硼酸的纯化和硼酸铝晶须及其荧光体的制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硼化合物是无机盐工业的一个重要产品系列。多年来,相关的产品开发和理论研究一直是国内外研究的热点,特别在航空航天等高科技领域,受到了特别关注和重视。硼酸是硼化合物中应用最广泛的一种,不仅在于它自身的功能价值,更在于它是合成多数含硼功能产品的基本原料。然而,硼酸中的杂质及其含量限制了它的使用范围。更受限于国内硼酸纯化技术的缺陷,目前国内核工业和光学材料等一些特殊用途的硼酸基本依赖进口。考虑到我国是硼资源大国(其储量占世界各国储量的第5位),而辽宁省的硼资源位列全国第一,本文以国家和辽宁省的硼资源发展战略思想为依据,开展硼酸纯化及含硼功能材料合成研究。论文的主体框架结构是:以工业硼酸为原料,以光电级专用硼酸为目标,针对硼酸中所存在的金属杂质开展硼酸的定向纯化研究,在此基础上,结合本课题组高纯铝醇盐先进合成技术,开展高纯硼酸铝晶须及硼酸铝基发光材料的合成研究,解决其中的关键技术及技术基础问题,为提升硼酸和含硼材料使用性能,以及拓宽其应用领域提供技术支撑和理论依据。具体研究内容结果如下:
     1.采用络合-结晶法对工业硼酸进行定向纯化研究。基于化学溶度积和络合平衡理论,利用硼酸在不同温度下溶解度梯度和结晶特性,提出一种络合-结晶纯化技术。以光电级专用硼酸的纯度和杂质指标为指导,研究了络合剂种类、用量和溶剂体系等对硼酸中杂质脱除效果的影响;研究了结晶方式、结晶温度、结晶时间等工艺条件对杂质表面吸附或夹带的控制作用。实验采用电感耦合等离子体原子发射光谱(ICP-AES)、紫外-可见吸收光谱(UV-Vis-IR)对产品进行表征。通过实验数据归纳和理论分析形成了络合-结晶联合重结晶脱除硼酸中铁杂质技术体系,纯化后硼酸的铁含量从100μg/g降到1μg/g以下;硼酸纯度从98.7%提升到99.9%以上。该技术已在成都某企业得到应用,用于生产特种光学玻璃专用高纯硼酸。
     2.基于高纯硼酸和高纯铝醇盐制备硼酸铝晶须的研究。传统硼酸铝晶须均以无机铝源和硼酸、氧化硼等为原料制备。本文用异丙醇铝代替无机铝源,除了考虑到异丙醇铝的易溶胶化和易超细特性外,还考虑到原料纯度差异。在此基础上研究了硼酸铝晶须的生成反应规律和结晶特性。深入探讨了铝硼(Al/B)的摩尔比、前驱体的煅烧温度、煅烧时间等工艺条件对于硼酸铝晶须生长中的晶型和形貌的影响规律。同时,为了形成比较,也考察了传统无机铝源(氧化铝)以及分析纯硼酸作为反应原料的情况。通过热重-差热分析(TG-DTA)、X-射线衍射(XRD)、傅立叶变换红外光谱(FT-IR)、扫描电镜(SEM)、透射电镜(TEM)等表征手段对产物的结构和性质进行了分析。结果表明,原料的高纯度可以提高产物表面的洁净度以及保持维度的一致性,用铝醇盐和高纯硼酸代替无机铝源和分析纯硼酸可以降低硼酸铝晶须的直径,增大长径比。通过实验设计得到制备硼酸铝晶须的最优条件。在此条件下得到的Al18B4O33晶须的直径为200~400 nm,长度为8~10μm,长径比大于10。本研究为下面的稀土掺杂硼酸铝基荧光体的制备提供基础。
     此外,针对目前高温固相法合成硼酸铝晶须反应温度过高的问题,尝试了燃烧法制备硼酸铝晶须,通过设计合理的化学反应,实现了以尿素作为燃烧剂低温合成硼酸铝(A118B4O33)晶须,比传统高温固相法的反应温度降低200℃,为合成硼酸铝晶须的研究提供了新思路。
     3.稀土掺杂硼酸铝基质荧光体的合成与性能研究。分别采用Al18B4O33晶须离子包覆法和凝胶纳米包覆法制备了Eu3+和Tb3+双掺杂Al18B4O33荧光体,考察了样品的形貌特征及发光性能。与Al18B4O33晶须离子包覆法制备的荧光体相比,凝胶纳米包覆法制备的荧光体形貌更为均一有序,发光强度更强。因此本论文主要围绕以高纯硼酸和高纯异丙醇铝为反应物,凝胶纳米包覆法制备Eu3+和Tb3+双掺杂Al18B4O33荧光体展开研究。深入探讨Al/B的摩尔比、前驱体的煅烧温度、煅烧时间等工艺参数对Al18B4O33:Eu3+,Tb3+荧光体发光性能的影响。同时,为了比较原料纯度对发光材料发光性能的影响,制备了以普通硼酸和传统铝源(氧化铝)为初始原料的荧光体。结果发现,原料的纯度对荧光体的发光性能有显著影响,高纯度可以获得更强的发光强度。Eu3+和Tb3+共掺Al18B4O33荧光体是由晶态和无定形态组成的,Eu3+和Tb3+掺杂属于非晶格掺杂。而在Al/B=1:1的条件下,通过比较Eu3+和Tb3+共掺Al18B4O33与Eu3’单掺Al18B4O33的发射光谱,发现共掺样品中Eu3+的红色发光显著增强,说明在荧光体中,存在着Tb3+到Eu3+能量传递。
     此外,为了实现稀土离子Eu3+、Tb3+对硼酸铝基质的晶格掺杂以期提高发光效率及色纯度,采用凝胶纳米包覆法合成了Eu3+、Tb3+激发GdAl3(BO3)4高纯超细红色和绿色发光材料。实验着重研究了Gd3+的浓度对Al2O3-B2O3二元体系的晶体结构及发光性能的影响,以确定性能最优的荧光粉。结果发现,随着Gd3+浓度的增大,Al2O3-B2O3二元体系由正交晶系Al18B4O33过渡到六角晶系GdAl3(BO3)4,同时GdAl3(BO3)4的晶相含量增大,而且Gd3+对Eu3+和Tb3+的发光具有敏化作用,Gd3+还具有一定的猝灭浓度。
