光网络中基于SOA非线性的全光信号处理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文的主要研究对象是光网络中基于半导体光放大器(SOA)非线性效应的全光信号处理技术,包括全光波长变换技术、全光格式变换技术、全光逻辑NOR门和OR门技术。论文提出了实现四种技术的几种新的方案,通过实验进行了验证,建立了相应的理论模型,并进行了仿真研究。采用这些方案实现的波长变换器、格式变换器、逻辑NOR门和OR门具有结构简单、可集成等优点。
     第一部分:半导体光放大器的非线性偏振特性及理论模型
     推导出了考虑半导体光放大器(SOA)长度效应的偏振相关的理论模型。在此理论模型基础上,研究了SOA偏振相关的增益特性、相位特性、光谱特性和啁啾特性。
     第二部分:基于SOA非线性的全光逻辑NOR和OR技术
     首次提出了由一个SOA和一个带通滤波器组成的逻辑NOR门,该逻辑门利用了SOA的交叉相位调制(XPM)和蓝移边带滤波两种效应(简称XPM—BF)。在40Gbit/s通过实验进行了验证。通过增加一个偏振控制器和一个偏振分束器(即利用了NPR—BF方案)进一步改善了XPM—BF方案实现的逻辑NOR门的性能。
     基于SOA的偏振相关的增益饱和模型,建立了XPM—BF、NPR—BF两种方案实现逻辑NOR门的理论模型,仿真实现了两种方案的逻辑NOR功能。对于XPM—BF机制实现的逻辑NOR门,通过数值模拟进一步研究了一些参数对NOR逻辑门性能(消光比ER)的影响,这些参数包括:输入数据信号功率、滤波器中心波长偏移量和带宽、SOA的相位调制系数、输入线偏振光的偏振角度;研究了在NPR—BF机制中,一些参数对NOR逻辑门性能(消光比ER)的影响,这些参数包括:输入数据信号功率、滤波器中心波长偏移量;对这两种方案实现的逻辑门的性能进行了简单的比较。
     首次提出了将SOA的非线性偏振旋转效应与红移滤波相结合(NPR—RF)实现逻辑OR门的方案,并在20Gbit/s进行了实验验证。
     借助模拟研究,探讨了在NPR—RF机制中,一些参数对OR逻辑门性能的消光比ER和Q因子的影响,这些参数包括:输入数据信号功率、滤波器中心波长偏移量;并对两种方案(XPM-RF和NPR-RF)实现的逻辑门的性能进行了简单的比较。
     第三部分:基于SOA非线性的全光波长变换技术和格式变换技术
     独立提出了实现波长变换的一种新的方案,该方案将SOA的非线性偏振旋转效应和红移边带滤波效应(NPR—RF)相结合。在实验上成功地实现了40Gbit/s的波长变换,波长上变换的范围约17nm;该方案能改进通常的非线性偏振旋转效应所实现的波长变换器的性能;在20 Gbit/s成功地同时实现了两波长变换的输出。
     运用半导体光放大器偏振相关模型,建立了结合SOA中的非线性偏振旋转和红移边带滤波两种效应的波长变换模型;基于琼斯传输矩阵,仿真实现了波长变换功能;对该种波长变换器的性能进行了数值研究,研究了一些参数对波长变换器性能(消光比ER)的影响,这些参数包括:滤波器中心波长偏移量、数据信号光功率。
     利用SOA的非线性偏振旋转效应(NPR)实现NRZ—to—RZ格式变换的方案;通过实验成功地实现了10Gbit/s的NRZ—to—RZ格式变换。并将SOA的非线性偏振旋转和红移边带滤波两种效应相结合(简称NPR—RF),实现了NRZ—to—RZ格式变换,改善了NPR方案实现的格式变换器的性能。
     运用半导体光放大器偏振相关模型,基于琼斯传输矩阵,仿真实现了这两种方案(NPR、NPR-RF)的格式变换功能。
This dissertation mainly focuses on the subject of photonic technologies based on semiconductor optical amplifiers (SOAs) nonlinearities in optical network, including all-optical wavelength conversion, all-optical NRZ-to-RZ format conversion, all-optical logic NOR gate and OR gate. Several new schemes are presented and experimentally demonstrated for the first time or independently; corresponding theoretical models are built, and numerical analyses are conducted. The devices including wavelength converter, NRZ-to-RZ format converters, two logic NOR gates and logic OR gate have the advantages, including having simple configuration and allowing photonic integration and etc.
