沙利度胺对胶原诱导性关节炎大鼠VEGF、TNF-α表达及红细胞生成的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
类风湿关节炎( rheumatoid arthritis, RA)是一类以慢性、对称性、多关节炎症为主要表现的自身免疫性疾病,其侵犯的靶器官主要是关节滑膜,最终可影响关节功能甚至致残。RA滑膜新生血管的生成是产生和维持血管翳的重要标志,也是造成滑膜炎、血管翳生长、骨破坏的主要原因。因此抑制滑膜组织血管生成、减少其引起的骨破坏将成为治疗RA的重要方法。RA滑膜组织中有多种促血管生成因子高表达,其中血管内皮生长因子(VEGF)在滑膜炎进展及新生血管形成过程中的作用至关重要。VEGF的表达受多种因素影响,肿瘤坏死因子-α(TNF-α)、缺氧、白细胞介素-1(IL-1)、转化生长因子β(TGF-β)及CD40-CD40L等均可以上调其表达。做为RA细胞因子网络瀑布启动的起点,TNF-α在RA病程中发挥着枢纽作用,它与VEGF相互促进,相互影响,加速病变的进程。
     贫血是RA最常见的关节外表现,常与RA的活动相一致。目前认为RA患者的贫血多属慢性病贫血(ACD),是活动性RA的一种常见特征,可能与铁吸收异常、巨噬细胞释放铁障碍、促红细胞生成素(EPO)表达缺陷等有关。另外细胞因子如TNF-α、IL-6等已被证实与ACD发病明显相关。它们可以直接抑制红系祖细胞增殖、抑制EPO的产生、迟化骨髓对EPO的反应及干扰铁代谢等多个环节。
     沙利度胺因免疫调节、抗炎及抗血管生成作用又重新成为临床研究的热点,证实它对某些肿瘤、风湿性疾病、难治性血液病以及多种原因不明的疾病疗效显著。迄今为止仅有少数关于沙利度胺治疗RA的临床报导,对其疗效褒贬不一,作用机制亦不明确,无远期疗效的临床及相关动物实验资料,也未见其对RA伴贫血患者红系生成方面的临床及动物实验的报道。
     为此,本实验在传统的胶原诱导型关节炎基础上加以改进,通过多次皮内注射Ⅱ型胶原与弗氏完全佐剂,成功地建立了关节炎伴贫血的动物模型。从细胞水平、形态学、流式检测、分子生物学等多种角度,有机结合体内和离体试验,以VEGF与TNF-α为切点,以动态观察的方式研究并探讨沙利度胺对关节炎大鼠的炎性活动、血管生成、滑膜细胞表达及凋亡的影响以及对红细胞生成作用及可能机制,进一步评价不同剂量的沙利度胺在实验性关节炎伴贫血大鼠的疗效及临床应用价值,试图为该药在RA新靶点治疗——阻断血管生成方面及选择无明显骨髓抑制的抗风湿药物方面提供一定的实验依据。实验内容主要包括以下四个部分:
     第一部分:VEGF、TNF-α在胶原诱导性关节炎大鼠病程中的动态表达及沙利度胺的影响
     目的:探讨VEGF、TNF-αmRNA及其蛋白在胶原诱导性关节炎大鼠血清及滑膜中的动态表达及其与关节炎活动程度的关系、滑膜微血管密度的变化及沙利度胺对上述指标的影响。
     方法:将128只雄性Wistar大鼠随机分5组,Ⅰ组:正常对照组(n=24),Ⅱ组:造模组(n=26),Ⅲ组:造模组+高剂量沙利度胺治疗组(200mg/kg/d, n=26),Ⅳ组:造模组+沙利度胺低剂量治疗组(100mg/kg/d, n=26),Ⅴ组:造模组+甲氨喋呤(MTX)治疗组(2.7mg/kg/w, n=26)。通过注射Ⅱ型胶原与完全弗氏佐剂(complete freud’s adjuvant, CFA)制作胶原诱导型关节炎(collagen-induced arthritis, CIA)动物模型,各CIA模型组又根据初次免疫后不同时间点(7、14、21、28、35、42及60天)各分为7个亚组。造模后12天开始给药。应用关节炎指数(arthritis index, AI)、足爪厚度、99mTc-MDP核素显像、x线、电镜及病理改变评价模型建立情况;RT-PCR、ELISA及免疫组织化学方法检测VEGF及TNF-αmRNA和其蛋白在不同时期关节炎大鼠血清及滑膜组织中含量的动态变化;采用CD31免疫组织化学方法及微血管计数(microvessel density, MVD)法了解滑膜组织新生血管情况;研究沙利度胺对上述指标的影响并与MTX比较,同时比较不同剂量沙利度胺的作用有无差别。
     结果:①CIA大鼠的AI指数、足爪厚度及核素浓聚程度在21天达到高峰,其中关节部位核素的变化敏感性及客观性均优于其它指标,更能够反应关节的早期病变。②CIA大鼠滑膜组织中的VEGF和TNF-αmRNA在造模后21天表达水平分别为0.75±0.06和2.01±0.13,明显高于同期对照组,P<0.01。仅高剂量沙利度胺组可以下调VEGF mRNA的表达,高、低剂量沙利度胺和MTX组都能够下调TNF-αmRNA的表达。③免疫组织化学染色结果显示CIA大鼠滑膜层中VEGF和TNF-α蛋白的表达以造模后21天最强,分别为15683.15±319.23和9037.71±403.03,显著高于同期对照组值,P<0.01。且都与大鼠足爪厚度改变呈正相关,r值分别为0.915和0.664,P<0.01。高、低剂量沙利度胺和MTX都能降低滑膜层中VEGF和TNF-α蛋白的含量,高剂量沙利度胺起效最快。④CIA大鼠血清中VEGF和TNF-α的浓度也在造模后21天达峰值,分别为2147.3±37.56 pg/mL和2685.0±112.09 pg/mL,与同期对照组值比较显著升高,P<0.01。3个治疗组都能降低血清VEGF和TNF-α的浓度,高剂量沙利度胺与MTX作用接近。⑤CIA大鼠滑膜的MVD在造模后28天达峰值为22.45±2.43,与同期对照组比较差异显著,P<0.01。3个治疗组中大鼠滑膜的MVD均明显降低,沙利度胺起效时间早于MTX。⑥CIA大鼠血清与滑膜中VEGF和TNF-α都与大鼠足爪厚度呈正相关,P<0.05;其中VEGF与滑膜MVD的变化也呈显著正相关,P<0.01。
     结论:CIA大鼠病程中血清和滑膜组织中VEGF和TNF-α存在高表达,并与关节肿胀程度相一致,关节滑膜组织内的新生血管明显增加,沙利度胺均可有效下调VEGF和TNF-αmRNA及其蛋白的表达,减少滑膜组织的MVD,改善CIA大鼠的关节症状,效果优于或等同于MTX。高剂量沙利度胺对上述指标的影响更显著。
     第二部分:沙利度胺对关节炎大鼠滑膜细胞VEGF、TNF-α表达水平和对细胞凋亡的影响
     目的:探讨沙利度胺对脂多糖(LPS)刺激的成纤维细胞样的滑膜细胞(FLS)VEGF和TNF-αmRNA及其蛋白表达的作用及对FLS凋亡的影响。
     方法:无菌获取关节炎大鼠膝关节的滑膜组织,应用体外FLS的培养技术进行滑膜细胞的分离与培养。实验共分6组:对照组,LPS组,LPS+高剂量沙利度胺组(50 mg/L), LPS+中剂量沙利度胺组(5 mg/L),LPS+低剂量沙利度胺组(0.5 mg/L)组及LPS+MTX组。倒置显微镜及透射电镜观察体外培养的FLS的形态;ELISA方法检测FLS培养上清中VEGF和TNF-α的含量;RT-PCR、Western Blot方法检测FLS中VEGF和TNF-αmRNA及蛋白表达的变化;膜联蛋白(Annexin-V)/碘化丙啶(PI)双标记流式细胞术(flow cytometry, FCM)测定药物对FLS凋亡的影响。
     结果:①CIA大鼠的原代滑膜组织分离培养24小时后开始贴壁,10~14天长满培养瓶底并可传代,3代以后主要以梭性或菱形的FLS为主。②ELISA测定LPS刺激后FLS培养上清中的VEGF、TNF-α含量分别为859.00±22.74pg/mL和1315.20±19.38pg/mL,明显高于对照组,P<0.01。沙利度胺能够降低FLS培养上清中的VEGF、TNF-α含量,浓度越高作用越强,其作用强度低于MTX。③RT-PCR、Western Blot结果示沙利度胺可以下调LPS刺激后FLS中VEGF和TNF-αmRNA及蛋白表达水平,抑制程度呈部分剂量依赖性。④沙利度胺有诱导FLS凋亡的作用,在一定浓度范围内呈剂量依赖性。处理48小时后各组凋亡率分别为:8.07%±1.45%、5.72%±1.42%和0.40%±0.04%,高中剂量沙利度胺组的凋亡率与LPS单独处理组的凋亡率(0.24%±0.05%)比较统计学差异显著,P<0.01;高中低剂量沙利度胺组的坏死率分别为:20.34%±4.43%、12.96%±4.32%和1.94%±1.16%,与LPS单独处理组的坏死率(0.13%±0.09%)比较统计学差异显著,P<0.01。高剂量沙利度胺与MTX组之间无显著性差异,P>0.05。⑤透射电镜下可观察到典型的细胞凋亡征象,细胞浆致密,染色质浓缩,沿着核膜排列,形成不同形状和大小的块状,可见凋亡小体。结论:FLS可以通过体外细胞培养及传代法获得并逐渐纯化,沙利度胺可以诱导FLS凋亡,并能够抑制其分泌和表达VEGF、TNF-α,且呈部分剂量依赖关系。
     第三部分:沙利度胺对胶原诱导性关节炎伴贫血大鼠血红蛋白的影响
     目的:研究并探讨沙利度胺对胶原诱导性关节炎伴贫血大鼠的治疗作用及临床应用价值。
     方法:在传统的Ⅱ型胶原诱导性关节炎大鼠模型基础上加以改进,制作关节炎伴贫血的动物模型,具体方法及分组同第一部分,并根据初次免疫后不同时间点(14、21、28、35、42及60天)各分为6组。测定不同时间点血红蛋白浓度,了解贫血出现时间及规律;测定模型组血清铁、血清总铁结合力、血清铁蛋白、促红细胞生成素(EPO),获取骨髓液观察骨髓细胞形态、测定骨髓内外铁变化了解贫血类型;测定并分析不同时间点血清TNF-α浓度、大鼠足爪厚度及与血红蛋白三者之间的相关性;分析EPO与血红蛋白之间的相关性。
     结果:①关节炎大鼠在造模后28天开始出现贫血,血红蛋白(121.75g/L±9.18g/L)较正常对照组(147.25 g/L±5.74 g/L)明显下降,P<0.01。②CIA模型鼠的贫血特点:血清铁、总铁结合力明显降低,血清铁蛋白及EPO升高明显,骨髓红系增生活跃,内铁减低,外铁无明显变化,红细胞形态基本正常。③高剂量沙利度胺组在造膜60天与同期模型组比较血红蛋白显著上升,P<0.05。④模型组大鼠血清TNF-α浓度与足爪厚度呈正相关,P<0.01;血红蛋白与TNF-α浓度呈负相关,P<0.05;血红蛋白与足爪厚度无明显相关,P>0.05;⑤模型组大鼠血红蛋白含量与EPO浓度之间无显著相关,P>0.05。
     结论:通过改良CIA模型的方法,可成功制作出关节炎伴贫血的大鼠模型。关节炎肿胀程度越大,TNF-α浓度越高;TNF-α浓度越高,贫血也越严重。沙利度胺能够改善贫血及大鼠关节肿胀,降低血清TNF-α浓度,有望为临床RA伴ACD患者的治疗开辟一条新途径。
     第四部分:沙利度胺对关节炎伴贫血大鼠红系祖细胞的影响及可能机制
     目的:研究并探讨沙利度胺对关节炎伴贫血大鼠红系祖细胞的影响。
     方法:雄性Wistar大鼠40只随机分5组,造模方法及处理因素同第三部分。于造模后第3及第8周处死大鼠,剪断股骨两端,获取骨髓液,大鼠淋巴细胞分离液分离获得骨髓单个核细胞(BMMCs),台盼兰染色记数活细胞,在甲基纤维素半固体培养基中进行骨髓红系祖细胞的培养及集落数目的测定;流式细胞学测定骨髓红系祖细胞CD34+及CD71+的表达情况,应用7-氨基放线菌D染色(7AAD)了解CD34+/CD71+细胞凋亡情况。
     结果:①关节炎伴贫血大鼠在第3周与第8周BFU-E、CFU-E的数目分别为13.33±4.32BFU-E/2.5×105 BMMCs、16.33±5.44 BFU-E/2.5×10~5 BMMCs和62.27±4.98 CFU-E/2.5×10~5 BMMCs、73.67±7.20 CFU-E/2.5×10~5 BMMCs,明显低于正常组大鼠的值,P<0.05。沙利度胺可以促进BFU-E和CFU-E集落的形成,作用优于MTX。②与正常对照组比较,模型组大鼠CD34+/CD71+的细胞数目明显减少,第3周及第8周分别为0.30%±0.10%和0.47%±0.06%,P<0.05。高剂量沙利度胺可以提高大鼠CD34+/CD71+的细胞数目,第3周及第8周分别为0.52%±0.02%和0.57%±0.11%,P<0.05;低剂量沙利度胺仅在第3周作用明显,为0.44%±0.03%。③模型组大鼠CD34~+/CD71~+细胞的凋亡率与正常对照组比较明显增加,第3周及第8周分别为31.30%±2.64%和21.96%±2.51%,P<0.05。沙利度胺可以降低大鼠CD34~+/CD71~+细胞的凋亡率,高低沙利度胺组凋亡率的值分别为20.57%±2.43%、14.77%±4.52%和23.14%±3.78%、16.04%±2.28%。④模型组大鼠血清中TNF-α浓度与BFU-E数目呈明显负相关,P<0.05,与CD34+/CD71+凋亡细胞的百分率呈明显正相关,P<0.05,而与CD34~+/CD71~+细胞占骨髓有核细胞的比例及CFU-E数目无明显相关,P>0.05。
     结论:关节炎伴贫血大鼠骨髓红系形成集落的能力明显下降,CD34~+/CD71~+的细胞数目减少,CD34~+/CD71~+凋亡细胞显著增加。沙利度胺对以上指标有改善作用。TNF-α可能参与关节炎伴贫血的发病机制。
Rheumatoid arthritis (RA) is a kind of autoimmune disease characterized by chronic and symmetrical multijoint inflammation, which result in joint malformation even lead to sever disability. The major damaged-target is synovial membrane. Neovascularization is the major cause of pannus causing synovitis and destroying bone. Therefore, the key point for the treatment of RA is to inhibit synovial neovascularization. Several studies showed that many highly expressed factors contributed to the forming of blood vessels in RA patients, among which vascular endothelial growth factor (VEGF) plays important function in synovitis and neovascularization. The expression of VEGF is regulated by tumor necrosis factor-α(TNF-α), interleukiu-1(IL-1), transforming growth factor-β(TGF-β), CD40-CD40L, hypoxia and other factors. As a key factor in the cytokines net, TNF-αplays vital role and interacts with VEGF, accelerating the progression of RA.
     Anemia in RA patients is the most common extra-joint symptom and the degree of anemia is often consistent with the activity of joint inflammation. This kind of anemia is commonly considered as anemia of chronic disease (ACD), and is related with abnormity in iron absorption, obstruction of iron releasing from macrophage and deficient expression of erythropoietin (EPO). Cytokines such as TNF-αand IL-6 are shown to suppress the proliferation of erythroid progenitor cells and the expression of erythropoietin EPO. TNF-αand IL-6 are also shown to interfere the response of bone marrow cells to EPO and iron metabolism.
