Tyro3受体酪氨酸激酶亚家庭在调节小鼠红细胞发生中的功能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Tyro3受体酪氨酸激酶(receptor tyrosine kinases,RTKs)亚家族包括Tyro3,Axl和Mer三个成员,配体是Gas6和Protein S。它们广泛表达于哺乳动物的神经、免疫、生殖、造血和血管等组织中,并在神经发育、免疫调节、精子发生、NK细胞分化、血小板功能以及血管发生中发挥着重要的作用。Tyro3 RTKs亚家族这三个受体虽然在造血系统中均有表达,但在造血中的功能所知甚少。本文主要研究Tyro3 RTKs对红细胞发生的调节作用。
     1.用RT-PCR,Western blot以及免疫细胞化学的方法,检测Tyro3 RTKs亚家族三个成员在红系细胞和骨髓基质细胞中的表达。结果发现红细胞发生的各个阶段都表达Axl和Mer,但不表达Tyro3。骨髓基质细胞不仅表达这三个受体,而且还表达其配体Gas6和Protein S。提示这三个受体及其配体可能影响红系造血
     2.对基因敲除小鼠的表型分析发现,Axl~(-/-)Mer~(-/-)(AM)小鼠骨髓内红系细胞,特别是成熟红细胞的数量显著下降。但单基因敲除(Axl~(-/-)和Mer~(-/-),简称A和M)小鼠骨髓中红系细胞的数量未见异常。表明Axl和Mer在红细胞发生中起着重要的调节作用。
     3.AM小鼠肝、脾体积增大,重量增加。肝脏中出现造血岛;脾脏中红髓增生明显。流式细胞分析发现脾脏中存在大量的红系造血细胞。说明AM小鼠骨髓造血功能受损,导致髓外造血发生。
     4.集落形成实验发现,AM小鼠骨髓内的红系祖细胞明显增多。流式细胞仪分析表明,AM小鼠骨髓内早期的红系细胞的比例是正常小鼠的2倍,但是祖细胞以后的发育阶段—早、中、晚幼红细胞以及成熟红细胞明显减少。流式分析AM小鼠骨髓内的红系祖细胞的细胞周期和凋亡均没有变化。说明AM小鼠骨髓内红细胞发生发育阻滞在造血祖细胞阶段,且Axl和Mer对红系祖细胞具有调控作用。
     5.正常小鼠骨髓移植到致死剂量γ照射的AM小鼠体内,骨髓造血功能正常。相反AM小鼠骨髓细胞移植到致死剂量γ照射的正常小鼠体内,骨髓造血功能异常,与AM小鼠骨髓造血一致。混合移植实验,将正常和AM小鼠骨髓细胞等量混合移植到致死剂量γ照射的正常小鼠体内,骨髓造血功能正常。说明AM小鼠骨髓内的红系造血异常并非由骨髓造血微环境的改变引起的,而是由红系细胞自身分化障碍引起的。
     6.为进一步认识Axl和Mer调节红细胞发生的分子机理,我们研究了它们对红细胞发生相关基因的表达作用,结果发现AM小鼠中与红系发生密切相关的转录因子GATA-1和调控红细胞发育的重要细胞因子Epo受体(EpoR)表达明显降低。在体外,rhGas6可以诱导正常小鼠早期红细胞表达GATA-1和-EpoR,而对AM小鼠几乎不起作用。推测Gas6/TAM RTKs系统可能通过调控GATA-1及EpoR的表达来调节红细胞发生。单基因敲除(A和M)小鼠红细胞中GATA-1,EpoR的表达正常,表明Axl和Mer对红细胞发生的调节作用可以互相代偿。
Axl,Tyro3 and Mer are three members of a recently characterized receptor tyrosinekinase (RTK) family that share a conserved intracellular tyrosine kinase domain and anextracellular domain similar to those seen in cell adhesion molecules.These RTKs bind thevitamin K-dependent protein growth-arrest-specific gene 6 (Gas6),which is structurallyrelated to the protein S anticoagulation factor.Gas6/Tyro3 RTKs signaling regulates cellgrowth and survival.They are widely expressed in various mammalian tissues,such asnervous,immune,reproductive,vascular and hematopoietic tissues,and play an importantrole in regulating spermatogenesis,immune homeostasis,platelet functions,NK cellsdifferentiation,angiogenesis and vascular remodeling.Although they are expressed inhematopoietic system,the role of the three receptors in hematopoiesis is unknown.In thisstudy,we demonstrate that Axl and Mer are critical in regulating erythropoiesis.
     1.By RT-PCR,Western blot and Immunocytochemistry,we found that Axl and Mer,butnot Tyro3,are expressed in all stages of developing erythroid cells.Marrow stromal cellsexpressed not only all three receptors,but also their common ligands,Gas6 and Protein S.
     2.We found Axl~(-/-)Mer~(-/-) (AM) bone marrows to contain fewer total cells than wild-typecontrols.In contrast,the bone marrow cellularity in single mutant mice (Axl~(-/-) or Mer~(-/-))were not altered significantly compared to wild-type controls.The results suggest that Axland Mer regulate erythropoiesis.
     3.Anemia was not observed in AM mice.However,we found that the spleens of AM micewere enlarged up to 4 times the wild-type controls.Histological examination showed anevident expansion of red pulps in the spleen.The flow cytometry anlysis showed thepercentage of all stages erythroblasts in AM spleen was increased.The livers of AM miceexpand up to 3.5-fold,and the evident erythropoiesis islands appeared in AM livers.Theresults suggest compensatory extramedullary erythropoiesis occurs in liver and spleen ofAM mice.