Boron compounds are an important series of products in the inorganic salts industry. The relative of products development and theory researches have become a hot topic, especially in the high tech domains, such as the Aerospace etc for many years. Boric acid is widely used in the boron compounds, not only its functional value, but also it is an essential raw materials for the synthesization of boron functional products. However, the impurities of boric acid has been limited its range of use, but also greatly limited the purification technology of boric acid in the domestic. Currently, some special purposes boric acid, such as optical materials and so on, basically depends on imports in the domestic markets. Considering our country owns massive boron resources (storage level stands third in the world), this dissertation, that is based on the national and liaoning province's boron resources developmental strategy, develops the removal of iron impurties of boric acid and the synthesis of aluminoborate functional materials. The main frame construction of dissertation is that:To take industrial boric acid as raw material develops the removal of iron impurties of boric acid which takes electro-optical level special-purpose boric acid as target. Based on this, it combines high pure aluminum alkoxide to research on the synthesis of aluminum borate whiskers and its fluorescence materials which solved key technologies and the technology based question, to promote boric acid and containing boron functional materials performance, as well as expands its application domains to provide the technical supports and the theory basis. The results are listed below:
     1. Use the complexation-crystallization method to conduct the directional purification of boric acid. Based on chemical solubility product and complexing balanced theory, the purified technology of complexation-crystallization, which applies the different solubility of boric acid at different temperature and crystal characteristic, has been proposed. The experiment has studied the types of complexant, amounts and solvent systems etc to affect the removal of iron impurities of boric acid, also studied technical conditions such as crystal temperatures, crystal ways, crystal time to control surface absorption or smuggles of impurities. ICP-AES, UV-Vis-IR adsorption were used to characterize the products. Having formed technical system of the complexation-crystallization method to remove iron impurities of boric acid through the experimental datum induction and theoretical analysis, the iron content of boric acid reduces from 100ug/g to lug/g; the purity of boric acid increases from 98.7% to 99.9%. Simultaneously, calcium, chromium, cobalt, nickel, titanium, copper imprities have been removed. This technology has been used to produce the special optical glass in chengdu some enterprise.