     In the past decade, Thalidomide regains the research hotspot for its immune regulation, anti-inflammation and anti-angiogenesis effects. Studies showed that Thalidomide is effective in the treatment of several diseases such as cancer, rheumatoid disease and refractory anemia. However, there are few reports about the clinical and experimental research on the efficiency and mechanism of thalidomide in the treatment of RA, especially for RA with anemia. We, therefore, established the modified collagen-induced arthritis (CIA ) rats model with anemia by subcutaneous injecting collagen and adjuvant, repetitiously. Through these CIA rats, we made a further study on the effect of thalidomide on joint inflammation, angiogenesis, expression of cytokines, apoptosis and erythropoiesis, in order to select an effective drug in the treatment of RA, without severe side-effects. This experiments consist the following four parts.
     Part one: The effect of thalidomide on expression of VEGF and TNF-αin CIA rats.
     Objective:To explore the dynamic expression of VEGF and TNF-αmRNA and the protein in the blood and synovial membrane, to analyze the relationship between VEGF, TNF-αand the joint activity, microvessel density in synovial membrane, to study the effect of thalidomide on the expression of VEGF ,TNF-αand the joint activity, microvessel density in CIA rats.
     Methods: 128 male Wistar rats were divided into five groups,Ⅰ:normal group (n=24),Ⅱ: Collagen-induced arthritis rats (CIA) model group (n=26),Ⅲ: model group with high dosage of thalidomide group(200mg/kg/d, n=26),Ⅳ: model group with low dosage of thalidomide group(100mg/kg/d, n=26),Ⅴ: model group with Methotrexate ( MTX) group,(2.7mg/kg/w, n=26). CIA rats were made by subcutaneous injecting collagen and complete freud’s adjuvant (CFA). Each group was divided into 7 subgroups according to the time point (7d, 14d, 21d, 28d, 35d, 42d, 60d) after the first injection. Radionuclide imaging,χ-ray, electron microscope, pathological technic were used to evaluate the arthritis index (AI), paw thickness and other parameters of CIA rats. Reverse transcription-polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA) and immunohis-chemistry were used to detect the expression of VEGF and TNF-αlevel at different time point; microvessel density (MVD) was determined immunohischemistryically by CD31. The effect of Thalidomide and MTX were compared.
     Results:①AI, paw thickness, and concentration of radionuclide of CIA rats reached peak value on the 21st day, among which the change of radionuclide in the joints was more sensitive and objective than other index , and had high value in diagnosing early joint disease.②The expression level of VEGF and TNF-αmRNA of CIA rats on the 21st day were 0.75±0.06, 2.01±0.13, which was significantly higher than that of normal group, P<0.01. Only high dose thalidomide could down regulate VEGF mRNA, while both thalidomide and MTX could down regulate TNF-αmRNA.③The results of immunohischemistry test showed that the expression of VEGF and TNF-αin synovial membrane was strongest on the 21st day (15683.15±319.23, 9037.71±403.03), higher than that of normal group, P<0.01. Thalidomide and MTX could reduce the expression of VEGF and TNF-α, and the high dose thalidomide showed the effect the most rapidly.④ELISA results showed the same change of VEGF and TNF-αin blood (2147.3±37.56 and 2685.0±112.09, respectively) as that in synovial membrane of CIA rats, which were higher compared with that in normal group, P<0.01. All the drugs could reduce VEGF and TNF-αlevel, and the effect of high dose thalidomide was almost the same as that of MTX.⑤The MVD of CIA rats was highest on the 28th day (22.45±2.43), higher than that of normal group, P<0.01. All the drugs could decrease MVD of the synovial membrane, and the effect of thalidomide was more rapidly.⑥The level of VEGF and TNF-αin blood and synovial membrane of CIA rats was positively related with the change of paw thickness, P<0.05; the value of VEGF was also positively related with that of MVD, P<0.01.
     Conclusion: The expression level of VEGF and TNF-αwas higher in CIA rats, the change of which was correlated with the joint disease. There were increased newly developed microvessels in synovial membrane. Thalidomide could down regulate the expression level of VEGF and TNF-αmRNA and the protein, decrease the MVD, improve the joint disease. The effect of thalidomide was better than or equal to MTX. High dose thalidomide had more effect.
     Part two: The effect of thalidomide on the expression of VEGF and TNF-αand the apoptosis of the FLS in CIA rats.
     Objective:To explore the effect of thalidomide on the expression of VEGF and TNF-αand the apoptosis on Fibroblast-like synoviocytes (FLS) of CIA rats stimulated by lipopolysaccharide (LPS).
     Methods: Axenic synovial membranes from knees of CIA rats were obtained, and synovial cells were separated and cultured in vitro. The cultured cells were divided into six groups as following: normal group, LPS group,LPS+ high dose thalidomide (50mg/L) group, LPS+ middle dose thalidomide (5mg/L) group, LPS+ low dose thalidomide (0.5mg/L) group, LPS+MTX group. The shape of FLS was observed by convert microscope and transmission electron microscope; ELISA was used to determine the expression level of VEGF and TNF-αin the culture medium; RT-PCR and Western Blot method were used to determine VEGF, TNF-αmRNA and protein; Apoptosis of FLS was determine by FCM .
     Results:①The original synovial cells were to be confluent after 10~14 day and form a new generation by separated culture. FLS held predominance after 3 generation, which presented shuttle or rhombic shape.②ELISA results showed the expression level of VEGF and TNF-αin the culture medium of LPS group was higher compared with normal group(859.00±22.74pg/mL, 1315.20±19.38pg/mL), P<0.01. Thalidomide could reduce the concentration of VEGF and TNF-α, and the higher the dosage, the better the effect. The effect of MTX was better than thalidomide.③RT-PCR、Western Blot results showed that thalidomide could down regulate the expression level of VEGF and TNF-αmRNA and the protein of FLS, and the effect was partly in dose-dependent manners.④Thalidomide could induce the FLS apoptosis, also in a dose-dependent manner in the definite dosage. The apoptotic rates at 48hr were 8.07%±1.45%, 5.72%±1.42%, and 0.40%±0.04%,among which the former two were higher than that of LPS group (0.24%±0.05%), P<0.01;The nerotic rates at 48hr were 20.34%±4.43%、12.96%±4.32% and 1.94% ±1.16%, higher than that of LPS group(0.13%±0.09%), P<0.01.There was no difference between thalidomide (50mg/L) group and MTX group, P>0.05.⑤Observed with transmission electron microscope, the apoptotic phenomena were obvious: the chromatins condensed and shrunk and aggregated along inside of nuclear membrane to exist on the form of fall, petal and crescent. apoptotic bodies were, sometimes, formed.
     Conclusion: FLS cells could be harvested and purified by culturing and passaging. Thalidomide could induce apoptosis of FLS and inhibit the expression of VEGF and TNF-αmRNA and the protein of FLS, partly in dose-dependent manners.
     Part three: The effect of thalidomide on the anemia of chronic disease in CIA rats.
     Objective:To investigate the effect of thalidomide on the anemia of chronic disease in CIA rats
     Methods: The rat model of arthritis accompanied with anemia was established though the modified CIA model, referring to the part one, and each group was divided into 6 subgroups according the time point (14d, 21d, 28d, 35d, 42d, 60d) after the first injection. The hemoglobin concentration and the degree of anemia were determined; Serum iron, total iron binding capacity, ferritin, EPO, morphology of bone marrow, iron inside and outside RBC of BM were determined or observed; Serum TNF-αconcentration and the paw thickness of model rats were measured by the methods mentioned above, and the relationship between these parameters and hemoglobin were analyzed; The relationship between EPO and hemoglobin was analyzed also.