     4.Although a significant reduction in erythroid cells was observed in AM bone marrows,the number of CFU-E progenitors was increased.However,there was no significantdifference in number of BFU-E progenitors between AM and wild-type bone marrows.Thenumbers of erythroid progenitors in AM bone marrow is twice more than that in wild-typecontrol.However,the numbers of the early,intermediate,late erythroiblasts and mature redcells were significantly reduced in AM bone marrows.By analysis of annexin-V positivecell,we found that apoptosis rate of the different populations of erythroid cells was notsignificantly altered in AM bone marrows and spleens compared to controls.In order toanalyze growth rate of the erythroid progenitors,they were gated and performed akaryotype analysis.The result showed a comparable cell cycle of the erythroid progenitorsin wild-type and AM bone marrows.Taken together,the results suggest that thedifferentiation of erythroid cells is blocked at the transition of the erythroid progenitors toproerythroblasts,which results in the accumulation of erythroid progenitors and thereduction of erythroblasts in AM bone marrow.
     5.AM mice receiving wild-type bone marrow cells displayed a normal erythropoiesis.Conversely,wild-type mice engrafted with AM bone marrow cells exhibit an impairederythropoiesis,and have a similar distribution of erythroid cells with that in AM mice.Andwild-type mice engrafted with wild-type and AM bone marrow cells also showed a normalerythropoiesis.These results demonstrate that the defect in development of AM erythroidcells is cell autonomous.
     6.With an effort to reveal the molecular mechanisms underlying the defect oferythropoiesis in AM mice,we found that the expression of GATA-1 and EpoR decline inerythroid progenitors of AM mice.Gas6 increases significantly the expression of EpoRand GATA-1 in cultured erythroid progenitors.In contrast,the Gas6 induction of EpoR andGATA-1 mRNA in vitro was completely blocked in AM erythroblasts.Notably,Gas6up-regulated the expression of EpoR and GATA-1 in the single mutant (Axl~(-/-) or Mer~(-/-))erythroblasts.The results indicate that Axl and Mer may participate in erythropoiesis in redundant manner through regulating EpoR and GATA-1 expression.
引文
1. Till JE, Mc CE: A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 1961, 14:213-222.
    2. Fuchs E, Tumbar T, Guasch G: Socializing with the neighbors: stem cells and their niche. Cell 2004, 116:769-778.
    3. Osawa M, Hanada K, Hamada H, Nakauchi H: Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 1996, 273:242-245.
    4. Watt FM, Hogan BL: Out of Eden: stem cells and their niches. Science 2000,287:1427-1430.
    5. Wilson A, Trumpp A: Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol 2006, 6:93-106.
    6. Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ: SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 2005,121:1109-1121.
    7. Abkowitz JL, Catlin SN, McCallie MT, Guttorp P: Evidence that the number of hematopoietic stem cells per animal is conserved in mammals. Blood 2002,100:2665-2667.
    8. Schofield R: The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 1978, 4:7-25.
    9. Li Z, Li L: Understanding hematopoietic stem-cell microenvironments. Trends Biochem Sci 2006, 31:589-595.
    10.Hall MA, Slater NJ, Begley CG, Salmon JM, Van Stekelenburg LJ, McCormack MP,Jane SM, Curtis DJ: Functional but abnormal adult erythropoiesis in the absence of the stem cell leukemia gene. Mol Cell Biol 2005, 25:6355-6362.
    11.Zon LI: Developmental biology of hematopoiesis. Blood 1995, 86:2876-2891.
    12.Socolovsky M, Nam H, Fleming MD, Haase VH, Brugnara C, Lodish HF: Ineffective erythropoiesis in Stat5a(-/-)5b(-/-) mice due to decreased survival of early erythroblasts. Blood 2001, 98:3261-3273.
    13.Koury MJ, Sawyer ST, Brandt SJ: New insights into erythropoiesis. Curr Opin Hematol 2002, 9:93-100.
    14.Hanspal M, Hanspal JS: The association of erythroblasts with macrophages promotes erythroid proliferation and maturation: a 30-kD heparin-binding protein is involved in this contact. Blood 1994, 84:3494-3504.
    15.Chasis JA: Erythroblastic islands: specialized microenvironmental niches for erythropoiesis. Curr Opin Hematol 2006, 13:137-141.
    16.Huber TL, Kouskoff V, Fehling HJ, Palis J, Keller G: Haemangioblast commitment is initiated in the primitive streak of the mouse embryo. Nature 2004, 432:625-630.
    17.Richmond TD, Chohan M, Barber DL: Turning cells red: signal transduction mediated by erythropoietin. Trends Cell Biol 2005, 15:146-155.
    18.von Lindern M, Schmidt U, Beug H: Control of erythropoiesis by erythropoietin and stem cell factor: a novel role for Bruton's tyrosine kinase. Cell Cycle 2004,3:876-879.
    19.Ogawa M, Matsuzaki Y, Nishikawa S, Hayashi S, Kunisada T, Sudo T, Kina T,Nakauchi H, Nishikawa S: Expression and function of c-kit in hemopoietic progenitor cells. J Exp Med 1991, 174:63-71.
    20.Halupa A, Bailey ML, Huang K, Iscove NN, Levy DE, Barber DL: A novel role for STAT1 in regulating murine erythropoiesis: deletion of STAT1 results in overall reduction of erythroid progenitors and alters their distribution. Blood 2005, 105:552-561.
    21.Kirito K, Uchida M, Yamada M, Miura Y, Komatsu N: A distinct function of STAT proteins in erythropoietin signal transduction. J Biol Chem 1997, 272:16507-16513.