     1. Nonlinear polarization characteristic and theoretical model in SOA
     A theoretical model in relation to polarization is derived considering length effect of SOA. Based on the theoretical model, numerical analyses are conducted about polarization characteristics of gain, phase, spectrum and chirp in SOA.
     2. All-optical logic NOR and OR gate based on SOA nonlinearities
     Two novel schemes are presented to realize logic NOR function. The first is by exploiting cross phase modulation and blue-shifted sideband filtering, here called XPM-BF scheme. The NOR gate is experimentally demonstrated at 40 Gbit/s with good extinction ratio and with clear open eye. The second scheme (NPR-BF) is by adding a polarization controller and a polarization beam splitter to XPM-BF scheme, here called NPR-BF scheme. The performance of logic NOR gate by exploiting NPR-BF can excel that by exploiting XPM-BF.
     Two theoretical models for logic NOR function are built by exploiting XPM-BF and NPR-BF considering polarization dependence in SOA. Numerical simulation are made for XPM-BF scheme, including the dependence of extinction on the input data power, offset of central wavelength of filter to input probe wavelength, phase modulation coefficient of SOA, 3dB bandwidth of filter and polarization angle of input linear polarization light. Numerical simulation are also made for NPR-BF scheme, including the dependence of extinction and Q factor on the input data power and offset of central wavelength of filter. A comparison is made among three schemes including XPM-BF, NPR and NPR-BF.
     A novel scheme is presented to realize logic OR function by exploiting nonlinear polarization rotation (NPR) and red-shifted sideband filtering, which is called NPR-RF. The logic OR gate is experimentally demonstrated at 20 Gbit/s.
     Two theoretical models to realize logic OR function are built by exploiting XPM-RF and NPR-RF considering polarization dependence in SOA. Numerical simulation is made for NPR-RF scheme, including the dependence of extinction and Q factor on the input data power, offset of central wavelength of filter to input probe wavelength. A comparison is made among two schemes between XPM-RF and NPR-RF.
     3. All-optical wavelength conversion and NRZ-to-RZ format conversion based on SOA nonlinearities
     A novel scheme is independently proposed to realize wavelength conversion by exploiting nonlinear polarization rotation (NPR) in SOA and red-shifted sideband filtering, which is called NPR-RF. The wavelength converter is experimentally demonstrated at 20Gbit/s and 40Gbit/s over up-conversion range 17 nm. The scheme can enhance the performance of conventional nonlinear polarization rotation. The simultaneous two wavelength conversion outputs are successfully obtained at 20 Gbit/s.
     A theoretical model for wavelength conversion is built by exploiting NPR-RF, considering polarization dependence in SOA. Based on Jones matrix, function of wavelength conversion is simulated by exploiting the scheme. Numerical simulation is also made for dependence of performance of the wavelength converter on the central wavelength offset of filter to input probe wavelength and input data signal power.
     A novel scheme is independently proposed to complete NRZ-to-RZ format conversion by exploiting nonlinear polarization rotation (NPR) in SOA. The format converter is experimentally demonstrated at 10Gbit/s. By adding red-shifted sideband filtering, the performance of format converter based on NPR is enhanced. Based on Jones matrix, function of format conversion is simulated to realize by exploiting two schemes considering polarization dependence in SOA.
引文
[1] S. Yao., B. Mukherjee, S. Dixit, Advances in photonic packet swithcing: An overview, IEEE commun. Mag., vol. 38, 2000, pp. 84-94.
    [2] A. Pattavina, Architectures and Performance of Optical Packet Switching Nodes for IP Networks, J. Lightwave Technol., vol. 23, no. 3, Mar. 2005, pp. 1023-1032
    [3] F.-S. Choa, X. Zhao, et al., An Optical Packet Switch Based on WDM Technologies, J. Lightwave Technol., vol. 23, no. 3, Mar. 2005, pp. 994-1014.