     Results:①On the 28th day, anemia appeared in model rats, the hemoglobin was 121.75 g/L±9.18g/L, lower than that of normal group(147.25 g/L±5.74 g/L), P<0.01.②The characteristics of anemia include lower serum iron and total iron binding capacity, higher ferritin and EPO, erythroid cells in BM were in hyperplasia, lower iron inside RBC of BM, unchanged iron outside RBC of BM and the normal shape of RBC.③High dose thalidomide could increase hemoglobin concentration on the 60th day compared with model group on the same time point, P<0.05.④Serum TNF-αconcentration was positively related with the change of paw thickness (P<0.01) , and negatively related with hemoglobin (P<0.05);There was no correlation between hemoglobin and paw thickness (P>0.05).⑤There was no correlation between hemoglobin and EPO concentration (P>0.05).
     Conclusion:Model rats with arthritis and anemia were successfully made by the meliorative method. The more serious of arthritis, the higher concentration of TNF-αand the more serious of anemia. Thalidomide could abate joint swelling and anemia, reducing TNF-αconcentration. It is hopeful to apply thalidomide in the treatment of RA with ACD patients.
     Part four: The effect of thalidomide on erythroid progenitor cells in CIA rats accompanied with anemia.
     Objective : To investigate the effect of thalidomide on erythroid progenitor cells of bone marrow in experimental arthritis and anemia rats. Methods: 40 male Wistar rats were divided into 5 groups. The methods of making model CIA rats grouping were the same as that in part one. Rats were killed on the third and eighth week (the 60th day), and the BM mononuclear cells (BMMNCs) were harvested and cultured in semisolid methylcellulose culture medium. The numbers of BFU-E and CFU-E were counted; The number of CD34+/CD71+cells in BM and the percentage of apoptotic cells were determined with FCM; TNF-αconcentration was determined by ELISA.
     Result:①The numbers of BFU-E and CFU-E on the third and eighth week were 13.33±4.32BFU-E/2.5×105 BMMCs,16.33±5.44 BFU-E/2.5×10~5 BMMCs and 62.27±4.98 CFU-E/2.5×10~5 BMMCs,73.67±7.20 CFU-E/2.5×10~5 BMMCs,lower than that of the normal group on the same time point, P<0.05. Thalidomide could increase the formation of BFU-E and CFU-E, which was better than MTX.②The lower number of CD34+/CD71+ cells was in model rats than that of the normal group (P<0.05) and the numbers were 0.30%±0.10% and 0.47%±0.06%, respectively, on the third and eighth week. Thalidomide could also increase the number of CD34~+/CD71~+ cells of model rats. High dosage of thalidomide could increase the number of CD34~+/CD71~+ cells the number is 0.52%±0.02%和0.57%±0.11%,P<0.05;low dosage of thalidomide had the effect just on the 3rd week(0.44%±0.03%).③The percentage of CD34~+/CD71~+ apoptotic cells in model rats (31.30%±2.64%) was higher than that of normal group (21.96%±2.51% ) (P<0.05) and thalidomide could decrease the percentage of CD34+/CD71+ apoptotic cells. Both high and low dosage of thalidomide had the function, the percentage of CD34+/CD71+ was 20.57%±2.43%, 14.77%±4.52% and 23.14%±3.78%, 16.04%±2.28%.④Serum TNF-αconcentration of model rats was significantly negative correlated with the number of BFU-E (P<0.05) , and positive correlated with the percentage of CD34+/CD71+ apoptotic cell (P<0.05), while no correlation was found between the number of CD34+/CD71+ cells and the number of CFU-E (P>0.05).
     Conclusion: The ability of forming BFU-E and CFU-E was decreased, the number of CD34~+/CD71~+ cells was lower, and the percentage of CD34~+/CD71~+ apoptotic cell was higher in the BM of rats with arthritis and ACD. Thalidomide could improve these parameters.
引文
1 Firestein G.S. Evolving concepts of rheumatoid arthritis. 2003,Nature, 423:356–361
    2 Rudolph EH, Woods JM.Chemokine expression and regulation of angiogenesis in rheumatoid arthritis.Curr Pharm Des, 2005,11(5):613~631
    3 Paleolog EM, Miotla JM. Rheumatoid arthritis: A target for antiangiogenic therapy? Humana Press Inc, 2001,8(6):129~149
    4 Podar K, Anderson KC. The pathophysiologic role of VEGF in hematologic malignancies: therapeutic implications. Blood, 2005, 105: 1383 ~ 1395
    5 Jing LU, Tsuyoshi K, Kazuo K,et al. Vascular endothelial growth factor expression and regulation of murine collagen-induced arthritis.J Immunol, 2000,164:5922~5927
    6 Sone H, Sakauchi M, Takahashi A, et al. Elevated levels of vascular endothelial growth factor in the sera of patients with rheumatoid arthritis correlation with disease activity. Life Sci, 2001, 69(16):1861~1869
    7 Ewa M, Palellog, Sylvia Y, et al. Modulation of angiogenic vascular endothelial growth factor by tumor necrosis factor and interleukin-1 in rheumatoid arthritis. Arthritis Rheum,1998,41:1258~1265
    8 Cho CS, Cho ML, Min SY. CD40 engagement on synovial fibroblast up- regulates production of vascular endothelial growth factor. J Immunol, 2000,164:5055~5061
    9 Wechalekar AD, Chen CI, Sutton D, et al. Intermediate dose thalidomide(200mg daily)has comparable efficacy and less toxicity than higher doses in relapsed multiple myeloma. Leuk Lymphoma, 2003,44(7):1147~1149
    10 Alfadley A AL-Rayes H, Hussein W, et al. Thalidomide for treatment of severe generalized discoid lupus lesions in two patients with systemic lupus erythmatosus. J Am Acad Dermatol,2003,48:89~91
    11 Kotoh T, Kumar D, Masunaga R, et al. Antiangiogenic therapy of human esophageal cancers with thalidomide in nude mice. Surgery,1999,125(5):536~544
    12 Scoville CD, Reading JC. Open trial of thalidomide in the treatment of rheumatoid arthritis. J Clin Rheumatl,1999,5:261~267
    13 Trentham DE, Townes AS, Kang AH, et al. Autoimmunity to type II Collagen: An experimental model of arthritis. J Exp Med, 1977,(146): 857~868
    14 Wakamatsu K, Nanki T, Miyasaka N, et al. Effect of a small molecule inhibitor of nuclear factor-κB nuclear translocation in a murine model of arthritis and cultured human synovial cells. Arthritis Res Ther, 2005, 7(6): 1348–1359
    15 Baharav E, Mor F, Halpern M, et al. Lactobacillus GG bacteriaameliorate arthritis in Lewis rats. J Nutr, 2004,134(8):1964~1969
    16 Tjaima W, Van Marck E, Weyler J, et al. Quantification and prognostic relevance of angiogenic parameters in invasive cervical cancer. Br J Cancer, 1998,78:170~174
    17 Zhou J, Xiao C, Zhao L, et al. The effect of triptolide on CD4+ and CD8+ cells in Peyer's patch of SD rats with collagen induced arthritis. Int Immunopharmacol, 2006 ,6(2):198~203
    18 周强, 吕厚山, 栗占国。胶原诱导的关节炎动物模型研究现况及进展。中华风湿病学杂志,2003,4:227~231
    19 Sahin M, Bernay I, Basoglu T, et al .Comparison of Tc-99m MDP, Tc-99m HSA and Tc-99m HIG uptake in rheumatoid arthritis and its variants. Ann Nucl Med, 1999 ,13(6):389~395
    20 Guermazi A, Taouli B, Lynch JA, et al. Imaging of bone erosion in rheumatoid arthritis. Semin Musculoskelet Radiol,2004 ,8(4):269~285
    21 Medicherla S, Ma JY, Mangadu R,et al. A Selective p38 alpha mitogen-activated protein kinase inhibitor reverses cartilage and bone destruction in mice with collagen-induced arthritis. J Pharmacol Exp Ther,2006, 318(1):132~141
    22 Rajkumar SV, Witzig TE. A review of angiogenesis and antiangiogenic therapy with thalidomide in multiple myeloma. Cancer Treat Rev, 2000,26(5):351~362
    23 Yabu T, Tomimoto H, Taguchi Y, et al. Thalidomide-induced antiangiogenic action is mediated by ceramide through depletion of VEGF receptors, and is antagonized by sphingosine-1-phosphate. Blood, 2005,1: 125~134
    24 Ferrara N. Role of vascular endothelial growth factor in regulation of physiological angiogenesis. Am J Physiol Cell Physiol, 2001,280 (57) 1358~1366
    25 Kasama T, Kobayashi K, Yajima N, et al. Expression of vascular endothelial growth factor by synovial fluid neutrophils in rheumatoidarthritis(RA). Clin Exp Immunol, 2000,121(13):533~538
    26 Hollander AP, Corke KP, Freemont AJ, et al. Expression of hypoxia-inducible factor 1 alpha by macrophages in the rheumatoid synovium: Implications for targeting of therapeutic genes to the inflamed joint. Arthritis Rheum, 2001,44(11):1540~1544
    27 Pfander D, Kortje D, Zimmermann R, et al. vascular endothelial growth factor in articular cartilage of healthy and osteoarthritic human knee joints. Ann Rheum Dis, 2001,60:1070~1073
    28 Lee SS,Joo YS, Kim WU, et al.Vascular endothelial growth factor levels in the serum and synovial fluid of patients with theumatoid arthritis. Clin Exp Rheumatol, 2001,19(3):321~324
    29 Taylor PC. Serum vascular markers and vascular imaging in assessment of rheumatoid arthritis disease activity and response to therapy. Rheumatology, 2005,44(6):721~728
    30 Hitchon C, Wong K, Reed J, et al. Hypoxia-induced production of stromal cell derived factor(CXCL12) and vascular endothelial growth factor by synovial fibroblasts. Arthritis Rheum, 2002,46(10):2587~2597
    31 Cha HS, Bae EK, Koh JH, et al. Tumor necrosis factor-alpha induces vascular endothelial growth factor-C expression in rheumatoid synoviocytes. , 2007,34(1):16~19
    32 Cho ML, Jung YO, Moon YM, et al. Interleukin-18 induces the production of vascular endothelial growth factor (VEGF) in rheumatoid arthritis synovial fibroblasts via AP-1-dependent pathways. , 2006, 15:159~166
    33 Hong KH, Cho ML, Min SY, et al. Effect of interleukin-4 on vascular endothelial growth factor production in rheumatoid synovial fibroblasts. Clin Exp Immunol, 2007,147(3):573~579
    34 Tsumuki H, Hasunuma T, Kobata T, et al. Basic FGF-induced activation of telomerase in rheumatoid synoviocytes. Rheumatol Int, 2000,19:123~128
    35 Matsumoto Y, Tanaka K, Hirata G, et al. Possible involvement of the vascular endothelial growth factor-flt-1-focal adhesion kinase pathway in chemotaxis and the cell proliferation of osteoclast precursor cells in arthritis joints. J Immunol, 2002,168:5824~5831
    36 Koch AE. Angiogenesis as a target in rheumatoid arthritis. Annals Rheum Dis, 2003,62:60~67
    37 Szekanecz Z, Gaspar L, Koch AE.Angiogenesis in rheumatoid arthritis. Front Biosci, 2005,10:1739~1753
