织培养基术,1995年5月
    [5] 孙敬三,陈维伦.植物生物技术改良,中国国际出版社,1991年8月
    [6] 邓天树译.生物工程技术在木本植物上的应用现状,外国林业,1993,23(4):1-4.
    [7] 施季森.迎接二十一世纪现代林木生物技术育种的挑战,南京林业大学学报,2000,24(1):1-4.
    [8] 蒋丽娟等.生物技术在林木育种上的应用,湖南林业科技,1995,22(3):27-29
    [9] 程必强.云南樟插条繁殖实验报告,植物引种驯化集刊,1966,第二集:57-60
    [10] 潘景丽等.葡萄微型快繁工艺规程研究,西北植物学报,1988,8(3):184-194
    [11] 刘翠云等.亚特猕猴桃微繁工艺流程的研究,西北植物学报,1997,17(1):118-123.
    [12] 溜颂颂等.大岛樱的工厂化育苗技术,广东林业科技,1996,12(4):40-44.
    [13] 刘根林等.中华猕猴桃试管苗工厂化生产初探,江苏林业科技,1993(4)10-12.
    [14] .黄钦才等.毛白杨优良无形系腋芽快速繁殖工艺,河北林果研究.1998,13(2):104-107.
    [15] 冯学赞等.毛白杨组培苗气培生根工厂化生产工艺的研究.1998,13(2):104-107.
    [16] 王米力等.尾叶桉胚状体植株诱导与增值研究,四川林业科技.1996,17(2):9-13.
    [17] 王松枝等.泡桐无毒组培种苗规模化生产技术研究,林业科技通讯,1998,4,27-28.
    [18] 汪建亚等.杉木优树大量繁殖技术的研究,南京林业大学学报,1999,23(1):19-23.
    [19] 欧阳权等.桉树组培育苗新技术,广西科学,1994,1(3):49-54.
    [20] Mary M. J. Braam. The Arabidopsis TCH4 xyloglucan endotransglycosylase, J. Plant Physiol. 1997,115:181-190.
    [21] J. Braam, M.L.Sistrunk, D.H.Polisensky. Life in a changing world: TCH gene
    
    regulation of expression and responses to enviromental signals,J. Plant Physiol, 1996,98:909-916.
    [22] M. L.Sismmk, D.M.Antosiewicz, M.M.Puruggana. Arabidopsis TCH3 encodes a novel Ca2 binding protein and shows envionmentally induced and tissue-speific regulation,J. Plant Ceil. 1994,6:1553-1565
    [23] W. Xu,P. Campbell,A.K. Vargheese,et al.The Arabidopsis XET-related gene family:environmental and hormonal regulation of expression,J. Plant. 1996,9:879-889
    [24] S.M.Assmann,et al.Signal transdution in guard cell,J.Rev.Cell Bio., 1993,9:345-375
    [25] Lichtenthaler. Plant stress detection by reflectance and fluorescence,J. Sci.,1998,104: 542-548.
    [26] 龙雪峰.非洲雏菊茎尖愈伤组织对机械振荡刺激的应激效应,学位论文.重庆,重庆大学,1999.
    [27] 袁易全.近代超声原理与应用,南京大学出版社,1996年5月.
    [28] 克洛福德(英),超声功程,科学出版社,1957年2月.
    [29] L.别尔格曼,曹大文等译,超声,国防工业出版社,1964年4月.
    [30] Albu E, Ochesanu C. Respiration dynamics in some vegetables grown from seeds exposed to ultrasonic bombardment[J] . Studia Universitatis Babes-Bolyai Biologia, 1975, 20:29-34.
    [31] Albu E., Micu M. Research aimed at the action of ultrasound on germination of seeds of the Norway spruce Austrian pine and Arbor-vitae[J] . Studia Universitatis Babes-Bolyai Biologia[J] , 1977, 1,34-42.
    [32] Perry L. P, Boodley J. W., Germination of foliage plant seeds in response to pre sowing ultrasonic exposures water soaks and fungicides[J] . Hortscience, 1980, 15 (2):192-194.