     2. To base on high pure boric acid and high pure aluminum alkoxide as reactants study the synthesis of aluminum borate whiskers. The traditional aluminum borate whiskers have been used inorganic aluminum sources, boric acid and boron oxide etc as raw materials. The dissertation, that studys formative reaction rule and crystal characteristic of aluminum borate, besides the consideration of the characteristic of raw material purity, replaces the inorganic aluminum sources with aluminum isopropoxide and combine solated superfine characteristic of aluminum isopropoxide, simultaneously, considering traditional aluminum source to form the comparison. Experimental study focused on the aluminum borate whiskers to control the crystal structure and morphology to grope the optimized synthetic method of aluminum borate whiskers. The technical conditions such as, molar ration Al/B, calcination temperature, calcination times, different aluminum sources, etc, which have affected the crystal structures and morphology formation, have been systematically investigated. TG-DTG, XRD, FT-IR, SEM, TEM were used to characterize the products. The results showed that high-purity raw materials can improve the cleanliness of the products surface and maintain the consistency of dimensions, replacing the traditional inorganic aluminum sources with the aluminum alkoxide can reduce the diameters of aluminum borate whiskers, increasing the aspect ration. In the optimal synthesis conditions, the whiskers are very neat and straight with an diameter ranging from 200 to 300nm and lengths ranging from 3 to 5μm, aspect ratio is greater than 10. This research provides the foundation for the following the synthesis of rare earth doping in aluminoborate.
     In addition, in view of the high temperature synthesis of aluminum borate whiskers by solid state reaction, combustion synthesis of Al18B4O33 Whiskers has been demonstrated through a rational chemical reaction, which realized the low temperature synthesis of Al18B4O33 Whiskers by urea as combustion agent. Comparing to the high temperature solid state reaction, combustion method reduces the reaction temperature 200℃to provide a new idea for the synthesis of aluminum borate whiskers research.
     3. Synthesis and characterization of rare earth doped aluminum borate phosphor. Al18B4O33 Whiskers ion-coating and gel nano-coating methods are synthesized Al18B4O33:Eu3+,Tb3+ phosphors, respectively. Comparing with Al18B4O33 Whiskers ion-coating method, gel nano-coating method abtainning products have a more uniform appearance and more luminous intensity. Therefore, this dissertation mainly focuses on the gel nano-coating method to synthesize Al18B4O33:Eu3+,Tb3+ phosphors. Considering traditional aluminum source to form the comparison and the technical conditions such as, molar ration Al/B, purity of raw materials, calcination temperature, calcination times, etc, which have affected Al18B4O33:Eu3+,Tb3+ phosphor luminescence intensity. The results showed that high purity of raw materials can increase the luminous intensity of the product and traditional inorganic aluminum salts are replaced with aluminum alkoxide to solve agglomeration disadvantages of high temperature solid state method. The fluorophor coexists the crystal phase Al18B4O33 and the aluminoborate glass phase and Eu3+, Tb3+ ions are incorporated into aluminobarate glass phase. When the molar ratio Al/B is equal to 1:1, it found that the emission spectra of Eu3+,Tb3+ co-doped Al18B4O33 samples significantly enhance the red light, indicating the phosphor existence of Tb3+ to Eu3+ energy transfer by comparing the Eu3+,Tb3+ co-doped Al18B4O33 with Eu3+ single-doped Al18B4O33.