    38 Afuwape AO, Paleolog EM. Modulation of angiogenesis is effective in a model of rheumatoid arthritis. J Anat, 2002,200(5): 531
    39 Lainer DT, Brahn E. New antiangiogenic strategies for the treatment of proliferative synovitis. Expert Opin Investig Drugs, 2005,14(1):1~17
    40 McBride WG. Thalidomide embryopathy. Teratology, 1977,16: 79~82
    41 D'Amato RJ, Loughnan MS. Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci U S A. 1994,91: 4082~4085
    42 Keifer JA, Guttridge DC, Ashburner BP, et al. Inhibition of NF-kappa B activity by thalidomide through suppression of IkappaB kinase activity. J Biol Chem, 2001,276: 22382~22387
    43 Du W, Hattori Y, Hashiguchi A, et al.Tumor angiogenesis in the bone marrow of multiple myeloma patients and its alteration by thalidomide treatment. Pathol Int. 2004,54(5):285~294
    44 Li X, Liu X, Wang J, et al. Thalidomide down-regulates the expression of VEGF and bFGF in cisplatin-resistant human lung carcinoma cells. Anticancer Res, 2003,23: 2481~2487
    45 Du GJ, Lin HH, Xu QT, et al. Thalidomide inhibits growth of tumors through COX-2 degradation independent of antiangiogenesisVascul Pharmacol, 2005,43(2):112~119
    46 Moller, DR, Wysocka M, Greenlee BM, et al. Inhibition of IL-12 production by thalidomide. J. Immunol, 1997,159:5157~5161
    47 Rowland TL, McHugh SM.Differential regulation by thalidomide and dexamethasone of cytokine expression in human peripheral blood mononuclear cells. Immunopharmacology, 1998,40:11~20
    48 Haslett, PA, Corral LG, Albert M, et al. Thalidomide costimulates primary human T lymphocytes, preferentially inducing proliferation, cytokine production, and cytotoxic responses in the CD8+ subset. J. Exp. Med,1998,187:1885~1892
    49 Dunzendorfer S, Schratzberger P, Reinisch N, et al. Effects of thalidomide on neutrophil respiratory burst, chemotaxis and transmigration of cytokine- and endotoxin-activated endothelium. Naunyn Schmiedeberg’s Arch. Pharmacol, 1997,356:529~535
    50 Mohty M, Stoppa AM, Blaise D, et al.. Differential regulation of dendritic cell function by the immunomodulatory drug thalidomide. J. Leukocyte Biol, 2002,72:939~945
    51 Lehman TJ, Schechter SJ, Sundel RP, et al. Thalidomide for severe systemic onset juvenile rheumatoid arthritis: A multicenter studyJ Pediatr, 2004 ,145(6):856~857
    52 Oliver SJ, Cheng TP. The effect of thalidomide and 2 analogs on collagen induced arthritis. J Rheumatol, 1998,25(5):964~969
    53 Oliver SJ, Freeman SL, Corral LG, et al. Thalidomide analogue CC1069 inhibits development of rat adjuvant arthritis.Clin Exp Immunol, 1999 ,118(2):315~321
    54 Settles B, Stevenson A, Wilson K, et al.Down-regulation of cell adhesion molecules LFA-1 and ICAM-1 after in vitro treatment with the anti-TNF-alpha agent thalidomide.Cell Mol Biol (Noisy-le-grand), 2001,47(7):1105~1114
    55 Combe B. Thalidomide: new indications? Joint Bone Spine, 2001,68(6):582~587
    56 Shankar S, Handa R. Biological agents in rheumatoid arthritis. , 2004,50(4):293~299
    1 Bauer S, Jendro MC, Wadle A. Fibroblast activation protein is expressed by rheumatoid myofibroblast-like synoviocytes. Arthritis Res Ther, 2006,8(6):R171
    2 Firestein GS: Invasive fibroblast-like synoviocytes in rheumatoid arthritis. Passive responders or transformed aggressors? Arthritis Rheum, 1996, 39:1781~1790
    3 Pap T, van der Laan WH, Aupperle KR, et al. Modulation of fibroblast-mediated cartilage degradation by articular chondrocytes in rheumatoid arthritis. Arthritis Rheum, 2000, 43:2531~2536
    4 Pap T, Muller lander H, Gay RE, et al. Fibroblast biology: role of synovial fibroblasts in the pathogenesis of rheumatoid arthritis. Arthritis Res, 2000, 2:361~367
    5 Firestein GS. Invasive fibroblast-like synoviocytes in rheumatoid arthritis. Passive responders or transformed aggressors? Arthritis Rheum, 1996,39:1781~1790
    6 Georganas C, Liu H, Perlman H, et al. Regulation of IL-6 and IL-8 expression in rheumatoid arthritis synovial fibroblasts: the dominantrole for NF-κB but not C/EBP β or c-Jun. J Immunol, 2000,165:7199~7206
    7 Nanki T, Nagasaka K, Hayashida K, et al. Chemokines regulate IL-6 and IL-8 production by fibroblast-like synoviocytes from patients with rheumatoid arthritis. J Immunol, 2001,167:5381~5385
    8 Jung YO, Moon YM. Interleukin-18 induces the production of vascular endothelial growth factor (VEGF) in rheumatoid arthritis synovial fibroblasts via AP-1-dependent pathways. Immunol Lett, 2006,103(2):159~166
    9 Akahoshi T, Wada C, Endo H, et al . Expression of monocyte chemotactic and activating factor in rheumatoid arthritis. Regulation of its production in synovial cells by interleukin-1 and tumor necrosis factor. Arthritis Rheum, 1993,36:762~771
    10 Volin MV, Shah MR, Tokuhira M, et al. RANTES expression and contribution to monocyte chemotaxis in arthritis. Clin Immunol Immunopathol, 1998,89:44~53
    11 Hamilton JA, Piccoli DS, Cebon J, et al. Cytokine regulation of colony-stimulating factor (CSF) production in cultured human synovial fibroblasts. II. Similarities and differences in the control of interleukin-1 induction of granulocyte-macrophage CSF and granulocyte-CSF production. Blood, 1992,79:1413~1419
    12 Jackson JR, Minton JA, Ho ML, et al. Expression of vascular endothelial growth factor in synovial fibroblasts is induced by hypoxia and interleukin 1beta. J Rheumatol, 1997,24:1253~1259
    13 Yao Z, Li P, Zhang Q, et al.Tumor necrosis factor-alpha increases circulating osteoclast precursor numbers by promoting their proliferation and differentiation in the bone marrow through up-regulation of c-Fms expression J Biol Chem, 2006,281(17):11846~11855
    14 Paleolog EM. Angiogenesis: a critical process in the pathogenesis of RA: a role for VEGF? Br J Rheumatol, 1996,35:917~919
    15 Kasama T, Shiozawa F, Kobayashi K, et al. Vascular endothelial growth factor expression by activated synovial leukocytes in rheumatoid arthritis: critical involvement of the interaction with synovial fibroblasts. Arthritis Rheum, 2001,44:2512~2524
    16 王斌,陈敏珠,徐叔云。大鼠滑膜细胞的分离和培养。中国药理学通报。1994,10(1):73~74
    17 薛庆善。《体外培养的原理与技术》,科学出版社,第 1 版,北京。2001:492~494。
    18 Edwards JCW. Fibroblast biology: development and differentiation of synovial fibroblasts in arthritis. Arthritis Res, 2002, 2:344~347
    19 Carol AS. Properties of synovial cells in culture. J Exp Med,1972,134(3):306~312
    20 Alvaro-Gracia JM, Yu C, Zvaifler NJ, et al. Mutual antagonism between interferon-γ and tumor necrosis factor-α on fibroblast-like synoviocytes: paradoxical induction of IFN-γ and TNF-α receptor expression. J Clin Immunol, 1993,13:212–218
    21 Jia HY, Jezequal S, Lohr M. Peptides encoded by Exon6 of VEGF inhibit endothelial cell biological response and angiogenesis induced by VEGF. Biochem Biophy Res Commun, 2001,283(1);164~173
    22 Cha HS, Bae EK, Koh JH, et al. Tumor necrosis factor-alpha induces vascular endothelial growth factor-C expression in rheumatoid synoviocytes, 2007,34(1):16~19
    23 Hong KH, Cho ML, Min SY, et al. Effect of interleukin-4 on vascular endothelial growth factor production in rheumatoid synovial fibroblasts. , 2007,147(3):573~579
    24 Cho ML, Ju JH, Kim HR, et al. Toll-like receptor 2 ligand mediates the upregulation of angiogenic factor, vascular endothelial growth factor and interleukin-8/CXCL8 in human rheumatoid synovial fibroblasts. Immunol Lett. 2007, 108(2):121~128
    25 Cho ML, Jung YO, Moon YM, et al. Interleukin-18 induces the production of vascular endothelial growth factor (VEGF) inrheumatoid arthritis synovial fibroblasts via AP-1-dependent pathways. Immunol Lett, 2006,103(2):159~166
    26 Honorati MC, Neri S,Cattini L, et al. Interleukin-17, a regulator of angiogenic factor release by synovial fibroblasts Osteoarthritis Cartilage. 2006,14(4):345~352
    27 Cho CS, Cho ML, Min SY, et al. CD40 engagement on synovial fibroblast up-regulates production of vascular endothelial growth factor. J Immuno, 2000,164(10):5055~5061
    28 Kasama T, Shiozawa F, Kobayashi K, et al. Vascular endothelial growth factor expression by activated synovial leukocytes in rheumatoid arthritis: critical involvement of the interaction with synovial fibroblasts Arthritis Rheum, 2001,44(11):2512~2524
    29 陆华中,李崇渔,邹萍。TNF-α 与 TNF 受体超家族介导的信号传导。国外医学分子生物学分册。1997,19:105~109
    30 Papadaki HA, Heraklis D. Anemia of chronic disease in rheumatoid arthritis is associated with increased apoptosis of bone marrow erythroid cells: improvement following anti-tumor necrosis factor- antibody therapy. Blood, 2002, 100: 474 ~ 482
    31 Nagashima M, Yoshino S, Aono H, et al. Inhibitory effects of anti-rheumatic drugs on vascular endothelial growth factor in cultured rheumatoid synovial cells. Clin Exp Immunol, 1999,116(2):360~365
    32 Davis LS. A question of transformation: the synovial fibroblast in rheumatoid arthritis. Am J Pathol , 2003,162(5):1399~1402
    33 Ostergaard M, Ejbjerg B, Stoltenberg M, et al. Quantitative magnetic resonance imaging as a marker of synovial membrane regeneration and recurrence of synovitis after arthroscopic knee joint synovectomy: a one year follow up study. Ann Rheum Dis, 2001, 60:233~236
    34 Highton J, Hessian PA, Kean A, et al. Cell death by apoptosis is a feature of the rheumatoid nodule. Ann Rheum Dis, 2003, 62:77~80
    35 Taniguchi K, Kohsaka H, Inoue N, et al. Induction of the p16INK4a senescence gene as a new therapeutic strategy for the treatment of rheumatoid arthritis. Nat Med, 1999, 5:760~767
    36 Pap T, Franz JK, Hummel KM, et al. Activation of synovial fibroblasts in rheumatoid arthritis: lack of expression of the tumor suppressor PTEN at sites of invasive growth and destruction. Arthritis Res, 2000, 2:59~65
    37 Di Cristofano A, Kotsi P, Peng YF, et al. Impaired Fas response and autoimmunity in Pten+/- mice. Science, 1999, 285:2122~2125
    38 Franz JK, Pap T, Hummel KM, et al. Expression of sentrin, a novel anti-apoptotic molecule at sites of synovial invasion in rheumatoid arthritis. Arthritis Rheum, 2000, 43:599~607