    [33] Faruqi M. A., Khan M. A., Uddin M G. Comparative studies of the effects of ultrasonics red light and gibberellic-acid on the germination of Cassia-holosericea seeds[J] . Pakistan Journal of Scientific and Industrial Research, 1973, 16 (3-4):102-104.
    [34] Debska W, Walasiak A. Ultrasound in pharmaceutical studies part 2[J] . Herba Polonica, 1975, 21 (2):220-228
    [35] Miyoshi K., Mii M. Ultrasonic treatment for enhancing seed germination of
    
    terrestrial orchid calanthe-discolor in asymbiotic culture[J] . Scientia Horticulturae (Amsterdam), 1988, 35 (1-2):127-130.
    [36] Son Ki-Cheol, Byoun Hye-Jin, Chae Soo-Cheon. Application of simple system for ultrasonic aeroponics on the rooting of Pentas and Chrysanthemum[J] . Journal of the Korean Society for Horticultural Science, 1994, 35 (5):301-308.
    [37] Law W K, Carstensen E L,Miller M W.Effects of localized ultrasonic irradiation on pisum-sativum roots[J] . Environmental and Experimental Botany, 1978, 18 (4):207-218.
    [38] Hering E R, Shepstone B J. Observations on the combined effect of ultrasound and X-rays on the growth of the roots of Zea-mays[J] . Physics in Medicine and Biology, 1976, 21 (2):263-271.
    [39] Hering E R, Shepstone B J. Observations on the combined effect of ultrasound and certain cyto toxics on the growth of the roots of Zea-mays[J] . British Journal of Radiology, 1977, 50,32-37.
    [40] Wang X. H.,Qin S.,Li X. P., et al. Effects of ultrasonic treatment on female gametophytes of Laminaria japonica (Phaeophyta) [J] . Chinese Journal of Oceanology and Limnology, 1998, 1(SUPPL.):62-66.
    [41] Shade R. E., Furgason E. S, Murdock L. L., Detection of hidden insect infestations by feeding-generated ultrasonic signals[J] . American Entomologist, 1990, 36 (3):231-234.
    [42] Joersbo M., Brunstedt J., Protein synthesis stimulated in sonicated sugar beet cells and protoplasts[J] . Ultrasound in Medicine and Biology, 1990, 16 (7):719-724.
    [43] Bohm H.,Anthony P.,Garratt L, et al. Ultrasound-induced physiological changes in cultured cells of Petunia hybrida. Artificial Cells Blood Substitutes and Immobilization Biotechnology, 2002,30(2): 127-136.
    [44] 陈思忠.我国功率超声技术近况与应用进展,声学技术,2002,1(SUPPL):46-49.
    [45] Stirban M, Albu E. Synthesis and accumulation of assimilating pigments in several vegetables after ultrasonic treatment of seeds[J] . Studia Universitatis Babes-Bolyai Biologia, 1974, 19 (1):43-5.
    [46] Komoto M., Fujii S., Kishihara S., et al. Improvement of quality of sago starch 1. effect on the quality of some chemical and-or ultrasonic treatment[J] . Science Reports of Faculty of Agriculture Kobe University, 1982, 15 (1): 141-148.
    
    
    [47] Gavrila I., Pascu E., Modification in starch concentrations in potato plants under the influence of an ultrasonic field[J] . Studii si Cercetari de Biologie Seria Botanica, 1973, 25 (1): 95-101.
    [48] Srivastava A. S., De S. K., The influence of ultrasonic waves alone and in presence of certain salts on the microbial production of citric-acid by Aspergillus-niger[J] . Zentralblatt fuer Bakteriologie Parasitenkunde Infektionskrankheiten und Hygiene Zweite Naturwissenschaftliche Abteilung Mikrobiologie der Landwirtschaft der Technologie und des Umweltschutzes, 1980, 135 (5):408-412.
    [49] Francko D A, Taylor S R, Thomas B J, et al. Effect of low-dose ultrasonic treatment on physiological variables in anabaena-flos-aquae and selenastrum-capricornutum[J] . Biotechnology Letters, 1990,12 (3):219-224.