     In addition, It uses gel nano-coating method to synthesize Eu3+, Tb3+ excitation GdAl3(BO3)4 high-purity ultra-fine red and green phosphors, basing on structural diversity from the realization of rare-earth ions Eu3+, Tb3+ doping aluminum borate crystal substrate to improve luminous efficiency and color purity. Experimental study focused on the Gd3+ concentration to affect the binary system Al2O3-B2O3 crystal structure and luminescence properties to determine the optimal performance of the phosphors. The results showed that Al2O3-B2O3 binary system turned into the hexagonal GdAl3(BO3)4 from the orthorhombic Al18B4O33, while GdAl3(BO3)4 crystal phase content increased with the increasing of Gd3+ content. Moreover, Gd3+ has the sensitization to Eu3+ and Tb3+ luminescence, Gd3+ also has a certain degree of quenching concentration.
引文
[1]司徒杰生,王光建,张登高.无机化工产品[M].北京:化学工业出版社,2004.
    [2]北京师范大学无机化学教研室.无机化学[M].北京:高等教育出版社,1993.
    [3]大连理工大学无机化学教研室.无机化学[M].北京:高等教育出版社,2006.
    [4]曹锡章,宋天佑,王杏乔.无机化学[M].北京:高等教育出版社,1998.
    [5]赵龙涛,李入林,张明海.影响硼酸结晶形状因素[J].海湖盐与化工,2003,32(5):15-17.
    [6]李金英,姚继军.硼酸甲酯蒸馏分裂ICP-MS法测量U3O8中的微量硼[J].质谱学报,1998,(3,4):113-114.
    [7]KUMAR S D, VENKATESH K, MAITI B. Determination of chloride in nuclear-grade boron carbide by ion chromatogyaphy[J]. [J]. Chromatographia,2004,59:243-245.
    [8]陶连印,郑学家.硼化合物的生产与应用[M].成都:成都科技大学出版社,1992.
    [9]金鑫.硼资源的深加工[J].辽宁化工,2001,30(7):320-322.
    [10]郑学家,肖景波,李武等.硼化合物生产及应用[M].北京:化学工业出版社,2007.
    [11]曲学孟.宽甸地区硼酸生产现状及展望[J].辽宁化工,2001,30(7):313-314.
    [12]郑学家.国内外硼酸生产技术综述[J].辽宁化工,2000,29(5):276-278.
    [13]韩井伟,李法强,彭正军.溶剂萃取法从提锂后盐湖卤水中提硼的工艺研究[J].化工矿物与加工,2007(8):23-26
    [14]王玉梅.从废水中提取硼[J].张家口师专学报,1993(3):58-61.
    [15]孔亚杰,韩丽娟,李海民.离子交换法从卤水中提取硼酸[J].无机盐工业,2006,38(2):10-11.
    [16]钟耀荣.硫酸法制硼酸过程中提高回收率的研究[J].化工矿山技术,1996,25(4):35-37.
    [17]杨春荣,吴致中,成富亮.硼酸生产的新工艺[J].化学世界,1985(9):322-324.
    [18]韩丽华,周之.“盐酸一步法”以硼镁矿为原料生产硼酸的研究[J].井矿盐术,1989(4):9-11.
    [19]Pascoal H B, Pontuschka W M, Rechenberg H. Luminescence quenching by iron calcium aluminoborate glasses[J]. Journal of Non-Crystalline Solids,1999,258:92-97.
    [20]张克从.晶体生长科学与技术[M].北京:科学出版社,1997.
    [21]张克从.晶体生长[M].北京:科学出版社,1991.
    [22]卡尔雅金,安捷洛夫.纯化学试剂[M].北京:高等教育出版社,1989.
    [23]威尔弗雷德L F阿玛瑞高,克里斯蒂娜L F.实验室化学品纯化手册(M).北京:化学工业出版社,2007.