    [4] V. Eramo, M. Listanti, M. Spaziani, Resources sharing in optical packet switches with limited-range wavelength converters, J. Lightwave Technol., vol. 23, no. 2, Feb. 2005, pp. 671-687.
    [5] M. Nord, S. Bjornstad, M. L. Nielsen, Demonstration of optical packet switching scheme for header-payload separation and class-based forwarding, in OFC'2004, vol. 1, Feb. 2004, pp. 23-27.
    [6] C. Develder, A. Stavdas, et al., Benchmarking and viability assessment of optical packet switching for metro networks, J. Lightwave Technol., vol. 22, no. 11, Nov. 2004, pp. 2435-2451.
    [7] F. Masetti, J. Benoit, et al., High speed, high capacity ATM optical switches for future telecommunication transport networks, IEEE J. Sel. Area in Comm., vol. 14, no. 5, 1996, pp. 979-998.
    [8] C. Guillemot, M. Renaud, P. Gambini, et al., Transparent optical packet switching: the European ACTS KEOPS project approach, J. Lightwave Technol., vol. 16, Dec. 1998, pp. 2117-2134.
    [9] B. Vermeulen, J. Wellen, F. Geilhardt, et al., End-to-end QoS resource management for an IP-based DWDM access network, J. Lightwave Technol., vol. 22, no. 11, Nov. 2004, pp. 2592-2605.
    [10] D. Dey, A. Bochove, A. Koonen, et al., FLAMINGO: A packet-switched IP-over-WDM all-optical MAN, in Proc. Eur. Conf. Optical Communication (ECOC'2001), Amsterdam, The Netherlands, Sept. 30-Oct. 4 2001, pp. 480-481.
    [11] A. Carena, V. Ferrero, R. Gaudino, et al., RINGO: A demonstator of WDM optical packet network on a ring topology, in Proc. 6th IFIPWorking Conf. Optical Network Design Modeling (ONDM 2002), Turin, Italy, Feb., 2002, pp. 183-197.
    [12] D. Chiaroni, Status and applications of optical packet switching, in ECOC'01, 2001, pp. 126-161.
    [13] L. Dittmann, C. Develder, D. Chiaroni, et al., The European IST project DAVID: a viable approach toward optical packet switching, IEEE Journal on Selected Areas in Communications, vol. 21, no. 7, Sept. 2003, pp. 1026-1040.
    [14] K. G. Vlachos, I. T. Monroy, A. Koonen, et al., STOLAS: switching technologies for optically labeled signals, IEEE Communications Magazine, vol, 41, no. 11, Nov. 2003, pp. S9-15.
    [15] P. Toliver, Glesk I., R. Runser, et al., Routing of 100Gb/s words in a packet-switched optical networking demonstration (POND) Node, J. Lightwave Technol., vol. 16, no. 12, 1998, pp. 2169-2180.
    [16] I. Chlamtac, Fumagalli A., Kazovsky L. G., et al., CORD: Contention Resolution by Delay Lines, Journal on Selected Areas in Communications, vol. 14, no. 5, 1996, pp. 1014-1029.
    [17] D. K. Hunter, M. M. Nizam, M. C. Chia, et al., WASPNET: a wavelength switched packet network, IEEE Comm. Mag., vol. 37, no. 3, 1999, pp. 120-129.
    [18] A. Takada, H. P. Jin, Architecture of ultrafast optical packet switching ring network, J. Lightwave Technol., vol. 20, no. 12, Dec. 2002, pp. 2306-2315.
    [19] 闫玉梅,全光逻辑信息处理技术及应用,北京邮电大学博士学位论文,2005.
    [20] T. S. El-Bawab, J. Shin, Optical packet switching in core networks: between vision and reality, IEEE Communications Magazine, vol. 40, no. 9, Sep. 2002, pp. 60-65.
    [21] C. Bintjas, N. Pleros and H. Avramopoulos, System perspective for all-optical switching, IEEE LEOS Newslett., vol.16, Oct. 2002, pp.19-21.
    [22] J. Leuthold, R. Ryf, D. Maywar, Novel all-optical wavelength converter in an add/drop multiplexing network demonstrating transmission over 42 nodes and 16'800 km, in Proc. LEOS'2002 Annu. Meet., Glasgow, U.K., Nov. 2002, paper PD 1.3.