    [50] Mitra D.K., Majumdar M. Effect of ultrasonic and gamma radiation on tobacco mosaic virus[J] . Journal of the Society of Experimental Agriculturists, 1977, 2 (1):51-52.
    [51] Matsuura Kazuo,Hirotsune Masato, Nunokawa Yataro,et al. Acceleration of cell growth and ester formation by ultrasonic wave irradiation[J] .Journal of Fermentation and Bioengineering, 1994,77 (1):36-40.
    [52] Habib H. M., Mansour K S. Effect of ultrasonic radiation on tomato mosaic virus and effect of untreated and sonicated virus on mitotic division of tobacco shoot meristem[J] . Bulletin of the Faculty of Science Cairo University, 1985, 53 (1):265-290.
    [53] Shade R E, Furgason E S, Murdock L L. Detection of hidden insect infestations by feeding-generated ultrasonic signals[J] . American Entomologist, 1990, 36 (3): 231-234.
    [54] Francko D A, Taylor S R, Thomas B J, et al. Effect of low-dose ultrasonic treatment on physiological variables in anabaena-flos-aquae and selenastrum-capricornutum[J] .Biotechnology Letters, 1990, 12 (3):219-224.
    [55] 许宁,张宏.自然科学进展-国家重点实验室通讯,1994,4,507-509.
    [56] 许宁,邹翔.自然科学进展-国家重点实验室通讯,1994,3,368-370.
    [57] 董云洲.应用基础与工程科学学报,1999,3,393-341.
    [58] 刘晓艳,丘泰球,刘石生,胡爱军,黄卓烈.超声对细胞膜通透性的影响及作用,应用声学,2002,21(2):66-69.
    [59] Ju Chu,Bailin Li,Siliang zhang el at. Process Biochmistry,2000,(35):569-572
    
    
    [60] oshio,Ishimoyi et al. Enzyme Microbe Technol,1982,4(3):85-88.]
    [61] Ritman K T, Milburn J A. The acoustic detection of cavitation in fern sporangia[J] . Journal of Experimental Botany, 1990,41 (230): 1157-1160.
    [62] Akopyan V B. Cavitation threshold in a biological tissue as revealed by luminescence induced by ultrasound[J] . Biofizika,1980,25 (5): 873-876.
    [63] Borghetti M, Raschi A, Grace J. Ultrasound emission after cycles of water stress in Picea-abies[J] . Tree Physiology, 1989,5 (2):229-238.
    [64] Sandford A. P., Grace J., The measurement and interpretation of ultrasound from woody stems [J] . Journal of Experimental Botany, 1985,36, 298-311.
    [65] Ritman K. T., Milburn J. A. ,Acoustic emissions from plants ultrasonic and audible compared[J] . Journal of Experimental Botany, 1988,39, 1237-1248.
    [66] Tyree M. T., Sperry J S. Characterization and propagation of acoustic emission signals in woody plants towards an improved acoustic emission counter[J] . Plant Cell and Environment, 1989,12 (4):371-382.
    [67] Khalil, Ayoub A. M., Grace J. Acclimation to drought in Acer pseudoplatanus L. (Sycamore) seedlings[J] . Journal of Experimental Botany, 1992,43 (257): 1591-1602.
    [68] Borghetti M.,Leonardi S., Raschi A., et al. Ecotypic variation of xylem embolism, phenological traits, growth parameters and allozyme characteristics in Fagus sylvatica[J] . Functional Ecology, 1993,7 (6):713-720.
    [69] Van Doorn, Wouter G., Suiro Veronique. Relationship between cavitation and water uptake in rose stems[J] . Physiologia Plantarum, 1996,96 (2):305-311.
    [70] Tyree M. T, Dixon M. A, Tyree E. I., et al. Ultrasonic acoustic emissions from the sapwood of cedar Thuja-occidentalis and hemlock Tsuga-canadensis an examination of 3 hypotheses regarding cavitations[J] .Plant Physiology (Rockville), 1984,75(4):988-992.