    22.Socolovsky M, Fallon AE, Wang S, Brugnara C, Lodish HF: Fetal anemia and apoptosis of red cell progenitors in Stat5a-/-5b-/- mice: a direct role for Stat5 in Bcl-X(L) induction. Cell 1999, 98:181-191.
    23. Rabbitts TH, Axelson H, Forster A, Grutz G, Lavenir I, Larson R, Osada H,Valge-Archer V, Wadman I, Warren A: Chromosomal translocations and leukaemia: a role for LMO2 in T cell acute leukaemia, in transcription and in erythropoiesis. Leukemia 1997, 11 Suppl 3:271-272.
    24. Tsai FY, Orkin SH: Transcription factor GATA-2 is required for proliferation/survival of early hematopoietic cells and mast cell formation, but not for erythroid and myeloid terminal differentiation. Blood 1997, 89:3636-3643.
    25. Fisher RC, Slayton WB, Chien C, Guthrie SM, Bray C, Scott EW: PU.1 supports proliferation of immature erythroid progenitors. Leuk Res 2004, 28:83-89.
    26. Fujiwara Y, Browne CP, Cunniff K, Goff SC, Orkin SH: Arrested development of embryonic red cell precursors in mouse embryos lacking transcription factor GATA-1. Proc Natl Acad Sci USA 1996, 93:12355-12358.
    27. Welch JJ, Watts JA, Vakoc CR, Yao Y, Wang H, Hardison RC, Blobel GA, Chodosh LA, Weiss MJ: Global regulation of erythroid gene expression by transcription factor GATA-1. Blood 2004, 104:3136-3147.
    28. Tsang AP, Fujiwara Y, Horn DB, Orkin SH: Failure of megakaryopoiesis and arrested erythropoiesis in mice lacking the GATA-1 transcriptional cofactor FOG. Genes Dev 1998, 12:1176-1188.
    29. Drissen R, von Lindern M, Kolbus A, Driegen S, Steinlein P, Beug H, Grosveld F, Philipsen S: The erythroid phenotype of EKLF-null mice: defects in hemoglobin metabolism and membrane stability. Mol Cell Biol 2005, 25:5205-5214.
    30. Lai C, Gore M, Lemke G: Structure, expression, and activity of Tyro 3, a neural adhesion-related receptor tyrosine kinase. Oncogene 1994, 9:2567-2578.
    31. Mark MR, Scadden DT, Wang Z, Gu Q, Goddard A, Godowski PJ: rse, a novel receptor-type tyrosine kinase with homology to Axlo/Ufo, is expressed at high levels in the brain. J Biol Chem 1994, 269:10720-10728.
    32. Taylor IC, Roy S, Yaswen P, Stampfer MR, Varmus HE: Mouse mammary tumors express elevated levels of RNA encoding the murine homology of SKY, a putative receptor tyrosine kinase. JBiol Chem 1995, 270:6872-6880.
    33.Janssen JW, Schulz AS, Steenvoorden AC, Schmidberger M, Strehl S, Ambros PF,Bartram CR: A novel putative tyrosine kinase receptor with oncogenic potential.Oncogene 1991,6:2113-2120.
    34.O'Bryan JP, Frye RA, Cogswell PC, Neubauer A, Kitch B, Prokop C, rd ER, Mm LB, Earp HS, Liu ET: axl, a transforming gene isolated from primary human myeloid leukemia cells, encodes a novel receptor tyrosine kinase. Mol Cell Biol. 1991,11:5016-5031.
    35.Rescigno J, Mansukhani A, Basilico C: A putative receptor tyrosine kinase with unique structural topology. Oncogene 1991, 6:1909-1913.
    36.Graham DK, Dawson TL, Mullaney DL, Snodgrass HR, Earp HS: Cloning and mRNA expression analysis of a novel human protooncogene, c-mer. Cell Growth Differ 1994, 5:647-657.
    37.Jia R, Hanafusa H: The proto-oncogene of v-eyk (v-ryk) is a novel receptor-type protein tyrosine kinase with extracellular Ig/GN-Ⅲ domains. J Biol Chem 1994,269:1839-1844.
    38.Wang H, Chen Y, Ge Y, Ma P, Ma Q, Ma J, Wang H, Xue S, Han D:Immunoexpression of Tyro 3 family receptor--Tyro 3, Axl, and Mer--and their ligand Gas6 in postnatal developing mouse testis. J Histochem Cytochem 2005,53:1355-1364.
    39.Nagata K, Ohashi K, Nakano T, Arita H, Zong C, Hanafusa H, Mizuno K:Identification of the product of growth arrest-specific gene 6 as a common ligand for Axl, Sky, and Mer receptor tyrosine kinases. J Biol Chem 1996,271:30022-30027.
    40.Godowski PJ, Mark MR, Chen J, Sadick MD, Raab H, Hammonds RG: Reevaluation of the roles of protein S and Gas6 as ligands for the receptor tyrosine kinase Rse/Tyro 3. Cell 1995, 82:355-358.
    41.Stitt TN, Conn G, Gore M, Lai C, Bruno J, Radziejewski C, Mattsson K, Fisher J, Gies DR, Jones PF, et al.: The anticoagulation factor protein S and its relative, Gas6, are ligands for the Tyro 3/Axl family of receptor tyrosine kinases. Cell 1995,80:661-670.
    42.Hafizi S, Dahlback B: Gas6 and protein S. Vitamin K-dependent ligands for the Axl receptor tyrosine kinase subfamily. Febs J 2006, 273:5231-5244.