    [23] J. Leuthold, D. M. Marom, S. Cabot, et al., All-optical wavelength conversion using a pulse refon-natting optical filter, J. Lightwave Technol., vol. 22, no. 1, Jan. 2004, pp. 186-192.
    [24] J. P. Turkiewicz, G. D. Khoe and H. de Waardt, Performance assessment of 1310 to 1550nm wavelength conversion, Wel, ECOC2005.
    [25] Z. Li, Y. Liu, S. Zhang, H. de Waardt, G. D. Khoe and D. Lenstra, All-optical logic gates based on an SOA and an optical filter, Tu3.5.3, ECOC2005.
    [26] Y. Liu, M. T. Hill, E. Tangdiongga, et al., Wavelength conversion using nonlinear polarization rotation in a single semiconductor optical amplifier, IEEE Photonics Technology Letters, Vol. 15, no. 1, Jan. 2003, pp.90-92
    [27] M. Duelk, E. Gamper, et al., Efficient regenerative wavelength conversion at 10Gbit/s over C-and L-band using a Mach-Zehnder interferometer with monolithically integrated semiconductor optical amplifier, Electron. Lett., vol. 36, no. 3, pp. 241-243, Feb. 2000.
    [28] K. L. Hall, Rauschenbach K. A., 100-Gbit logic, Opt. Lett., vol. 23, no. 16, Aug. 1998, pp. 1271-1273.
    [29] Y. Ueno, S. Nakamura, et al., 3.8-THz wavelength conversion of picosecond pulses using a semiconductor delayed-interference signal-wavelength converter (DISC), IEEE Photon. Technol. Lett., vol. 10, Mar. 1998, pp. 346-349.
    [30] J. Leuthold, C. H. Joyner, B. Mikkelsen, et al., 100 Gbit/s all-optical wavelength conversion with integrated SOA delayed-interference configuration, Electron. Lett., vol. 36, no. 13, June 2000, pp. 1129-1130.
    [31] S. Nakamura, Y. Ueno, K. Tajima, 168-Gb/s all-optical wavelength conversion with a symmetric-Mach-Zehnder-type switch, IEEE Photon. Technol. Lett., vol. 13, 2001, pp. 1091-1093.
    [32] L. Xu, I. Glesk, V. Baby, et al., All-optical wavelength conversion using SOA at nearly symmetric position in a fiber-based sagnac interferometric loop, IEEE Photon. Technol. Lett., vol. 16, no. 2, Feb. 2004, pp. 539-541.
    [33] B. Dagens, A. Labrousse, S. Fabre, et al., New modular SOA-based active-passive integrated Mach-Zehnder interferometer and first standard mode 40 Gb/s all-optical wavelength conversion on the C-band, in ECOC'02, 2002.
    [34] J. Leuthold, B. Mikkelsen, R. E. Behringer, et al., Novel 3R regenerator based on semiconductor optical amplifier delayed-interference configuration, IEEE Photon. Technol. Lett., vol. 13, Aug. 2001, pp. 860-862.
    [35] D. Norte and A. E. Willner, Experimental demonstrations of all-optical conversion between RZ and NRZ data formats incorporating noninverting wavelength shifting leading to format transparency, IEEE Photon. Technol. Lett., vol. 8, May, 1996, pp. 712-714.
    [36] L. Xu, V. Baby, I. Glesk and P. R. Prucnal, All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder interferometric wavelength converter, IEEE Photon. Technol. Lett., vol. 15, Feb. 2003, pp. 308-310.
    [37] C. G. Lee, Y. J. Kim, C. S. Park, H. J. Lee, and C-S, Park, Experimental demonstration of 10-Gbit/s data format conversion between NRZ and RZ using SOA-loop-mirror, J. Lightw. Technol., vol. 23, Feb. 2005, pp. 834-841.
    [38] W. Li, M. Chen, Y. Dong, and S. Xie, All-optical format conversion from NRZ to CSRZ and between RZ and CSRZ using SOA-based fiber loop mirror, IEEE Photon. Technol. Lett., vol. 16, Jan. 2004, pp. 203-205.
    [39] A. Hamie, A. Sharaiha, M. Guegan, and B. Pucel, All-optical logic NOR gate using two-cascaded semiconductor optical amplifiers, IEEE Photon Technol. Lettt. vol. 14, no.10, 2002, pp.1439-1441.