    39 Fujii K, Fujii Y, Hubscher S, et al. CD44 is the physiological trigger of fas up-regulation on rheumatoid synovial cells. J Immunol, 2001, 167:1198~1203
    40 Ohshima S, Mima T, Sasai M, et al. Tumour necrosis factor alpha (TNF- ) interferes with fas-mediated apoptotic cell death on rheumatoid arthritis (RA) synovial cells: a possible mechanism of rheumatoid synovial hyperplasia and a clinical benefit of anti-TNF- therapy for RA. Cytokine, 2000, 12:281~288
    41 Ospelt C, Neidhart M, Gay RE. Synovial activation in rheumatoid arthritis. Front Biosci, 2004,9:2323~2334
    42 Vermes I, Haanen C, Steffens-Nakken H, et al. A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptosis cells using fluorescein labeled Annexin v.J Immunol Methods,1995,184:39
    43 Oreira, AL, Sampaio EP, Zmuidzinas A, et al. Thalidomide exerts its inhibitory action on tumor necrosis factor by enhancing mRNA degradation. J. Exp. Med, 1993,177:1675~1680
    44 Lainer DT, Brahn E. New antiangiogenic strategies for the treatment of proliferative synovitis , 2005,14(1):1~17
    45 D’Amato RJ, Loughnan MS, Flynn E, et al. Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA, 1994, 91:4082~4085
    46 Moutsopoulos NM, Angelov N, Sankar V, et al. Immunological conesquences of thalidomide treatment in Sjogren's syndrome, 2006,65(1):112~114
    47 Gockel HR, Lugering A, Heidemann J, et al. Thalidomide induces apoptosis in human monocytes by using a cytochrome c-dependent pathway. J Immunol, 2004,172(8):5103~5109
    48 Li X, Liu X, Wang J, et al. Thalidomide down-regulates the expression of VEGF and bFGF in cisplatin-resistant human lung carcinoma cells. Anticancer Res, 2003,23:2481~2487
    49 刘巧红,沈凌汛,滕云等。甲氨蝶呤对类风湿关节炎滑膜细胞增生及细胞周期的影响。中华风湿病学杂志,2004,8(4):223~226
    50 Cutolo M, Sulli A, Pizzorni C, et al. Anti-inflammatory mechanisms of methotrexate in rheumatoid arthritis. Ann Rheum Dis, 2001,60(8):729~735
    51 Genestier L, Paillot R, Fournel S, et al.Immunosuppressive properties of methotrexate: apoptosis and clonal deletion of activated peripheral T cells. J Clin Invest, 1998,120(2):322~328
    52 De Lathouder S, Gerards AH, De Groot ER,et al. Mycophenolic acid and methotrexate inhibit lymphocyte cytokine production via different mechanisms. Eur Cytokine netw, 2002, 13(3):317~323
    1 Theurl I, Mattle V, Seifert M, et al. Dysregulated monocyte iron homeostasis and erythropoietin formation in patients with anemia of chronic disease. Blood, 2006,15:4142~4148
    2 Choy EH, Panayi GS. Cytokine pathways and joint inflammation in rheumatoid arthritis. N Engl J Med,2001,344:907~916
    3 Papadaki HA, Heraklis D. Anemia of chronic disease in rheumatoid arthritis is associated with increased apoptosis of bone marrow erythroid cells: improvement following anti-tumor necrosis factor- antibody therapy. Blood, 2002, 100: 474 ~ 482
    4 Asai F, Oshima T. Recombinant human erythropoietin, but not iron supplementation, improves anemia in rats with adjuvant-induced arthritis. Jpn J Pharmacol, 1991,57(3):291~298
    5 Carbonell MT, Saiz MP, Marti MT, et al. Iron mobilization in three animal models of inflammation. Rev Esp Fisiol, 1989,45(2):163~170
    6 Huang F, Gu J, Zhou W, et al. A one year open Label trail ofthalidomide in ankylosing spondylitis. Arthritis Rheum, 2002,47:249~254
    7 Keesal N, Wasserman l. Thalidomide in the treatment of refractory rheumatoid arthritis. J Rheumatol, 1999, 26(11):2344~2347
    8 Baughman RP, Judson MA, Teirstein AS, et al. Thalidomide for chronic sarcoidosis. Chest, 2002, 122(1):227~232
    9 王强,廖清奎,董巍。实用儿科临床杂志,2002,第 17 卷,第 6期:633~634
    10 Autoimmunity to type II Collagen: An experimental model of arthritis. Trentham DE, Townes AS, Kang AH, et al. The Journal of experiment medicine, 1977,(146): 857~868
    11 Wakamatsu K, Nanki T, Miyasaka N, et al. Effect of a small molecule inhibitor of nuclear factor-κB nuclear translocation in a murine model of arthritis and cultured human synovial cells. Arthritis Res Ther, 2005, 7(6): 1348~1359
    12 Vreugdenhil G, Swaak AJ. Anemia in rheumatoid arthritis: diagnosis and treatment. Rheumatol Int,1990,9:243~257
    13 Baer AN, Dessypris EN, Krantz SB. The pathpgenesis of anemia in rheumatoid arthritis: a clinical and laboratory analysis. Semin Arthritis Rheum, 1990,14:209~223
    14 Lukens, JN. Control of erythropoiesis in rats with adjuvant-induced chronic inflammation. Blood,1973,41(1):37~44
    15 Peeters HR, Jongen-Lavrencic M, Bakker CH, and et al. Recombinant human erythropoietin improves health-related quality of life in patients with rheumatoid arthritis and anaemia of chronic disease; utility measures correlate strongly with disease activity measures. Rheumatol Int, 1999,18:201~206
    16 Schreiber S, Howaldt S, Schnoor M, and et al. Recombinant erythropoietin for the treatment of anemia in inflammatory bowel disease. N Engl J Med, 1996,334:619~623
    17 Giannouli S, Voulgarelis M, Ziakas PD, and et al. Anaemia insystemic lupus erythematosus: from pathophysiology to clinical assessment. Ann Rheum Dis, 2006,65(2):144~148
    18 Igor Theurl, Verena Mattle, Markus Seifert, et al. Dysregulated monocyte iron homeostasis and erythropoietin formation in patients with anemia of chronic disease. Blood, 2006,(10):4142~4148
    19 Faquin WC. Effect of inflammatoty cytokines on hypoxia-induced erythropoietin production. Blood, 1992,79:1987~1994
    20 Jelkmann W, Pagel H, Wolff M, et al. Monokines inhibiting erythropoietin production in human hepatoma cultures and in isolated perfused rat kidneys. Life Sci, 1992,50:301~308
    21 Schooley JC, Kullgren B, Allison AC. Inhibition by interleukin-1 of the action of erythropoietin on erythroid precursors and its possible role in the pathogenesis of hypoplastic anaemias. Br J Haematol, 1987,67:11~17
    22 Means RT Jr, Krantz SB. Inhibition of human erythroid colony-forming units by gamma interferon can be corrected by recombinant human erythropoietin. Blood, 1991,78:2564~2567
    23 Ganz T. Hepcidin: a regulator of intestinal iron absorption and iron recycling by macrophages. Best Pract Res Clin Haematol, 2005,18: 171~182.
    24 Nicolas G, Chauvet C, Viatte L, et al. The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. J Clin Invest, 2002,110: 1037~1044
    25 Nemeth E, Rivera S, Gabayan V, et al. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Invest, 2004,113: 1271~1276
    26 Means RT and Krantz SB. Progress in understanding the pathogenesis of the anemia of chronic disease. Blood, 1992, 80: 1639 ~ 1647
    27 Vreugdenhil G, Lowenberg B, Van Eijk HG, et al. Tumor necrosis factor alpha is associated with disease activity and the degree ofanemia in patients with rheumatoid arthritis. Eur J Clin Invest, 1992,22:488~493
    29 Alvarez-Hernandez X, Liceaga J, McKay IC, et al. Induction of hypoferremia and modulation of macrophage iron metabolism by tumor necrosis factor. Lab Invest, 1989,61:319~322
    30 29. Johnson RA, Waddelow TA, Caro J, et al. Chronic exposure to tumor necrosis factor in vivo preferentially inhibits erythropoiesis in nude mice. Blood, 1989,74:130~138
    31 Laftah AH, Sharma N, Brookes MJ, et al. Tumour necrosis factor alpha causes hypoferraemia and reduced intestinal iron absorption in mice.Biochem J, 2006,397(1):61~67
    32 Arosio P, Levi S. Ferritin, iron homeostasis, and oxidative damage. Free Radic Biol Med, 2002,33:457~463
    33 Davis D, Charles PJ, Potter A, et al. Anaemia of chronic disease in rheumatoid arthritis: in vivo effects of tumour necrosis factor alpha blockade. Br J Rheumatol, 1997,36:950~956
    34 Papadaki HA, Heraklis D. Bone marrow progenitor cell reserve and function and stromal cell function are defective in rheumatoid arthritis: evidence for a tumor necrosis factor alpha-mediated effect .Blood, 2002, 99: 1610 ~ 1619
    35 Taniguchi S, Dai CH, Price JO, et al. Interferon gamma downregulates stem cell factor and erythropoietin receptors but not insulin-like growth factors-1 receptors in human erythroid colony-forming cells. Blood, 1997,90:2244~2452
    36 Dai CH, Price JO. Fas ligand is present in human erythroid colony-forming cells and interacts with Fas induced by interferon to produce erythroid cell apoptosis. Blood, 1998,91:1235~1242
    37 Nicolas G, Chauvet C, Viatte L, et al. The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. J Clin Invest, 2002,110: 1037~1044
    38 Nemeth E, Rivera S, Gabayan V, et al. IL-6 mediates hypoferremiaof inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Invest, 2004,113: 1271~1276
    39 Graversen JH, Madsen M, Moestrup SK. CD163: a signal receptor scavenging haptoglobin-hemoglobin complexes from plasma. Int J Biochem Cell Biol, 2002,34: 309~314
    40 Tilg H, Ulmer H, Kaser A, et al. Role of IL-10 for induction of anemia during inflammation. J Immunol, 2002,169: 2204~2209
    41 Stockenhuber F, Keil M, Wurning D, et al. Impaired erythropoietin responsiveness in anemic rheumatoid arthritis patients: potential relation to immune mechanisms. Clin Sci Colch, 1994, 86:633~638
    42 Kato Y, Takagi C, Tanaka J, et al. Effect of daily subcutaneous administration of recombinant erythropoietin on chronic anemia in rheumatoid arthritis. Intern Med, 1994, 33:193~197
    43 Faquin WC, S. Effect of inflammatory cytokines on hypoxia-induced erythropoietin production. Blood, 1992,79: 1987~1994
    44 Jelkmann W. Proinflammatory cytokines lowering erythropoietin production. J Interferon Cytokine Res, 1998,18: 555~559
    45 Spivak JL. The in vivo metabolism of recombinant human erythropoietin. Contrib Nephrol, 1989,76: 67~75
    46 Perri AJ 3rd, Hsu S. A review of thalidomide's history and current dermatological applications, 2003, 9(3):5
    47 Suvannasankha A, Fausel C, Juliar BE, et al. Final report of toxicity and efficacy of a phase II study of oral cyclophosphamide, thalidomide, and prednisone for patients with relapsed or refractory multiple myeloma: A Hoosier Oncology Group Trial, HEM01-21.Oncologist, 2007,12(1):99~106
    48 Stirling DI. Pharmacology of thalidomide. Semin Hematol, 2000,37:5~14
    49 Raza A, Meyer P, Dutt D, Thalidomide produces transfusion independence in long-standing refractory anemias of patients with myelodysplastic syndromes.Blood, 2001, 98: 958 ~ 965