    43.Hafizi S, Dahlback B: Signalling and functional diversity within the Axl subfamily of receptor tyrosine kinases. Cytokine Growth Factor Rev 2006, 17:295-304.
    44.Caraux A, Lu Q, Fernandez N, Riou S, Di Santo JP, Raulet DH, Lemke G, Roth C:Natural killer cell differentiation driven by Tyro3 receptor tyrosine kinases. Nat Immunol 2006, 7:747-754.
    45.Neubauer A, Fiebeler A, Graham DK, O'Bryan JP, Schmidt CA, Barckow P, Serke S,Siegert W, Snodgrass HR, Huhn D, et al.: Expression of axl, a transforming receptor tyrosine kinase, in normal and malignant hematopoiesis. Blood 1994,84:1931-1941.
    46.Wang H, Chen S, Chen Y, Wang H, Wu H, Tang H, Xiong W, Ma J, Ge Y, Lu Q, et al.:The role of Tyro 3 subfamily receptors in the regulation of hemostasis and megakaryocytopoiesis. Haematologica 2007, 92:643-650.
    47.Dai W, Pan H, Hassanain H, Gupta SL, Murphy MJ, Jr.: Molecular cloning of a novel receptor tyrosine kinase, tif, highly expressed in human ovary and testis. Oncogene 1994, 9:975-979.
    48.Vajkoczy P, Knyazev P, Kunkel A, Capelle HH, Behrndt S, von Tengg-Kobligk H,Kiessling F, Eichelsbacher U, Essig M, Read TA, et al.: Dominant-negative inhibition of the Axl receptor tyrosine kinase suppresses brain tumor cell growth and invasion and prolongs survival. Proc Natl Acad Sci USA 2006,103:5799-5804.
    49.Craven RJ, Xu LH, Weiner TM, Fridell YW, Dent GA, Srivastava S, Varnum B, Liu ET, Cance WG: Receptor tyrosine kinases expressed in metastatic colon cancer. Int J Cancer 1995, 60:791-797.
    50. Zantek ND, Walker-Daniels J, Stewart J, Hansen RK, Robinson D, Miao H, Wang B,Kung HJ, Bissell MJ, Kinch MS: MCF-10A-NeoST: a new cell system for studying cell-ECM and cell-cell interactions in breast cancer. Clin Cancer Res 2001,7:3640-3648.
    51. Sun W, Fujimoto J, Tamaya T: Coexpression of Gas6/Axl in human ovarian cancers.Oncology 2004, 66:450-457.
    52. Melaragno MG, Cavet ME, Yan C, Tai LK, Jin ZG, Haendeler J, Berk BC: Gas6 inhibits apoptosis in vascular smooth muscle: role of Axl kinase and Akt. J Mol Cell Cardiol 2004, 37:881-887.
    53. van Ginkel PR, Gee RL, Shearer RL, Subramanian L, Walker TM, Albert DM,Meisner LF, Varnum BC, Polans AS: Expression of the receptor tyrosine kinase Axl promotes ocular melanoma cell survival. Cancer Res 2004, 64:128-134.
    54. Stenhoff J, Dahlback B, Hafizi S: Vitamin K-dependent Gas6 activates ERK kinase and stimulates growth of cardiac fibroblasts. Biochem Biophys Res Commun 2004,319:871-878.
    55. Sainaghi PP, Castello L, Bergamasco L, Galletti M, Bellosta P, Avanzi GC: Gas6 induces proliferation in prostate carcinoma cell lines expressing the Axl receptor. J Cell Physiol 2005, 204:36-44.
    56. Allen MP, Linseman DA, Udo H, Xu M, Schaack JB, Varnum B, Kandel ER,Heidenreich KA, Wierman ME: Novel mechanism for gonadotropin-releasing hormone neuronal migration involving Gas6/Ark signaling to p38 mitogen-activated protein kinase. Mol Cell Biol 2002, 22:599-613.
    57. Nielsen-Preiss SM, Allen MP, Xu M, Linseman DA, Pawlowski JE, Bouchard RJ,Varnum BC, Heidenreich KA, Wierman ME: Adhesion-related kinase induction of migration requires phosphatidylinositol-3-kinase and ras stimulation of rac activity in immortalized gonadotropin-releasing hormone neuronal cells. Endocrinology 2007, 148:2806-2814.
    58. Bellosta P, Costa M, Lin DA, Basilico C: The receptor tyrosine kinase ARK mediates cell aggregation by homophilic binding. Mol Cell Biol 1995, 15:614-625.
    59.Chen H, Bernstein BW, Bamburg JR: Regulating actin-filament dynamics in vivo.Trends Biochem Sci 2000, 25:19-23.
    60.Scott RS, McMahon EJ, Pop SM, Reap EA, Caricchio R, Cohen PL, Earp HS,Matsushima GK: Phagocytosis and clearance of apoptotic cells is mediated by MER. Nature 2001, 411:207-211.
    61.Cohen PL, Caricchio R, Abraham V, Camenisch TD, Jennette JC, Roubey RA, Earp HS, Matsushima G, Reap EA: Delayed apoptotic cell clearance and lupus-like autoimmunity in mice lacking the c-mer membrane tyrosine kinase. J Exp Med 2002, 196:135-140.
    62.Xiong W, Chen Y, Wang H, Wang H, Wu H, Lu Q, Han D: Gas6 and the Tyro 3 receptor tyrosine kinase subfamily regulate the phagocytic function of Sertoli cells. Reproduction 2008, 135:77-87.