    [40] A. Hamie, H. W. Li, F. Marchese and J. L. Bihan, All-optical logic NOR gate using a semiconductor optical amplifier, Electron. Lett., vol.33, no.4, 1997, pp.323-325.
    [41] A. Hamie, A. Sharaiha, and M. Guegan, Demonstration of an all-optical logic OR gate using gain saturation in an SOA, Microwave and Optical Technol. Lett., vol.39,no.1, 2003, pp.39-42.
    [42] T. Fjelde, D. Wolfson, A. Kloch, C. Janz, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, B. Dagens and M. Renaud, 10 Gbit/s all-optical logic OR in monolithically integrated interferometric wavelength converter, Electron. Lett., Vol.36,no.9, 2000, pp.813-815.
    [43] N. S. Patel, K. L. Hall, and K. A. Rauschenbach, 40 Gbit/s cascadable all-optical logic with an ultrafast nonlinear interferometer, Optics Lett., vol.21, no.18, 1996, pp.1466-1468.
    [44] H. Dong, Q. Wang, G. Zhu, J. Jaques, A. B. Piccirilli, N. K. Durra, Demonstration of all-optical logic OR gate using semiconductor optical amplifier-delayed interferometer, Optics communications, 242, 2004, pp.479-485.
    [45] H. Soto, J. D. Topomondzo, D. Erasme, M. Castro, All-optical NOR gates with two and three input logic signals based on cross-polarization modulation in a semiconductor optical amplifier, Optics communications, 218, 2003, 243-247.
    [1] Davies D. A. O., Small-signal analysis of wavelength conversion in semiconductor laser amplifiers via gain saturation, IEEE Photonics Technology Letters, vol. 7, no. 6, Jun. 1995, pp.617-619
    [2] Grant R. S., Kennedy G. T., and Sibbett W., Cross-phase modulation in semiconductor optical amplifier, IEE Electronics Letters, vol. 27, no. 10, May 1991, pp.801-803
    [3] Mecozzi A., Scotti S., D'Ottavi A., et al., Four-wave mixing in traveling-wave semiconductor amplifiers, IEEE Journal of Quantum Electronics, vol. 31, no. 4, Apr. 1995, pp.689-699
    [4] Soto. H, Erasme D., and Guekos G., Cross-polarization modulation in semiconductor optical amplifiers, IEEE Photonics Technology Letters, vol. 11, no. 8, Aug. 1999, pp.970-972
    [5] N. Calabretta, Y. Liu, F. M. Huijskens, et al., Optical signal processing based on self-induced polarization rotation in a semiconductor optical amplifier, IEEE Journal of Lightwave Technology, vol. 22, no. 2, Feb. 2004, pp.372-381
    [6] Soto. H, Erasme D., and Guekos G., Cross-polarization modulation in semiconductor optical amplifiers, IEEE Photonics Technology Letters, vol. 11, no. 8, Aug. 1999, pp.970-972
    [7] Dorren H. J. S., Lenstra D., Liu Y., et al., Nonlinear polarization rotation in semiconductor optical amplifiers: theory and applications to all-optical flip-flop memories, IEEE Journal of Quantum Electronics, vol. 39, no.1, Jan. 2003, pp.141-148
    [8] Diez S., Schmidt C., Ludwing D., et al., Effect of birefringence in a bulk semiconductor optical amplifier on four-wave mixing, IEEE Photonics Technology Letters, vol. 10, no. 2, Feb. 1998, pp.212-214
    [9] Soto H., Erasme D., and Guekos G., 5-Gb/s XOR optical gate based on cross-polarization modulation in semiconductor optical amplifiers, IEEE Photonics Technology Letters, vol. 13, no. 4, Apr. 2001, pp.335-337
    [10] Soto. H., Diaz C. A., Topomondzo J., et al., All-optical AND gate implementation using cross-polarization modulation in a semiconductor optical amplifier, IEEE Photonics Technology Letters, vol. 14, no. 4, Apr. 2002, pp.498-500