    1 Papadaki HA, Kritikos HD, Gemetzi C, et al. Bone marrow progenitor cell reserve and stromal cell function are defective in rheumatoid arthritis: Evidence for a tumor necrosis factor alpha-mediated effect. Blood, 2002,99:1610~1619
    2 Papadaki HA, Kritikos HD, Valatas V, et al. Anemia of chronic disease in rheumatoid arthritis is associated with increased apoptosis of bone marrow erythroid cells: improvement following anti-tumor necrosis factor alpha antibody therapy. Blood, 2002,100:474~482
    3 Kitagawa M, Saito I, Kuwata T, et al. Overexpression of tumor necrosis factor(TNF)-alpha and interferon(IFN)-gamma by bone marrows cells from patients with with myelodysplastic syndromes. Leukemia, 1997,11:2049~2054
    4 Allampallam K, Shetty V, Hussaini S, et al. Measurement of mRNA expression for a variety of cytokines and its receptors in bone marrows of patients with myelodysplastic syndromes. Anticancer Res.1999,19:5323~5328
    5 Raza A, Qawi H, Lisak L, et al. Patients with myelodysplastic syndromes benefit from palliative therapy with amifostine, pentoxifylline, and ciprofloxacin with or without dexamethasone. Blood, 2000, 95:1580~1587
    6 Raza A. Anti-TNF therapies in rheumatoid arthritis. Crohn’s disease, sepsis, and myelodysplastic syndromes. Microsc Res Tech.2000,50:229~235
    7 Klausner J D, Freedman VH, Kaplan G. Thalidomide as an anti-TNF-α inhibitor: implications for clinical use. Clin Immunol Immunopathol. 1996,81:219~223
    8 Ching L-M, Browne WL, Tchernegovski R, et al. Interaction of thalidomide, phthalimide analogues of thalidomide and pentoxifylline with the anti-tumor agent 5,6-dimethylxanthenone-4-acetic acid: concomitant reduction of serum tumor necrosis factor-alpha and enhancement of anti-tumor activity. Br J Cancer,1998,78:336~343
    9 Raza A,Meyer P, Dutt D, et al. Thalidomide produces transfusion independence in long-standing refractory anemias of patients with myelodysplastic syndromes. Blood, 2001,98:958~965
    10 李家增,王鸿利,韩忠朝主编。实验血液学。上海:上海科学技术出版社,1997:118~124, 627~628
    11 薛庆善主编。《体外培养的原理与技术》。第一版,北京:科学出版社,2001:492~494
    12 De Maria R, Testa U, Luchetti L, et al. Apoptotic role of Fas/Fas ligand system in the regulation of erythropoiesis. Blood, 1998,93:796~803
    13 Nakagawa S, Toritsuka Y, Wakitani S, et al. Bone marrow stromal cells contribute to synovial cell proliferation in rats with collagen induced arthritis. J Rheumatol, 1996,23:2098~2103
    14 Tomita T, Shimaoka Y, Kashiwagi N, et al. Enhanced expression of CD14 antigen on myeloid lineage cells derived from the bone marrow of patients with severe rheumatoid arthritis. J Rheumatol, 1997,24:465~469
    15 Sen M, Lauterbach K, El-Gabalawy H, et al. Expression and function of wingless and frizzled homologs in rheumatoid arthritis. Proc Natl Acad Sci U S A, 2000,97:2791~2796
    16 Santiago-Schwarz F, Sullivan C, Rappa D, et al. Distinct alterations in lineage committed progenitor cells exist in the peripheral blood of patients with rheumatoid arthritis and primary Sjogren's syndrome. J Rheumatol, 1996,23:439~446
    17 Tomita T, Takeuchi E, Toyosaki~Maeda T, et al. Establishment of nurse-like stromal cells from bone marrow of patients with rheumatoid arthritis: indication of characteristic bone marrowmicroenvironment in patients with rheumatoid arthritis. Rheumatology, 1999,38:854~863
    18 Berthelot JM, Bataille R, Maugars Y, et al. Rheumatoid arthritis as a bone marrow disorder. Semin Arthritis Rheum, 1996,26:505~514
    19 Ikehara S. Autoimmune diseases as stem cell disorders: normal stem cell transplant for their treatment. Int J Mol Med. 1998;1:5~16
    20 Tomita T, Takeuchi E, Toyosaki-Maeda T, et al. Establishment of nurse-like stromal cells from bone marrow of patients with rheumatoid arthritis: indication of characteristic bone marrow microenvironment in patients with rheumatoid arthritis. Rheumatology, 1999,38:854~863
    21 Takeuchi E, Tomita T, Toyosaki-Maeda T, et al. Establishment and characterization of nurse-like stromal cell lines from synovial tissues of patients with rheumatoid arthritis. Arthritis Rheum, 1999,42:221~228
    22 Jongen-Lavrencic M, Peeters HR, Wognum A, et al. Elevated levels of inflammatory cytokines in bone marrow of patients with rheumatoid arthritis and anemia of chronic disease. J Rheumatol, 1997,24:1504~1509
    23 Means RT, Krantz SB. Progress in understanding the pathogenesis of the anemia of chronic disease. Blood, 1992,80:1639~1647
    24 Alvarez-Hernandez X, Liceaga J, McKay IC, Brock JH. Induction of hypoferremia and modulation of macrophage iron metabolism by tumor necrosis factor. Lab Invest, 1989,61:319~322
    25 Rusten LS, Jacobsen SE. Tumor necrosis factor (TNF)-alpha directly inhibits human erythropoiesis in vitro: role of p55 and p75 TNF receptors. Blood, 1995,85:989~996
    26 Means RT, Krantz SB. Inhibition of human erythroid colony-forming units by tumor necrosis factor requires beta interferon. J Clin Invest, 1993, 91:416~419
    27 Katevas P, Andonopoulos AP, Kourakli-Symeonidis A, et al. Peripheral blood mononuclear cells from patients with rheumatoid arthritis suppress erythropoiesis in vitro via the production of tumor necrosis factor alpha. Eur J Haematol, 1994,53:26~30
    28 Voulgari PV, Kolios G, Papadopoulos GK, et al. Role of cytokines in the pathogenesis of anemia of chronic disease in rheumatoid arthritis. Clin Immunol, 1999,92:153~160
    29 Davis D, Charles PJ, Potter A, et al. Anaemia of chronic disease in rheumatoid arthritis: in vivo effects of tumour necrosis factor alpha blockade. Br J Rheumatol,1997,36:950~956
    30 Papadaki HA, Kritikos HD, Gemetzi C, et al. Bone marrow progenitor cell reserve and function and stromal cell function are defective in rheumatoid arthritis: evidence for a tumor necrosis factor alpha (TNF-)-mediated effect. Blood, 2002,99:1610~1619
    31 Efstathiou E, Troncoso P, Wen S, et al.. Initial modulation of the tumor microenvironment accounts for thalidomide activity in prostate cancer. Clin Cancer Res, 2007,13(4):1224~1231
    32 Moehler TM, Hillengass J, Glasmacher A, et al. Thalidomide in multiple myeloma.Curr Pharm Biotechnol, 2006,7(6):431~40
    33 Moutsopoulos NM, Angelov N, Sankar V, et al. Immunological consequences of thalidomide treatment in Sjogren's syndrome. Ann Rheum Dis, 2006,65(1):112~114
    34 Kishi Y, Oki Y,Machida U. Thalidomide in multiple myeloma. N Engl J Med, 2000,342:975~976
    35 Blau CA, Neff T, Papayannopoulou T, et al. The hematological effects of folate analogs: implications for using the dihydrofolate reductase gene for in vivo selection. Hum Gene Ther, 1996,7:2069~2078
    1 Firestein G.S. Evolving concepts of rheumatoid arthritis. Nature, 2003, 423:356~361
    2 Vreugdenhil G, Swaak AJ. Anemia in rheumatoid arthritis: diagnosis and treatment. Rheumatol Int, 1990,9:243~257
    3 Baer AN, Dessypris EN, Krantz SB. The pathpgenesis of anemia in rheumatoid arthritis: a clinical and laboratory analysis. Semin Arthritis Rheum, 1990,14:209~223
    4 Wilson A, Yu HT, Goodnough LT, et al. Prevalence and outcomes of anemia in rheumatoid arthritis: a systematic review of the literature. Am J Med, 2004, 116: S50~57
    5 Mowat AG. Hematologic abnormalities in rheumatoid arthritis. Semin Arthritis Rheum, 1971,1:195~219
    6 Kivivuori SM, Pelkonen P, Ylijoki H ,et al. Elevated serum transferrin receptor concentration in children with juvenile chronic arthritis as evidence of iron deficiency. Rheumatology, 2000, 39: 193~197
    7 Nurmohamed MT, Soesan M, Van Oers MHJ, et al. Cyclosporin for sulphsalazine-induced aplastic anaemia in a patient with early theumatoid arthritis. Rheumatology, 2000, 39:1431~1433
    8 D'Alessandro G, Bianco MR, Politis S, et al. Case report: RAEB in a patient with rheumatoid arthritis treated with methotrexate and infliximab. Reumatismo, 2006, 58(1):59~61
    9 Balakrishnan C, Pathan E, Khodaiji S, et al. Myelodysplasia and acute myeloid leukaemia in a case of rheumatoid arthritis with secondary amyloidosis treated with chlorambucil. J Assoc Physicians India, 2004, 52:423~425
    10 Kuruvilla J, Leitch HA, Vickars LM, et al. Aplastic anemia following administration of a tumor necrosis factor-alpha inhibitor. Eur J Haematol, 2003, 71(5):396~398
    11 Yoshida K, Kurosaka D, Ozawa Y, et al. A case of rheumatoid arthritis associated with autoimmune hemolytic anemia due to weekly low-dosemethotrexate therapy, 2000, 40(4):693~698
    12 Kaur R, Kakkar N, Dhanoa J. Autoimmune haemolytic anaemia in a patient with rheumatoid arthritis--A rare associationJ Assoc Physicians India, 2006, 54:416~418
    13 Agarwal V, Sachdev A, Lehl S, et al. Unusual haematological alterations in rheumatoid arthritis.J Postgrad Med, 2004, 50(1):60~61
    14 Eberhard BA. Coexistent sickle cell disease and juvenile rheumatoid arthritis: 2 cases with delayed diagnosis and severe destructive arthropathy. J Rheumatol, 2002, 29(8):1802~1803
    15 Bowman SJ. Haematological manifestations of rheumatoid arthritis. Scand J Rheumatol ,2002,31:251~259
    16 Reuss-Borst MA. Rheumatic and hemato-/oncological disordersZ Rheumatol, 2005, 64(1):3~11
    17 Harris ED. Clinical features of rheumatoid arthritis. In: Kelley WN, Ruddy S, Haris ED, Sledge CB, eds. Textbook of Rheumatology. Philadelphia: WB. Saunders Company, 1998: 898~932
    18 Rose MG, Berliner N. T-cell large granular lymphocyte leukemia and related disordersOncologist, 2004, 9(3):247~258
    19 Eriksson M. Rheumatoid arthritis as a risk factor for multiple myeloma:a case-control study. Eur J cancer, 1993,29:259~263
    20 Matsumori A, Nishiya K, Chijiwa T, et al. Two cases of rheumatoid arthritis associated with IgA-l type multiple myeloma. Ryumachi, 2000,40:26~31
    21 Wolfe F, Michaud K. Anemia and renal function in patients with rheumatoid arthritisJ Rheumatol, 2006, 33(8):1467~1468
    22 22Vreugdenhil G, Swaak AJ. Anemia in rheumatoid arthritis: diagnosis and treatment. Rheumatol Int, 1990,9:243~257