    63.Angelillo-Scherrer A, Burnier L, Flores N, Savi P, DeMol M, Schaeffer P, Herbert JM, Lemke G, Goff SP, Matsushima GK, et al.: Role of Gas6 receptors in platelet signaling during thrombus stabilization and implications for antithrombotic therapy.J Clin Invest. 2005, 115:237-246.
    64.Angelillo-Scherrer A, de Frutos P, Aparicio C, Melis E, Savi P, Lupu F, Arnout J, Dewerchin M, Hoylaerts M, Herbert J, et al.: Deficiency or inhibition of Gas6 causes platelet dysfunction and protects mice against thrombosis. Nat Med 2001,7:215-221.
    65.Zhang QK, Boast S, de los Santos K, Begemann M, Goff SP: Transforming activity of retroviral genomes encoding Gag-Axl fusion proteins. J Virol 1996, 70:8089-8097.
    66.Lu Q, Lemke G: Homeostatic regulation of the immune system by receptor tyrosine kinases of the Tyro 3 family. Science 2001, 293:306-311.
    67.Lu Q, Gore M, Zhang Q, Camenisch T, Boast S, Casagranda F, Lai C, Skinner MK, Klein R, Matsushima GK, et al.: Tyro-3 family receptors are essential regulators of mammalian spermatogenesis. Nature 1999, 398:723-728.
    68. O'Bryan JP, Frye RA, Cogswell PC, Neubauer A, Kitch B, Prokop C, Espinosa R, 3rd,Le Beau MM, Earp HS, Liu ET: axl, a transforming gene isolated from primary human myeloid leukemia cells, encodes a novel receptor tyrosine kinase. Mol Cell Boil 1991,ll:5016-5031.
    69. Crosier PS, Freeman SA, Orlic D, Bodine DM, Crosier KE: The Dtk receptor tyrosine kinase, which binds protein S, is expressed during hematopoiesis. Exp Hematol 1996,24:318-323.
    70. Rothlin CV, Ghosh S, Zuniga EI, Oldstone MB, Lemke G: TAM Receptors Are Pleiotropic Inhibitors of the Innate Immune Response. Cell 2007, 131:1124-1136.
    71. Angelillo-Scherrer A, Burnier L, Lambrechts D, Fish RJ, Tjwa M, Plaisance S,Sugamele R, Demol M, Martinez-Soria E, Maxwell PH, et al.: Role of Gas6 in erythropoiesis and anemia in mice. J Clin Invest 2008, 118:583-596.
    72. Lok CN, Ponka P: Identification of an erythroid active element in the transferrin receptor gene. J Biol Chem 2000, 275:24185-24190.
    73. Kina T, Ikuta K, Takayama E, Wada K, Majumdar AS, Weissman IL, Katsura Y: The monoclonal antibody TER-119 recognizes a molecule associated with glycophorin A and specifically marks the late stages of murine erythroid lineage. Br J Haematol 2000, 109:280-287.
    74. Auffray I, Marfatia S, de Jong K, Lee G, Huang CH, Paszty C, Tanner MJ, Mohandas N, Chasis JA: Glycophorin A dimerization and band 3 interaction during erythroid membrane biogenesis: in vivo studies in human glycophorin A transgenic mice. Blood 2001,97:2872-2878.
    75. Davis RE, Stenberg PE, Levin J, Beckstead JH: Localization of megakaryocytes in normal mice and following administration of platelet antiserum, 5-fluorouracil, or radiostrontium: evidence for the site of platelet production. Exp Hematol. 1997,25:638-648.
    76. Slayton WB, Georgelas A, Pierce LJ, Elenitoba-Johnson KS, Perry SS, Marx M,Spangrude GJ: The spleen is a major site of megakaryopoiesis following transplantation of murine hematopoietic stem cells. Blood 2002, 100:3975-3982.
    77. Gregory CJ, Eaves AC: Three stages of erythropoietic progenitor cell differentiation distinguished by a number of physical and biologic properties. Blood 1978, 51:527-537.
    78. Ingley E, McCarthy DJ, Pore JR, Sarna MK, Adenan AS, Wright MJ, Erber W,Tilbrook PA,Klinken SP: Lyn deficiency reduces GATA-1, EKLF and STAT5,and induces extramedullary stress erythropoiesis. Oncogene 2005, 24:336-343.
    79. Velazquez L, Cheng AM, Fleming HE, Furlonger C, Vesely S, Bernstein A, Paige CJ,Pawson T: Cytokine signaling and hematopoietic homeostasis are disrupted in Lnk-deficient mice. J Exp Med 2002, 195:1599-1611.
    80. Zhang J, Grindley JC, Yin T, Jayasinghe S, He XC, Ross JT, Haug JS, Rupp D,Porter-Westpfahl KS, Wiedemann LM, et al.: PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature 2006,441:518-522.
    81. Goruppi S, Ruaro E, Schneider C: Gas6, the ligand of Axl tyrosine kinase receptor, has mitogenic and survival activities for serum starved NIH3T3 fibroblasts. Oncogene 1996, 12:471-480.
    82. Bellosta P, Zhang Q, Goff SP, Basilico C: Signaling through the ARK tyrosine kinase receptor protects from apoptosis in the absence of growth stimulation. Oncogene 1997, 15:2387-2397.
    83. Ling L, Kung HJ: Mitogenic signals and transforming potential of Nyk, a newly identified neural cell adhesion molecule-related receptor tyrosine kinase. Mol Cell Biol 1995, 15:6582-6592.
    84. Liu E, Hjelle B, Bishop JM: Transforming genes in chronic myelogenous leukemia.Proc Natl Acad Sci USA 1988, 85:1952-1956.