    [11] Soto H., Topomondzo J. D., Erasme, et al., All-optical NOR gates with two and three input logic signals based on cross-polarization modulation in a semiconductor optical amplifier, Optics Communications, 218, 2003, pp.243-247
    [12] Patrick D. M., Ellis A. D., Davies D. A. O., et al., Demultiplexing using polarization rotation in a semiconductor laser amplifier, IEE Electronics Letters, vol. 30, no. 4, Feb. 1994, pp.341-342
    [13] Y. Liu, M. T. Hill, E. Tangdiongga, et al., Wavelength conversion using nonlinear polarization rotation in a single semiconductor optical amplifier, IEEE Photonics Technology Letters, vol. 15, no. 1, Jan. 2003, pp.90-92
    [14] M. Zhao, J. D. Merlier, G.. Morthier, et al., All-optical 2R regeneration based on polarization rotation in a linear optical amplifier, IEEE Photonics Technology Letters, vol. 15, no. 2, Feb. 2003, pp.305-307
    [15] B. F. Kennedy, S. Philippe, P. Landais, et al., Experimental investigation of polarization rotation in semiconductor optical amplifiers, Semiconductor Opto-electronics, vol. 151, no. 2, April. 2004, pp. 114-118
    [16] Y. Takahashi, A. Neogi, and H. Kawaguchi, Polarization-dependent nonlinear gain in semiconductor lasers, IEEE Journal of Quantum Electronics, vol. 34, no. 9, Jan. 1998, pp.1660-1672
    [17] T. Saitoh and T. Mukai, 1.5μm GaInAsP traveling-wave semiconductor laser, IEEE Journal of Quantum Electronics, vol. 23, 1987, pp. 1010-1020
    [18] J. P. Wittke and P. J. Warter, Pulse propagation in a laser amplifier, J. Appl. Phys., vol. 35, 1964, pp.460-461
    [19] A. Lcsevgi and W. E. Lamb, Jr., Propagation of light pulses in a laser amplifier, Phys. Rev., vol.185, 1969, pp.517-545
    [20] 黄黎蓉,黄德修,胡振华,SOA双折射效应对超短光脉冲光谱特性的影响,光电子激光,vol.14,no.19,Nov.2003,pp.1164-1167.
    [1] A. Hamie, A. Sharaiha, M. Guegan, and B. Pucel, All-optical logic NOR gate using two-cascaded semiconductor optical amplifiers, IEEE Photon Technol. Lettt. vol.14, no.10, 2002, pp.1439-1441.
    [2] A. Hamie, H. W. Li, F. Marchese and J. L. Bihan, All-optical logic NOR gate using a semiconductor optical amplifier, Electron. Lett., vol.33, no.4, 1997, pp.323-325.
    [3] A. Hamie, A. Sharaiha, and M. Guegan, Demonstration of an all-optical logic OR gate using gain saturation in an SOA," Microwave and Optical Technol. Lett., vol.39, no. 1, 2003, pp.39-42.
    [4] T. Fjelde, D. Wolfson, A. Kloch, C. Janz, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, B. Dagens and M. Renaud, 10 Gbit/s all-optical logic OR in monolithically integrated interferometric wavelength converter, Electron. Lett., vol.36, no.9, 2000, pp.813-815.
    [5] N. S. Patel, K. L. Hall, and K. A. Rauschenbach, 40 Gbit/s cascadable all-optical logic with an ultrafast nonlinear interferometer, Optics Lett. vol. 21, no.18, 1996, pp.1466-1468.
    [6] H. Dong, Q. Wang, G. Zhu, J. Jaques, A. B. Piccirilli, N. K. Dutta, Demonstration of all-optical logic OR gate using semiconductor optical amplifier-delayed interferometer, Optics communications, 242, 2004, pp.479-485.
    [7] H. Soto, J. D. Topomondzo, D. Erasme, M. Castro, All-optical NOR gates with two and three input logic signals based on cross-polarization modulation in a semiconductor optical amplifier, Optics communications, 218, 2003, pp. 243-247.
    [8] Z. Li, Y. Liu, S. Zhang, H. de Waardt, G D. Khoe and D. Lenstra, All-optical logic gates based on an SOA and an optical filter, Tu3.5.3, ECOC2005.