    [24]叶铁林.化工结晶过程原理及应用[M].北京:北京工业大学出版社,2006.
    [25]化工百科全书编辑部.化工百科全书第9卷(M).北京:化学工业出版社,1995.
    [26]天津化工研究院.无机盐工业手册[M].北京:化学工业出版社,1996.
    [27]BERG. FRANTZ F. Boric acid purification:US,2113248[P].1938-04-05.
    [28]Duduta T. Process for purifying technical boric acid:RO,44564[P].1966-12-12.
    [29]BERTUCCI P, MAZZHINGHI P. Boric acid purification:JP,2520260[P].
    [30]王训银.痕量硼分离与富集方法的评述[J].核动力工程,1989,10(2):59-64.
    [31]傅以纯,刘永福.浓缩硼同位素的化学提纯与质谱分析[J].核化学与放射化学,1988,10(3):176-179.
    [32]吴长美.高纯硼10酸的制造方法[J].辽宁化工,2000,29(2):76-77.
    [33]白力英,金鑫,谢京林.硼酸三甲酯制备中的分离新方法[J].上海化工,1998,23(13):37-38.
    [34]GUENTHER T. Recent problems and limitations in the analytical characterization of high-purity material[J]. Talanta,1974,21(5):327-345.
    [35]陆九芳,李总成,包铁竹.分离过程化学[M].北京:清华大学出版社,1993.
    [36]化工百科全书编辑委员会.化工百科全书第10卷(M).北京:化学工业出版社,1993.
    [37]章兴华,龚国洪,刘世荣.含钙聚合氯化铝铁产品物相组成与稳定关系.[J].无机盐工业,2004,36(5):53-55.
    [38]CAPELLE R. Microdosage colorimetrique du bore dans les aciers par lempolol du reactif a lazomethine h [J]. Anal. Chim. Acta,1961,25(1):59-68.
    [39]Calkines R C, Slenger V A. Photometric determination of boron in titanium and its alloys[J]. Anal. Chem,1956,28(3):399-402.
    [40]NEWSTEAD E G,GULBIERZ J E. Carbon isotope evidence for the stepwise oxidation of the Proterozoic environment [J]. Anal. Chem,1957,29(12):1873-1875.
    [41]CHERVINSKAYA O V,MELESHKO V P, IZMAILOVA D R A.Purification of boric acid with ion exchangers,Obshchestva,1959(2):159-168.
    [42]BOSHOLM J, SCHEFFLER J.Boric acid separation and purification:DD,128121-A [P]. 1977-11-02.
    [43]LAKOT V. Purification of boric acid:CS,98632[P].1959-12-12.
    [44]WITZMANN H, MULLER-BUSCHBAUM H K. High purity boric acid by ion exchange, especially for the preparation of borate phosphors[J]. Fresenius'Zeitschrift fuer analytische Chemie,1958,159:348-352.
    [45]GNUSIN N P, GREBENYUK V D, TRAKHTENBERG A R, etal. Purification of boric acid:SU199121[P].1967-07-13.
    [46]KRASIL'SHCHIK V Z, MANOVA T G,CHUPAKHIN M S, et al.Boric acid purification: SU,509535[P].1980-08-15.
    [47]NIPPONLIGHT M, NIPPON C D. Boric acid electrolyte purification, involves impressing DC voltage between opposing anode and cathode in boric acid electrolyte:JP, 2001003196-A[P].2001-01-09.
    [48]JOHANNSEN K H. Purification of boric acid solution by reverse osmosis:D,153015-A [P].1981-12-16.
    [49]LIANG C H, TSAI C T, FANG C KA, et al. Boric acid purification and reuse system and method using reverse permeation:JP,2005147788[P].2005-06-09.
    [50]曾汉民.高技术新材料要览[M].北京:中国科学技术出版社,1993.
    [51]卡茨.塑料用填料及增强手册[M].北京:化学工业出版社,1985.
    [52]靳冶良,张志宏,李武.无机盐晶须材料的研究进展[J].海湖盐与化工,2002,31(5):4-12.