    85. Avanzi GC, Gallicchio M, Cavalloni G, Gammaitoni L, Leone F, Rosina A, Boldorini R, Monga G, Pegoraro L, Varnum B, et al.: GAS6, the ligand of Axl and Rse receptors, is expressed in hematopoietic tissue but lacks mitogenic activity. Exp Hematol 1997, 25:1219-1226.
    86. Nakano T, Ishimoto Y, Kishino J, Umeda M, Inoue K, Nagata K, Ohashi K, Mizuno K,Arita H: Cell adhesion to phosphatidylserine mediated by a product of growth arrest-specific gene 6. J Biol Chem 1997, 272:29411-29414.
    87. Pevny L, Simon MC, Robertson E, Klein WH, Tsai SF, D'Agati V, Orkin SH,Costantini F: Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1. Nature 1991, 349:257-260.
    88. Weiss MJ, Orkin SH: Transcription factor GATA-1 permits survival and maturation of erythroid precursors by preventing apoptosis. Proc Natl Acad Sci USA 1995, 92:9623-9627.
    89. Munugalavadla V, Kapur R: Role of c-Kit and erythropoietin receptor in erythropoiesis. Crit Rev Oncol Hematol 2005, 54:63-75.
    1.Schofield R: The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 1978, 4:7-25.
    2.Till JE, Mc CE: A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 1961, 14:213-222.
    3.Domen J, Weissman IL: Self-renewal, differentiation or death: regulation and manipulation of hematopoietic stem cell fate. Mol Med Today 1999, 5:201-208.
    4.Abkowitz JL, Catlin SN, McCallie MT, Guttorp P: Evidence that the number of hematopoietic stem cells per animal is conserved in mammals. Blood 2002, 100:2665-2667.
    5.Wilson A, Trumpp A: Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol 2006, 6:93-106.
    6.Domen J, Cheshier SH, Weissman IL: The role of apoptosis in the regulation of hematopoietic stem cells: Overexpression of Bcl-2 increases both their number and repopulation potential. J Exp Med 2000, 191:253-264.
    7.Roegiers F, Jan YN: Asymmetric cell division. Curr Opin Cell Biol 2004, 16:195-205.
    8.Mason TM, Lord BI, Hendry JH: The development of spatial distributions of CFU-S and in-vitro CFC in femora of mice of different ages. Br J Haematol 1989, 73:455-461.
    9.Eglitis MA, Mezey E: Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc Natl Acad Sci USA 1997, 94:4080-4085.
    10.Gussoni E, Blau HM, Kunkel LM: The fate of individual myoblasts after transplantation into muscles of DMD patients. Nat Med 1997, 3:970-977.
    11.Snykers S, Vanhaecke T, Papeleu P, Luttun A, Jiang Y, Vander Heyden Y, Verfaillie C,Rogiers V: Sequential exposure to cytokines reflecting embryogenesis: the key for in vitro differentiation of adult bone marrow stem cells into functional hepatocyte-like cells.Toxicol Sci 2006, 94:330-341; discussion 235-339.
    12.Dexter TM, Allen TD, Lajtha LG: Conditions controlling the proliferation of haemopoietic stem cells in vitro. J Cell Physiol 1977, 91:335-344.
    13.Yamazaki K, Roberts RA, Spooncer E, Dexter TM, Allen TD: Cellular interactions between 3T3 cells and interleukin-3-dependent multipotent haemopoietic cells: a model system for stromal-cell-mediated haemopoiesis. J Cell Physiol 1989, 139:301-312.
    14.Lennartsson J, Shivakrupa R, Linnekin D: Synergistic growth of stem cell factor and granulocyte macrophage colony-stimulating factor involves kinase-dependent and -independent contributions from c-Kit. J Biol Chem 2004, 279:44544-44553.
    15.Yang M, Li K, Lam AC, Yuen PM, Fok TF, Chesterman CN, Chong BH:Platelet-derived growth factor enhances granulopoiesis via bone marrow stromal cells.Int J Hematol 2001, 73:327-334.
    16.Hartwig UF, Keller U, Huber C, Peschel C: Regulation of hematopoietic growth factor production by genetically modified human bone marrow stromal cells expressing interleukin-1beta antisense RNA. J Interferon Cytokine Res 2001, 21:851-860.
    17.de Revel T, Becard N, Sorg T, Rousseau S, Spano JP, Thiebot H, Methali M, Gras G, Le Grand R, Dormont D: Retroviral interleukin 1alpha gene transfer in bone marrow stromal cells in a primate model: induction of myelopoiesis stimulation. Br J Haematol 2002,118:875-884.
    18.Wang LS, Liu HJ, Jia XX, Dong B, Wu CT: [Stem cell factor enhances the adhesion of hematopoietic cells to fibronectin]. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2002,10:93-96.
    19.Yamaguchi M, Hirayama F, Kanai M, Sato N, Fukazawa K, Yamashita K, Sawada K,Koike T, Kuwabara M, Ikeda H, et al.: Serum-free coculture system for ex vivo expansion of human cord blood primitive progenitors and SCID mouse-reconstituting cells using human bone marrow primary stromal cells. Exp Hematol 2001, 29:174-182.
    20.Denning-Kendall P, Singha S, Bradley B, Hows J: Cytokine expansion culture of cord blood CD34+ cells induces marked and sustained changes in adhesion receptor and CXCR4 expressions. Stem Cells 2003, 21:61-70.