    23 Mitlyng BL, Singh JA, Furne JK, et al. Use of breath carbon monoxide measurements to assess erythrocyte survival in subjects with chronic diseases.Am J Hematol, 2006,81(6):432~438
    24 Krantz SB, Faquin WC, Schneider TJ, et al. Effect of inflammatoryErythropoietin. Blood, 1991, 77:419~434
    25 Stockenhuber F, Keil M, Wurning D, et al. Impaired erythropoi-etin responsiveness in anemic rheumatoid arthritis patients: poten-tial relation to immune mechanisms. Clin Sci Colch, 1994, 86:633~638
    26 Igor Theurl, Verena Mattle, Markus Seifert , et al. Dysregulated monocyte iron homeostasis and erythropoietin formation in patients with anemia of chronic disease. Blood, 2006, 107, (10):4142~4148
    27 Jelkmann W. Proinflammatory cytokines lowering erythropoietin production. J Interferon Cytokine Res, 1998,18: 555~559
    28 Faquin WC, Schneider TJ, Goldberg MA. Effect of inflammatory cytokines on hypoxia-induced erythropoietin production. Blood, 1992, 79:1987~1994
    29 Schooley JC, Kullgren B, Allison AC. Inhibition by interleukin-1 of the action of erythropoietin on erythroid precursors and its possiblerole in the pathogenesis of hypoplastic anaemias. Br J Haematol, 1987, 67:11~17
    30 Lacombe C. Resistance to erythropoietin. N Engl J Med, 1996, 334:660~662
    31 Schreiber S, Howaldt S, Schnoor M, et al. Recombinant erythropoietin for the treatment of anemia in inflammatory bowel disease. N Engl J Med, 1996, 334:619~623
    32 Means RT, Krantz SB. Inhibition of human erythroid colony-forming units by g interferon can be corrected by recombinat human erythropoietin. Blood, 1991, 78:2564~2567
    33 Weiss G, Wachter H, Fuchs D. Linkage of cell-mediated immunity toiron metabolism. Immunol Today 1995, 16:495~500
    34 Weiss G, Werner-Felmayer G, Werner ER, et al. Iron regulates nitric oxide synthase activity by controlling nuclear transcription. J Exp Med, 1994, 180:969~976
    35 Farrell AJ, Blake DR. Nitric oxide. Ann Rheum Dis, 1996, 55:7-20
    36 Kolb H, Kolb~Bachofen V. Nitric oxide: a pathogenetic factor in.autoimmunity. Immunol Today, 1992, 13:157-160
    37 Melfors O, Hentze MW. Iron regulatory factor-the conductor of cellular iron regulation. Blood Rev, 1993, 7:251~258
    38 Bertero MT, Caligaris-Cappio F. Anemia of chronic disorders in systemic autoimmune diseases Haematologica, 1997, 82(3):375~381
    39 Wang Q, Liao QK. Effect of nitric oxide on iron metabolism in rats with anemia of chronic diseaseZhongguo Shi Yan Xue Ye Xue Za Zhi, 2003, 11(4):385~389
    40 Theurl I, Mattle V, Seifert M, et al. Dysregulated monocyte iron homeostasis and erythropoietin formation in patients with anemia of chronic disease. Blood, 2006, 107,(10):4142~4148
    41 Koury MJ. The anemia of hronic disease:TNF- α involvement in erythroid apoptosis. Blood, 2002, 100:373~374
    42 Jongen-Lavrencic M, Peeters HR, Wognum A, et al. Elevated levels of inflammatory cytokines in bone marrow of patients with rheumatoid arthritis and anemia of chronic disease. J Rheumatol, 1997,24:1504~1509
    43 Liu H, Pope RM. The role of apoptosis in rheumatoid arthritis.Curr Opin Pharmacol, 2003, 3(3):317~322
    44 Papadaki HA, Heraklis D. Anemia of chronic disease in rheumatoid arthritis is associated with increased apoptosis of bone marrow erythroid cells: improvement following anti-tumor necrosis factor- antibody therapy. Blood, 2002, 100: 474 ~ 482
    45 Voulgari PV, Kolios G, Papadopoulos GK, et al. Role of cytokines in the pathogenesis of anemia of chronic disease in rheumatoid arthritis. Clin Immunol, 1999, 92:153~160
    46 Papadaki HA, Kritikos HD, Gemetzi C, et al. Bone marrow progenitor cell reserve and stromal cell function are defective in rheumatoid arthritis: Evidence for a tumor necrosis factor alpha -mediated effect. Blood, 2002,99:1610~1619
    47 Koury MJ. The anemia of hronic disease: TNF-α involvement in erythroid apoptosis. Blood, 2002, 100:373~374
    48 Vreugdenhil G, Lowenberg B, Van Eijk HG, et al. Tumor necrosis factoralpha is associated with disease activity and the degree of anemia in patients with rheumatoid arthritis. Eur J Clin Invest, 1992, 22:488~493
    49 Davis D, Charles PJ, Potter A, et al. Anaemia of chronic disease in rheumatoid arthritis: in vivo effects of tumour necrosis factor alpha blockade. Br J Rheumatol, 1997, 36:950~956
    50 Glossop JR, Dawes PT, Hassell AB, et al. Anemia in rheumatoid arthritis: association with polymorphism in the tumor necrosis factor receptor I and II genesJ Rheumatol, 2005, 32(9):1673~1678
    51 Dinarello CA. Blocking IL-1 in systemic inflammationJ Exp Med. 2005, 201(9):1355~1359
    52 Johnson RA, Waddelow TA, Caro J, et al. Chronic exposure to tumor necrosis factor in vivo preferentially inhibits erythropoiesis in nude mice. Blood, 1989,74:130~138
    53 Laftah AH, Sharma N, Brookes MJ. Tumour necrosis factor alpha causes hypoferraemia and reduced intestinal iron absorption in mice. Biochem J, 2006, 397(1):61~67
    54 Arosio P, Levi S. Ferritin, iron homeostasis, and oxidative damage. Free Radic Biol Med, 2002,33:457~463
    55 Torti FM, Torti SV. Regulation of ferritin genes and protein. Blood, 2002, 99:3505~3516
    56 Cazzola M, Ponchio L, de Benedetti F, et al. Defective iron supply for erythropoiesis and adequate endogenous erythropoietin production in the anemia associated with systemic-onset juvenile chronic arthritis. Blood, 1996,87:4824~4830
    57 Atkins MB, Kappler K, Mier JW, et al. Interleukin-6-associated anemia: determination of the underlying mechanism. Blood, 1995,86:1288~1291
    58 Nicolas G, Chauvet C, Viatte L, et al. The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. J Clin Invest, 2002, 110: 1037~1044
    59 Nemeth E, Rivera S, Gabayan V, et al. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormonehepcidin. J Clin Invest, 2004, 113: 1271~1276
    60 Dai CH, Price JO, Brunner T, et al. Fas ligand is present in human erythroid colony-forming cells and interacts with Fas induced by interferon to produce erythroid cell apoptosis. Blood, 1998, 91:1235~1242
    61 Kullich W, Niksic F, Burmucic K, et al. Effects of the chemokine MIP-1alpha on anemia and inflammation in rheumatoid arthritisZ Rheumatol, 2002, 61(5):568~576
    62 Graversen JH, Madsen M, Moestrup SK. CD163: a signal receptor scavenging haptoglobin-hemoglobin complexes from plasma. Int J Biochem Cell Biol, 2002, 34: 309~314
    63 Tilg H, Ulmer H, Kaser A, et al. Role of IL-10 for induction of anemia during inflammation. J Immunol, 2002, 169: 2204~2209
    64 Ganz T. Hepcidin: a regulator of intestinal iron absorption and iron recycling by macrophages. Best Pract Res Clin Haematol, 2005,18: 171~182
    65 Oguz A, Uzunlulu M, Hekim N. Hepcidin is not a marker of chronic inflammation in atherosclerosisAnadolu Kardiyol Derg, 2006, 6(3):239~242
    66 Means RT and Krantz SB. Progress in understanding the pathogenesis of the anemia of chronic disease. Blood, 1992, 80: 1639 ~ 1647
    67 Baillie FJ, Morrison AE, Fergus I. Soluble transferrin receptor: a discriminating assay for iron deficiencyClin Lab Haematol, 2003, 25(6):353~357
    68 Coussons PJ, Baig S, Fanutti C, et al. Novel tissue remodelling roles for human recombinant erythropoietinBiochem Soc Trans, 2005, (5):1129~1130
    69 Agrawal S, Misra R, Aggarwal A. Anemia in rheumatoid arthritis: high prevalence of iron-deficiency anemia in Indian patients. Rheumatol Int, 2006, 26(12):1091~1095
    70 Cavill I, Auerbach M, Bailie GR, et al. Iron and the anaemia of chronic disease: a review and strategic recommendations. Curr Med Res Opin,2006, 22(4):731~737
    71 Eschbach JW. Iron requirements in erythropoietin therapyBest Pract Res Clin Haematol, 2005, 18(2):347~361
    72 Arndt U, Kaltwasser JP, Gottschalk R, et al.Correction of iron-deficient erythropoiesis in the treatment of anemia of chronic disease with recombinant human erythropoietinAnn Hematol, 2005, 84(3):159~166
    73 Kaltwasser JP, Kessler U, Gottschalk R, et al. Effect of recombinant human erythropoietin and intravenous iron on anemia and disease activity in rheumatoid arthritis. J Rheumatol, 2001, 28(11):2430~2436
    74 Lowenthal RM, Francis H, Gill DS. Twenty-year remission of rheumatoid arthritis in 2 patients after allogeneic bone marrow transplant. J Rheumatol, 2006, 33(4):812~813
    75 Demchuk MP, Smykodub OI. Treatment of anemia in rheumatoid arthritis with transplantation of hemopoietic stem cells from human embryonic liverLik Sprava, 2002, (2):59~63
    76 Burt RK, Barr W, Oyama Y, et al. Future strategies in hematopoietic stem cell transplantation for rheumatoid arthritis. J Rheumatol Suppl, 2001, 64:42~48
    1 Perri AJ, Hsu SA. Review of thalidomide's history and current dermatological applications. Dermatol Online J, 2003, 9(3):5
    2 Sheskin J. Thalidomide in lepra reaction. Int J Dermatol, 1975,14(8):575~576
    3 Zhong-Lin Zhang, Zhi-Su Liu, Quan Sun. Effects of thalidomide on angiogenesis and tumor growth and metastasis of human hepatocellular carcinoma in nude mice. World J Gastroenterol, 2005, 11(2):216~220
    4 Suvannasankha A, Fausel C, Juliar BE, et al. Final Report of Toxicity and Efficacy of a Phase II Study of Oral Cyclophosphamide, Thalidomide, and Prednisone for Patients with Relapsed or Refractory Multiple Myeloma: A Hoosier Oncology Group Trial, HEM01-21.The Oncologist, 2007,(1):99~106
    5 Coelho A, Souto MI, Cardoso CR, et al. Long-term thalidomide use in refractory cutaneous lesions of lupus erythematosus: a 65 series of Brazilian patients. Lupus, 2005,14(6):434~439
    6 Calabrese L, Fleischer AB. Thalidomide: current and potential clinical applications. Am J Med, 2000,108(6 ):487~495
    7 Reist M, Carrupt PA, Francote E, et al. Chiral in versionandhydrolysis of thalidomide: Mechanisms and catalysis by bases and serum albumin, and chiral stability of teratogenic metabolites. Chem Res Toxicol, 1998,11(12):1521~1528
    8 Figg WD, Raje S, Bauer KS, et al. Pharmacokinetics of thalidomide in an elderly prostate cancer population. J Pharm Sci, 1999,88(1):121~125
    9 Zhou S, Kestell P. Tingle MD, et al. Thalidomide in cancer treatmnet: a potential role in the elderly? Drugs Aging, 2002,19(2):85~100