    [53]徐兆瑜.晶须的研究和应用新进展,2005,34(2):11-17.
    [54]IHARA M, IMAI M. Crystal structure of boronaluminate 9Al2O3. 2B2O3[J]. Yugyo Kyokishi,1980,33(2):77.
    [55]隗学礼,赵宽放.晶须及其增强塑料复合材料[J].现代塑料加工应用,2001,13(6):52-56.
    [56]孙新华.硼酸铝晶须的应用与制备[J].化工新型材料,1998,26(4):33-35.
    [57]HU J, FEI W D, LI C, et al. Interfacial reaction in aluminum borate whisker reinforced aluminum composites[J]. Sci. lett,1994,13(24):1797-1799.
    [58]胡晓兰,朱光明,梁国正.硼酸铝晶须及其在聚合物基复合材料中的应用[J].宇航材料工艺,2002(2):12-17.
    [59]李武,靳冶良,张志宏.无机晶须材料的合成与应用[J].化学进展,2003,15(4):264-273.
    [60]宋海胜.硼酸铝一维纳米材料的制备和改性.[D].武汉:华中师范大学凝聚态物理,2007.
    [61]OGAWA J,TAKEOKI R.The synthesis of aluminum borate whiskers:JP,330499 [P]. 1995-07-17.
    [62]隗学礼,赵宽放.硼酸铝晶须的研制,材料科学进展,1991,5(3):276-278.
    [63]READEY M J. Formation and sintering characteristics of aluminum borate whiskers [J]. J. Am. Ceram. Soc.1992,75:3452-3456.
    [64]TAKESHI N, TATEOKI H. Growing mechanism of self-bonding aluminum borate (9Al2O3.2B2O3) neddle-like crystals by a chemical reaction on solid-liquid interface [J]. J. Ceram. Soc. Jpn.1998,106(4):402-409.
    [65]PENG L M, LI X K, LI H,et al. Synthesis and microstructural characterization of aluminum borate whiskers [J].Ceramics. International,2006,32:365-368.
    [66]LI X J, NARITA T, DES MARAIS D J, STRAUSS H,OGAWA, et al. In situ synthesis of porous cermics with a framework structure of aluminium borate whisker[J]. J. Mater. Sci.1998,33:2061-2065.
    [67]PENG L M, ZHU S J, MA Z Y, et al. High temperature creep deformation of Al18B4O33 whisker-reinforced 8009 Al composite[J]. Mater. Sci. Eng. A.1999,265:63-66.
    [68]黄浩,钟辉,彭时利.助熔剂法制备硼酸铝晶须的方法与机理[J].矿产综合利用,2009,1:32-35.
    [69]高世扬,夏树屏.硼酸铝(9Al2O32B2O3)晶须的制备和性质[J].牙体牙龈牙周病学杂志,1997,7(1):42-44.
    [70]陈若愚,夏树屏,高世扬.硼酸铝晶须合成机理的研究[J].化学研究与应用,2001,13(5):513-516.
    [71]陈若愚,王国平,刘小华.硼酸铝晶须的制备和表征[J].化学矿物与加工,2002,31(8):10-12.
    [72]GIELISSE P J, FORSTER. The system Al2O3-B2O3[J]. Nature,1962,195(836):69-70.
    [73]李新华,翟玉春.熔剂法制备硼酸铝晶须的实验研究[J].化工冶金,1996,17(3):196-199.
    [74]WADA H,SAKANE K,KITAMURA H, et al. The reaction sequence in the synthesis of aluminum borate whiskers[J]. J. Mater. Sci,1996,31:537-544.
    [75]KIM S W, LEE S G, KIM J K, et al. Synthesis of aluminum borate whiskers via flux method with and without microwaves. [J]. J. Mater. Sci.2004,39:1445-1447.
    [76]赵铭妹,翟玉春.硼酸铝晶须的生长机理[J].化工冶金,1998,19(4):365-369.