    [71] Ritman K. T., Milburn .J A., Monitoring of ultrasonic and audible emissions from plants with or without vessels[J] . Journal of Experimental Botany,1991, 42,123-130.
    [72] Debska W, Walasiak A. Ultrasound in pharmaceutical studies part 1[J] . Herba Polonica, 1975, 21 (1):91-97.
    [73] 柯治国,南玉生.植源昆虫拒食剂苦皮藤的研究进展,武汉植物学研究,1993,11(3):265~271
    
    
    [74] 王进忠,孙淑玲,苏红田.植物源杀虫剂的研究利用与现状及展望,北京农学院学报,2000,5(2):72-73..
    [75] 黄瑞纶.杀虫药剂学,财经经济出版社,1957年10月
    [76] 北京农业大学农药教研组.土农药研究简报,昆虫知识,1959,10,41.
    [77] 卢令娴等.杀虫植物苦皮藤引种繁殖研究初报,湖北林业科,1989,3,8-9.
    [78] 王国亮等.新倍半萜酯—苦皮藤酯Ⅰ的结构鉴定,科学通报,1990,12,1156-1158。
    [79] 操海群,岳永德,花日茂.植物源农药研究进展,安徽大学学报(自然科学版),2000,77(1):40-44.
    [80] 吴文君等.新化合物苦皮藤素Ⅴ的分离与结构鉴定简报,西北农业大学学报(自然版),1994,22(4):116-117.
    [81] 吴文君等.苦皮藤素麻醉成分(苦皮藤素Ⅳ)结构鉴定,西北农业大学学报(自),1993,21(1):1-5.
    [82] Chen c.g. et al.Angulatueoids A-D:four sesquitepene from the seed of Celastrus angulatus. Phytochem. 1992,31 (8):2777-2780.
    [83] Liu J.K. et al. Insect antifeedant agent: sesquiterpene alkoloids from celastrus angulatus ,phytochem, 1990,29(8):2503-2506]
    [84] Liu J.K. et al. Tow sesquiterpene alkaloids from celastrus angulatus. Phytochem. 1991,30(10):3437-3440.
    [85] Tu.Y.Q. et al. Alkaloids from celastrus angulatus. Phytochem 1991,30(10): 3437:3440]
    [86] Tu.Y.Q. et al.Sesquiterpene polyolesters from celastrus angulantus. Phytochem. 1992,31(10):3633-3634]
    [87] Tu.Y.Q. et al. Alkaloids from celastrus angulatus. Phytochem. 1993,32(5): 1339-1342]
    [88] 吴文君,曹高俊.植物杀虫剂苦皮藤的作用方式的初步研究,西北农学院学报,1982,1,57-62.
    [89] 吴文君,曹高俊.杀虫植物苦树皮的作用方式及对菜青虫的防治试验,植物保护学报,1985,12(1):57-62.
    [90] 吴文君,陈广泉,王兴林.苦皮藤提取物对玉米象种群的控制作用及机理,粮食贮藏,1987,17(6)9-14.
    [91] 刘惠霞,吴文君.温度对苦皮藤麻醉成分毒力的影响,西北农业学报,1992,2(2):54-56.
    [92] 刘惠霞等.苦皮藤麻醉成分对昆虫的选择毒性及其机理的初步研究,西北农
    
    业学报,1992,2(2):31-36.
    [93] 刘惠霞,吴文君,姬志勤.苦皮藤毒杀成分对昆虫的选择毒性及其机制研究,西北农业学报,1998,7(2)41-44.
    [94] 柯治国等.植源昆虫拒食剂苦皮藤的研究进展,武汉植物学研究,1993,11(3):267-371.
    [95] 胡兆农,吴文君,姬志勤.苦皮藤杀虫活性的季节性和地域性变化,中国化工学会农药专业委员会第九届年会论文集,上海1998,517-518.
    [96] 刘惠霞,吴文君.温度对苦皮藤麻醉成分的影响,西北农业学报,1992,2(2):54-56.