    21.Zhang Y, Mao N, Li XS, Jin Y, Zhang SX, Wu Y, Tang PH: [Maintaining Growth of Long-Term Culture Initiating Cells from Human Cord Blood on Feeder Layers of Bone Marrow Stromal Cells Transfected with FL and/or TPO Genes]. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2001, 9:97-100.
    22.Du N, Feng K, Luo C, Li L, Bai C, Pei X: Radioprotective effect of FLT3 ligand expression regulated by Egr-1 regulated element on radiation injury of SCID mice. Exp Hematol 2003,31:191-196.
    23.Novitzky N, Makgoka SJ, Mohamed R: Basic fibroblast growth factor corrects proliferative derangement of bone marrow stroma and CD34(+) population following allogeneic stem cell transplantation. Exp Hematol 2001, 29:1432-1438.
    24.Egawa T, Kawabata K, Kawamoto H, Amada K, Okamoto R, Fujii N, Kishimoto T,Katsura Y, Nagasawa T: The earliest stages of B cell development require a chemokine stromal cell-derived factor/pre-B cell growth-stimulating factor. Immunity 2001,15:323-334.
    25.Lee Y, Gotoh A, Kwon HJ, You M, Kohli L, Mantel C, Cooper S, Hangoc G, Miyazawa K, Ohyashiki K, et al.: Enhancement of intracellular signaling associated with hematopoietic progenitor cell survival in response to SDF-1/CXCL12 in synergy with other cytokines. Blood 2002, 99:4307-4317.
    26.Han P, Guo XH, Story CJ: Enhanced expansion and maturation of megakaryocytic progenitors by fibronectin. Cytotherapy 2002, 4:277-283.
    27.Bhatia R, Williams AD, Munthe HA: Contact with fibronectin enhances preservation of normal but not chronic myelogenous leukemia primitive hematopoietic progenitors. Exp Hematol 2002, 30:324-332.
    28.Arcanjo K, Belo G, Folco C, Werneck CC, Borojevic R, Silva LC: Biochemical characterization of heparan sulfate derived from murine hemopoietic stromal cell lines: a bone marrow-derived cell line S17 and a fetal liver-derived cell line AFT024. J Cell Biochem 2002, 87:160-172.
    29.Netelenbos T, van den Born J, Kessler FL, Zweegman S, Merle PA, van Oostveen JW,Zwaginga JJ, Huijgens PC, Drager AM: Proteoglycans on bone marrow endothelial cells bind and present SDF-1 towards hematopoietic progenitor cells. Leukemia 2003,17:175-184.
    30.Netelenbos T, Zuijderduijn S, Van Den Born J, Kessler FL, Zweegman S, Huijgens PC,Drager AM: Proteoglycans guide SDF-1-induced migration of hematopoietic progenitor cells. J Leukoc Biol 2002, 72:353-362.
    31.Ajioka RS, Levy JE, Andrews NC, Kushner JP: Regulation of iron absorption in Hfe mutant mice. Blood 2002, 100:1465-1469.
    32.Li Z, Li L: Understanding hematopoietic stem-cell microenvironments. Trends Biochem Sci 2006, 31:589-595.
    33.Zhang J, Niu C, Ye L, Huang H, He X, Tong WG, Ross J, Haug J, Johnson T, Feng JQ,et al.: Identification of the haematopoietic stem cell niche and control of the niche size.Nature 2003, 425:836-841.
    34.Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ: SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 2005, 121:1109-1121.
    35.Calvi LM: Osteoblastic activation in the hematopoietic stem cell niche. Ann N Y Acad Sci 2006, 1068:477-488.
    36.Visnjic D, Kalajzic I, Gronowicz G, Aguila HL, Clark SH, Lichtler AC, Rowe DW: Conditional ablation of the osteoblast lineage in Col2.3deltatk transgenic mice. J Bone Miner Res 2001, 16:2222-2231.
    37.Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, Martin RP,Schipani E, Divieti P, Bringhurst FR, et al.: Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 2003, 425:841-846.
    38.Ohneda O, Fennie C, Zheng Z, Donahue C, La H, Villacorta R, Cairns B, Lasky LA:Hematopoietic stem cell maintenance and differentiation are supported by embryonic aorta-gonad-mesonephros region-derived endothelium. Blood 1998, 92:908-919.
    39.Li W, Johnson SA, Shelley WC, Yoder MC: Hematopoietic stem cell repopulating ability can be maintained in vitro by some primary endothelial cells. Exp Hematol 2004,32:1226-1237.
    40.Kopp HG, Avecilla ST, Hooper AT, Rafii S: The bone marrow vascular niche: home of HSC differentiation and mobilization. Physiology (Bethesda) 2005, 20:349-356.
    41.Lapidot T, Dar A, Kollet O: How do stem cells find their way home? Blood 2005,106:1901-1910.
    42.Nilsson SK, Johnston HM, Whitty GA, Williams B, Webb RJ, Denhardt DT, Bertoncello I, Bendall LJ, Simmons PJ, Haylock DN: Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells.Blood 2005, 106:1232-1239.
    43.Chute JP: Stem cell homing. Curr Opin Hematol 2006, 13:399-406.
    44.Ratajczak MZ, Reca R, Wysoczynski M, Yan J, Ratajczak J: Modulation of the SDF-1-CXCR4 axis by the third complement component (C3)--implications for trafficking of CXCR4+ stem cells. Exp Hematol 2006, 34:986-995.
    45.Ara T, Tokoyoda K, Sugiyama T, Egawa T, Kawabata K, Nagasawa T: Long-term hematopoietic stem cells require stromal cell-derived factor-1 for colonizing bone marrow during ontogeny. Immunity 2003, 19:257-267.