    [9] F. Heismann, Analysis of a reset-free polarization controller for fast automatic polarization stabilization in fiber-optic transmission systems, J. Lightwave Technol., vol. 12, no. 4, 1994, pp. 690-699.
    [1] T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, All-optical wavelength conversion by semiconductor optical amplifiers, J. Lightwave Technol., vol. 14, no, 6, 1996, pp. 942-954.
    [2] X. Xu, J. Wei, Z. Kang, Y. Jiang, H. Zhang, and J. Gao, Polarization-independent wavelength conversion using a single semiconductor optical amplifier, Chinese Optics Lett., vol. 2, no. 3, 2004, pp.168-170.
    [3] Y. Liu, M. T. Hill, E. Tangdiongga, H. de Waardt, N. Calabretta, G. D. Khoe, and H. J. S. Dorren, Wavelength conversion using nonlinear polarization rotation in a single semiconductor optical amplifier, IEEE Photon. Technol. Lett., vol. 15, no. 1, 2003, pp. 90-92.
    [4] J. P. Turkiewicz, G. D. Khoe and H. de Waart, All-optical 1310 to 1550 nm wavelength conversion by utilizing nonlinear polarization rotation in semiconductor optical amplifier, Electron. Lett., vol. 41, no.1, 2005, pp. 29-30.
    [5] C. C. Wei, M. F. Huang, and J. Chen, Enhancing the frequency response of cross-polarization wavelength conversion, IEEE Photon. Technol. Lett., vol. 17, no. 8, 2005, pp. 1683-1685.
    [6] J. Leuthold, C. H. Joyner, B. Mikkelsen, G. Raybon, J. L. Pleumeekers, B.I. Miller, K. Dreyer, and C. A. Burrus, 100Gbit/s all-optical wavelength conversion with integrated SOA delayed-interference configuration, Electron. Lett., vol. 36, no. 13, 2000, pp.1129-1130.
    [7] J. Leuthold, D. M. Marom, S. Cabot, J. J. Jaques, R. Ryf, and C. R. Giles, All-optical wavelength conversion using a pulse reformatting optical filter, J. Lightwave Technol., vol. 22, no.1, 2004, pp. 186-191.
    [8] Y. Liu, E. Tangdiongga, Z. Li, et al., Error-free all-optical wavelength conversion at 160 Gbit/s using a semiconductor optical amplifier and an optical bandpass filter, J. Lightw. Technol., vol. 24, Jan. 2006, pp. 230-236.
    [9] G. Mohs, C. Furst, H. Geiger, et al., Advantages of nonlinear RZ over NRZ on 10Gbit/s single-span links, in Proc. Optical Fiber Communication Conf. (OFC'00), vol. 4, Mar. 2000, pp.35-37.
    [10] H. Sunnerud, M. Karlsson and P. A. Andrekson, A comparison between NRZ and RZ data formats with respect to PMD-induced system degradation, IEEE Photon. Technol. Lett., vol. 13, May, 2001, pp. 448-450.
    [11] D. Norte and A. E. Willner, Experimental demonstrations of all-optical conversion between RZ and NRZ data formats incorporating noninverting wavelength shifting leading to format transparency, IEEE Photon. Technol. Lett., vol. 8, May, 1996, pp. 712-714.
    [12] L. Xu, V. Baby, I. Glesk and P. R. Prucnal, AU-optical data format conversion between RZ and NRZ based on a Mach-Zehnder interferometric wavelength converter, IEEE Photon. Tectmol. Lett., vol. 15, Feb. 2003, pp. 308-310.
    [13] C. G. Lee, Y. J. Kim, C. S. Park, H. J. Lee, and C-S, Park, Experimental demonstration of 10-Gbit/s data format conversion between NRZ and RZ using SOA-loop-mirror, J. Lightw. Technol., vol. 23, Feb. 2005, pp. 834-841.
    [14] W. Li, M. Chen, Y. Dong, and S. Xie, All-optical format conversion from NRZ to CSRZ and between RZ and CSRZ using SOA-based fiber loop mirror, IEEE Photon. Technol. Lett., vol. 16, Jan. 2004, pp. 203-205.
    [15] J. P. Turkiewicz, G. D. Khoe and H. de Waardt, Performance assessment of 1310 to 1550 nm wavelength conversion, Wel, ECOC2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700