    [97] 姬志勤,吴文君,胡兆农.植物杀虫剂苦皮藤有效成分苦皮藤素Ⅴ的光稳定性研究,中国化工学会农药专业委员会第九届年会论文集,1998,518-519.
    [98] 吴文君等.天然产物杀虫剂-原理、方法、实践,陕西科技出版社,1998
    [99] 柯治国,南玉生,卢令娴.植源昆虫拒食剂苦皮藤的研究进展,武汉植物学研究,1993,11(3):265-271.
    [100] 刘国强,高锦明,吴文君.植物源杀虫成分研究新进展,西北植物学报,2002,22(3):703-713.
    [101] 吴文君,刘惠霞,姬志勤等.植物杀虫剂0.2%苦皮藤素乳油研究与开发,农药,2001,40(3):17.
    [102] 曾弦,肖娅萍,胡雅琴等.功率超声对地灵叶片愈伤组织诱导和芽生长的影响,广西植物,2004,24(2):130-133.
    [103] W.巴尔茨,E.赖因哈德,M.H.岑克.植物组织培养技术及其在生物技术的应用,科学出版社,1983年9月.
    [104] 曹孜义,刘国民.实用植物组织培养技术教程,甘肃科学技术出版社,1995年5月.
    [105] 孙敬三等.中国科学,1974,6,627-631.
    [106] 傅瑞树,卢健.苏铁白化苗叶片超微结构,福建林学院学报,1998,18(3):270-272
    [107] 翁晓燕,蒋德安,陆庆.水稻转绿型白化突变系W_(25)转绿过程中Rubisco Rubisco活化酶活性与光合速率的变化,植物生理学报,2000,26(3):213-218.
    [108] Carson M. C.,The formation of nodal adventitious roots in salix cordata .Amer Jour Bot., 1983,25,721-725
    [109] 刘勇,肖德兴,黄长干等.板栗嫩枝扦插生根解剖学特征研究,园艺学报,1997,24(1):8-12.
    
    
    [110] 王瑞勤,董源.毛白杨1-2年生根萌条不定根起源和发育的观察,东北林业大学学报,1987,9(3):249-256.6
    [111] 姜静,翁玉辉,刘桂丰.红皮云杉茎的解剖构造与插条不定根形成的研究,植物研究,1994,14(4):448-452.
    [112] Lichtenthaler. Plant stress detection by reflectance and fluorescence. H.K. Ann. N.Y. Acad. Sci.1998. 104: 542-548.
    [113] B.C. Wang. Carrot cell growth response in a stimulated ultrasonic environment, Colloids and Surfaces B: Biointerface, 1998,12(2): 89-95.
    [114] 胡松青,李琳,郭祀远.功率超声在生物工程中的应用,应用声学,2000,19(3):39-43.
    [115] 周云龙.植物生物学,高等教育出版社面向二十一世纪课程教材,1999年2月
    [116] Barton S.,Buliock C.,Weir D.,Enzyme Microb,Technol, 1996,18(2): 190-194.
    [117] 刘晓艳等.超声对细胞膜通透性的影响及作用,应用声学,2002,21(2):66-29.
    [118] 王爱国.大豆种子SOD研究,植物生理学报,1983,9,77-84
    [119] 李玉泉,宋占午,王莱.叶螨危害对豇豆叶片超氧化物歧化酶及过氧化氢酶活性的影响,西北师范大学学报(自),2001,37:62-65.
    [120] 张志良.植物生理学实验指导,高等教育出版社,1990年2月.
    [121] 彭昌操,孙中海.低温锻炼期间柑桔原生质体SOD和CAT酶活性的变化,华中农业大学学报(自然科学版),2000,19(9):384-387.
    [122] 高辉远等.Na_2SO_3胁迫对四种抗盐性不同牧草膜脂过氧化和活性氧清除系统的影响,植物生态学报,1995,19(2):192-196.
    [123] 习岗,傅志东.外磁场对小麦过氧化物酶酶促反应动力学的影响,生物物理学报,1992,3,512-515.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700