    46.Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR: Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 1998, 393:595-599.
    47.Cancelas JA, Lee AW, Prabhakar R, Stringer KF, Zheng Y, Williams DA: Rac GTPases differentially integrate signals regulating hematopoietic stem cell localization. Nat Med 2005,11:886-891.
    48.Gu Y, Filippi MD, Cancelas JA, Siefring JE, Williams EP, Jasti AC, Harris CE, Lee AW, Prabhakar R, Atkinson SJ, et al.: Hematopoietic cell regulation by Rac1 and Rac2 guanosine triphosphatases. Science 2003, 302:445-449.
    49.Kang JA, Zhou Y, Weis TL, Liu H, Ulaszek J, Satgurunathan N, Zhou L, van Besien K,Crispino J, Verma A, et al.: Osteopontin regulates actin cytoskeleton and contributes to cell proliferation in primary erythroblasts. J Biol Chem 2008, 283:6997-7006.
    50.Flanagan JG, Chan DC, Leder P: Transmembrane form of the kit ligand growth factor is determined by alternative splicing and is missing in the Sld mutant. Cell 1991,64:1025-1035.
    51.Kovach NL, Lin N, Yednock T, Harlan JM, Broudy VC: Stem cell factor modulates avidity of alpha 4 beta 1 and alpha 5 beta 1 integrins expressed on hematopoietic cell lines. Blood 1995, 85:159-167.
    52.Barker JE: Early transplantation to a normal microenvironment prevents the development of Steel hematopoietic stem cell defects. Exp Hematol 1997, 25:542-547.
    53.Wilson A, Murphy MJ, Oskarsson T, Kaloulis K, Bettess MD, Oser GM, Pasche AC,Knabenhans C, Macdonald HR, Trumpp A: c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes Dev 2004, 18:2747-2763.
    54.Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S, Takubo K, Ito K, Koh GY, Suda T:Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 2004, 118:149-161.
    55.Radice GL, Rayburn H, Matsunami H, Knudsen KA, Takeichi M, Hynes RO:Developmental defects in mouse embryos lacking N-cadherin. Dev Biol 1997,181:64-78.
    56.Denhardt DT, Guo X: Osteopontin: a protein with diverse functions. Faseb J 1993, 7:1475-1482.
    57.Haylock DN, Nilsson SK: Osteopontin: a bridge between bone and blood. Br J Haematol 2006, 134:467-474.
    58.Stier S, Ko Y, Forkert R, Lutz C, Neuhaus T, Grunewald E, Cheng T, Dombkowski D,Calvi LM, Rittling SR, et al.: Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size. J Exp Med 2005, 201:1781-1791.
    59.Puri MC, Bernstein A: Requirement for the TIE family of receptor tyrosine kinases in adult but not fetal hematopoiesis. Proc Natl Acad Sci USA 2003, 100:12753-12758.
    60.Cheng T, Rodrigues N, Shen H, Yang Y, Dombkowski D, Sykes M, Scadden DT:Hematopoietic stem cell quiescence maintained by p21cip1/wafl. Science 2000,287:1804-1808.
    61.Cheng T, Shen H, Rodrigues N, Stier S, Scadden DT: Transforming growth factor beta 1 mediates cell-cycle arrest of primitive hematopoietic cells independent of p21(Cip1/Wafl) or p27(Kip1). Blood 2001, 98:3643-3649.
    62.Wu S, Cetinkaya C, Munoz-Alonso MJ, von der Lehr N, Bahram F, Beuger V, Eilers M, Leon J, Larsson LG: Myc represses differentiation-induced p21CIP1 expression via Miz-1 -dependent interaction with the p21 core promoter. Oncogene 2003, 22:351-360.
    63.Reya T, O'Riordan M, Okamura R, Devaney E, Willert K, Nusse R, Grosschedl R: Wnt signaling regulates B lymphocyte proliferation through a LEF-1 dependent mechanism. Immunity 2000, 13:15-24.
    64.Austin TW, Solar GP, Ziegler FC, Liem L, Matthews W: A role for the Wnt gene family in hematopoiesis: expansion of multilineage progenitor cells. Blood 1997,89:3624-3635.
    65.Willert K, Brown JD, Danenberg E, Duncan AW, Weissman IL, Reya T, Yates JR, 3rd,Nusse R: Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 2003,423:448-452.
    66.Reya T, Duncan AW, Ailles L, Domen J, Scherer DC, Willert K, Hintz L, Nusse R,Weissman IL: A role for Wnt signalling in self-renewal of haematopoietic stem cells.Nature 2003, 423:409-414.
    67.Li L, Milner LA, Deng Y, Iwata M, Banta A, Graf L, Marcovina S, Friedman C, Trask BJ, Hood L, et al.: The human homolog of rat Jagged1 expressed by marrow stroma inhibits differentiation of 32D cells through interaction with Notch1. Immunity 1998,8:43-55.
    68. Duncan AW, Rattis FM, DiMascio LN, Congdon KL, Pazianos G, Zhao C, Yoon K,Cook JM, Willert K, Gaiano N, et al.: Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nat Immunol 2005, 6:314-322.
    69. Chadwick N, Nostro MC, Baron M, Mottram R, Brady G, Buckle AM: Notch Signaling Induces Apoptosis in Primary Human CD34+ Hematopoietic Progenitor Cells. Stem Cells 2007,25:203-210.
    70. Bhardwaj G, Murdoch B, Wu D, Baker DP, Williams KP, Chadwick K, Ling LE,Karanu FN, Bhatia M: Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nat Immunol 2001, 2:172-180.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700