    10 Mchugh SM, Rifkin IR, Deighton J, et al. The immunosuppressive drug thalidomide induces T helper cell type 2(Th2)and concomitantly inhibitsTh1 cytokine production in mitogen and antigen-stimulated human peripheral blood mononuclear cell cultures.Clin Exp Immunol, 1995, 99(2):160~167
    11 Fernandez LP, Schlegea PG, Baker J, et al. Does thalidomide affect IL-2 response and production? Exp Hemotol, 1995, 23(9):978~985
    12 Moreira AL, Wang J, Sarno E N, et al. Thalidomide protects mice against LPS-induced shock.Braz J Med Biol Res. 1997, 30(10):1199~1207
    13 Keifer JA, Guttridge DC, Ashburner BP, et al. Inhibition of NF-kappa B activity by thalidomide through suppression of IkappaB kinase activity. J Biol Chem, 2001, 276(25):22382~22387
    14 Noguchi T, Shimazawa R, Nagasawa K, et al. Thalidomide and its analoguesas cyclooxygenaseingibitors. Bioorg Med Chem Lett, 2002,12(7):1043~1046
    15 D’Amato J, Loughman M S, Flynn E, et al. Thalidomide is an inhibitor of angiogenesis. Proc Nail Acad Sci USA, 1994,91(9):4082~4085
    16 Belo AV, Ferreira MA, Bosco AA, et al. Differential effects of thalidomide on angiogenesis and tumor growth in mice. Inflammation, 2001,25(2):91~96
    17 Verheul H M, Panigrahy D, Yuan J, et al. Combination oral anti-angiogenic therapy with thalidomide and sulindac inhibits tumour growth in rabbits. Br J Cancer, 1999,79(1):114~118
    18 Moreira A L, Friedlander D R, Shif B, et al. Thalidomide and a thalidomide analogue inhibit endothelial cell proliferation in vitro. J Neurooncol, 1999,43(2):109~114
    19 Price D K, Ando Y, Kruger E A, et al. 5'-OH-thalidomide, a metablite of thalidomide, inhibits angiogenesis. Ther Drug Monit, 2002,24(1):104~110
    20 Laffitte E, Revuz J. Thalidomide: an old drug with new clinical applications. Expert Opin Drug Saf, 2004, 3(1):47~56
    21 Myoung H, Hong SD, Kim YY, et al. Evaluation of the anti-tumor and anti -angiogenic effect of paclitaxel and thalidomide on the xenotransplanted oral squamous cell carcinoma. Cancer Lett, 2001,163(2):191~200
    22 Settles B, Stevenson A, Wilson K, et al. Down-regulation of cell adhention molecules LFA-1 and ICAM-1 after in vitro treatment with anti-TNF-alpha agent thalidomide. Cell Mol Bio,2001,47(7):1105~1114
    23 Stephens T D, Bunde C J, Fillmore B J. Mechanism of action in thalidomide teratogenesis. Biochem Pharmacol, 2000, 59(12):1489~1499
    24 Scoville CD, Reading JC. Open trial of thalidomide in the treatment of rheumatoid arthritis. J Clin Rheumatol, 1999,5,:261~267
    25 Kaufmann SH, Eamshaw WC. Induction of apoptosis by cancer chemotheraphy. Exp Cell Res, 2000,256(1):42~49
    26 Guckian M, Dransfield I, Hay P. et al. Thalidomide analogue CC-3052 reduces HIV+ neutrophil apoptosis in vitro. Clin Exp Immunol, 2000,121(3):427~429
    27 Ochonisky S, Verroust J, Bastuji-Garin S, et al. Thalidomide neuropathy incidence and clinicoelectrophysiologic findings in 42 patients. Arch Dermatol, 1994,130(1):66~69
    28 Coelho A, Souto MI, Cardoso CR, et al. Long-term thalidomide use in refractory cutaneous lesions of lupus erythematosus: a 65 series of Brazilian patients Lupus, 2005,14(6):434~439
    29 Carreno L, Lopez-Longo FJ, Gonzalez CM, et al. Treatment options for juvenile-onset systemic lupus erythematosusPaediatr Drugs. 2002,4(4):241~256
    30 Christopher T, Cassetty MD. Chronic cutaneous lupus erythematosus mimicking pseudoxanthoma elasticum .Dermatol Online J, 2005,11(4):26
    31 Brocard A, Barbarot S, Milpied B , et al. Thalidomide in the treatment of chronic discoid lupus erythematosus. Ann Dermatol Venereol, 2005, 132(11):853~856
    32 Walchner M, Meurer M, Plewig G, et al. Clinical and immunologic parameters during thalidomide treatment of lupus erythematosusInt J Dermatol, 2000,39(5):383~388
    33 Dredge K, Dalgleish A G, Marriott J B. Thalidomide analogs as emerging anti-cancer drugs. Anticancer Drugs, 2003, 14(5):331~335
    34 Lehman TJ, Striegel KH, Onel KB. Thalidomide therapy for recalcitrant systemic onset juvenile rheumatoid arthritis. J Pediatr 2002,140(1): 125~127
    35 Gutierrez-Rodriguez O, Starusta-Bacal P, Gutierrez-Montes O. Treatmentof refractory rheumatoid arthritis:the thalidomide experience. J Rheumatol, 1989,16:158~163
    36 Keesal N, Wasserman MJ, Bookman A, et al. Thalidomide in the treatmentof refractory rheumatoid arthritis. J Rheumatol, 1999,26:2344~2347
    37 Huizinga TW, Dijkmans BA, van der Velde EA, et al. An open study of pentoxyfylline and thalidomide as adjuvant therapy in the treatment of rheumatoid arthritis. Ann Rheum Dis, 1996;55:833–836
    38 Oliver SJ, Cheng TP, Banquerigo ML, et al. The effect of thalidomide and 2 analogs on collagen induced arthritis. J Rheumatol, 1998,25(5):964~969
    39 Hauschild A, Kroeger H, Mitchison NA, et al. Thalidomide therapy of established collagen-induced arthritis (CIA) not accompanied by an evident Th2 shift. Clin Exp Immunol, 1997, (3):428~431
    40 Evereklioglu C. Managing the symptoms of Behcet's diseas eExpert Opin Pharmacother, 2004, 5(2):317~328
    41 Shek LP, Lim DL. Thalidomide in Behcet's disease. Biomed Pharmacother. 2002,56(1):31~35
    42 Brik R, Shamali H,Bergman R. Successful Thalidomide Treatment of Severe Infantile Behcet Disease .Pediatric Dermatology, 2001, 18(2): 143~145
    43 Sayarlioglu M, Kotan MC, Topcu N, et al. Treatment of recurrent perforating intestinal ulcers with thalidomide in Behcet's disease Ann Pharmacother, 2004,38(5):808~811
    44 Todaro M, Zerilli M, Triolo G, et al. NF-kappaB protects Behcet's disease T cells against CD95-induced apoptosis up-regulating antiapoptotic proteinsArthritis Rheum, 2005,52(7):2179~2191
    45 Brandt J, Haibei H, Cornely D, et al. Successful treatment of active ankylosing spondylitis with the anti~tumor necrosis factor alpha monoclonal antibody infliximab. Arthritis Rheum,2000,43:1346~1352
    46 El Maghraoui A. Ankylosing spondylitis. Presse Med. 2004, 33(20):1459~1464
    47 Zlnay D, Zlnay M, Rovensky J. Ankylosing spondylitis--the current situation and new therapeutic options. Vnitr Lek, 2006,52:730~735
    48 Wei JC, Chan TW, Lin HS, et al. Thalidomide for severe refractory ankylosing spondylitis: a 6-month open-label trial. J Rheumatol, 2003,30(12):2627~2631
    49 Huang F, Gu J, Zhao W, et al. One-year open-label trial of thalidomide in ankylosing spondylitis Arthritis Rheum, 2002,47(3):249~254
    50 Meaux-Ruault N, Magy N, Gil H, et al. Efficacy of thalidomide in refractory adult Still's disease: a new case report. Clin Exp Rheumatol. 2003, 21(2):272
    51 Moutsopoulos NM, Angelov N, Sankar V, et al. Immunological consequences of thalidomide treatment in Sjogren's syndrome. Ann Rheum Dis, 2006, 65(1):112~114
    52 Alexanian R, Weber D, Anagnostopoulos A, et al. Thalidomide with or without dexamethasone for refractory or relapsing multiple myeloma. Semin Hematol, 2003,40:3–7
    53 Tosi P, Zamagni E, Cellini C et al. Neurological toxicity of long-term (> 1 yr) thalidomide therapy in patients with multiple myeloma. Eur J Haematol, 2005,74:212–216
    54 Flageul B, Wallach D, Cavelier-Balloy B, et al. Thalidomide and thrombosis. Ann Dermatol Venereol, 2000,127(2):171~174
    55 Dharia SP, Steinkampf MP, Cater C, et al. Thalidomide-induced amenorrhea: case report and literature review. Fertil Steril. 2004, 82(2):460~462
    56 Briani C, Zara G, Rondinone R. Positive and negative effects of thalidomide on refractory cutaneous lupus erythematosus. Autoimmunity, 2005, 38(7):549~555
    57 Duong DJ, Spigel GT, Moxley RT 3rd, et al. American experience with low-dose thalidomide therapy for severe cutaneous lupus erythematosus. Arch Dermatol, 1999, 135(9):1079~1087
    58 Anderson KC. Lenalidomide and thalidomide: Mechanisms of action–similarities and differences. Semin Hematol, 2005,42:S3–S8
    59 Zhao D, Jiang L, Hahn EW, et al. Continuous low-dose (metronomic) chemotherapy on rat prostate tumors evaluated using MRI in vivo and comparison with histology. Neoplasia, 2005,7:678–687
    60 Bazzoli AS, Manson J, Scott WJ, et al. The effects of thalidomide and two analogues on the regenerating forelimb of the newtJ Embryol Exp Morphol, 1977, 41:125~135
    61 Moreira AL, Friedlander DR, Shif B, et al. Thalidomide and a thalidomide analogue inhibit endothelial cell proliferation in vitro. J Neurooncol, 1999, 43(2):109~114
    62 Oliver SJ, Freeman SL, Corral LG, et al. Thalidomide analogue CC1069 inhibits development of rat adjuvant arthritisClin Exp Immunol. 1999,118(2):315~321
    63 La Maestra L, Zaninoni A, Marriott JB, et al. The thalidomide analogue CC-3052 inhibits HIV-1 and tumour necrosis factor-alpha (TNF-alpha) expression in acutely and chronically infected cells in vitro Clin Exp Immunol, 2000, 119(1):123~129
    64 Verhelle D, Corral LG, Wong K, et al. Lenalidomide and CC-4047 inhibit the proliferation of malignant B cells while expanding normal CD34+ progenitor cellsCancer Res. 2007,67(2):746~755
    65 Shalapour S, Zelmer A, Pfau M, et al. The thalidomide analogue, CC-4047, induces apoptosis signaling and growth arrest in childhood acute lymphoblastic leukemia cells in vitro and in vivo. Clin Cancer Res, 2006, 12(18):5526~5532
    66 Choueiri TK, Dreicer R, Rini BI, et al. Phase II study of lenalidomide in patients with metastatic renal cell carcinoma. Cancer, 2006,107(11):2609~2616
    67 Sharma RA, Steward WP, Daines CA, et al. Toxicity profile of the immunomodulatory thalidomide analogue, lenalidomide: phase I clinical trial of three dosing schedules in patients with solid malignancies. Eur J Cancer, 2006, 42(14):2318~2325
    68 Li PK, Pandit B, Sackett DL, et al. A thalidomide analogue with in vitro antiproliferative, antimitotic, and microtubule-stabilizing activitiesMol Cancer Ther, 2006, 5(2):450~456
    69 Alexandre-Moreira MS, Takiya CM, de Arruda LB, et al. LASSBio-468: a new achiral thalidomide analogue which modulates TNF-alpha and NO production and inhibits endotoxic shock and arthritis in an animal model. Int Immunopharmacol, 2005, 5(3):485~494

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700