    [77]赵铭姝,翟玉春,田彦文.高温熔剂法制备硼酸铝晶须的研究[J].材料科学与工艺,1998,6(3):81-83.
    [78]WADA H, SAKANE K, KITAMURA T. Synthesis of aluminum borate whiskers in potassium sulfate flux[J].J.Mater. Sci. Lett.1991,10(18):1076-1077.
    [79]黄松林.硼酸铝晶须及多孔陶瓷的制备和性能研究[D].武汉:武汉理工大学,2006.
    [80]黄松林,张东明,李佑俊.以TiB2作为硼源制备硼酸铝晶须的合成机理[J].武汉理工大学学报.2006,28(4):11-13.
    [81]MA R Z, BANDO Y, SATO T, et al. Single-Crystal Al18B4O33 Microtubes[J]. J. Am. Chem. Soc,2002,124(36):10668-10669.
    [82]CHENG C, TANG C, DING X X, et al. Catalytic synthesis of aluminum borate nanowires [J].Chem.Phys.Lett,2003,373:626-629.
    [83]CHENG C, DING X X, SHI F J,et al. Preparation of aluminum borate nanowires [J]. J. Cryst. Growth,2004,263:600-604.
    [84]LIU Y M, LI Q Q, FAN S S, et al. Self-catalytic growth of aluminum borate nanowires[J]. Chem. Phys. Lett.2003,375:632-635.
    [85]ZHANG J, LIN J, SONG H S, et al. Bulk-quantity fast production of Al4B2O9/Al18B4O33 single-crystal nanorods by a novel technique[J]. Mater. Lett,2006,60:3292-3295.
    [86]ZHANG J, HUANG Y, LIN J, et al. From Al4B2O9 Nanowires to BN-coated Al18B4O33 Nanowires [J]. J. Phys. Chem. B,2005,109(27):13060-13062.
    [87]ZHANG J, ELSANOUSI A, LIN JING, et al. Aerosol-assisted self-assembly of aluminum borate (Al18B4O33) Nanowires into three dimensional hollow spherical architectures[J]. Cryst. Growth. Des,2007,7(12):2764-2767.
    [88]SONG H S, LUO J J, ZHOU M D, et al. Multilayer quasi-aligned nanowires webs of aluminum borate. Cryst. Growth. Des,2007,7(3):576-579.
    [89]SONG H S, ZHANG J, LIN J, et al. Coating aluminum borate (Al18B4O33) nanowires webs with BN[J]. J. Phys. Chem. C,2006,111(3):1136-1139.
    [90]ELSSFAH E M, SONG H S, TANG CC, et al. Synthesis of aluminum borate nanowires via a novel flux method[J]. Mater. Chem. Phys.2007,101:499-504.
    [91]LI Y, CHANG P H. Synthesis and characterization of aluminum borate (Al18B4O33, Al4B2O9) nanowires and nanotubes[J]. Mater. Chem. Phys,2006,97:23-30.
    [92]TAO X Y, WANG X N, LI X D. Nanomechnical characterization of one-step combustion-Synthesized Al4B2O9 and Al18B4O33 nanowires [J]. Nano. Lett,2007,7(10): 3172-3176.
    [93]Ma R Z, BANDO Y, SATO T. Nanowires of metal borates[J]. Appl. Phys. Lett, 2002,81(18):3467-3469.
    [94]ZHU Y C, BANDO Y, MA R Z. Aluminum borate-boron nitride nanocables[J]., Adv. Mater,2003,15 (16):1377-1379.
    [95]ZHANG J, HUANG Y, LIN Y. Large-scale preparation of aluminum borate-coated aluminum oxide nanowires[J]. J. Solid. State. Chem.2005,178:2262-2266.
    [96]SONG H S, ELSSFAH E M, ZHANG J, et al. High-aspect-ratio Aluminum borate nanowires bundles supported by sucrose[J]. J.Phys.Chem.B,2006,110(12):5966-5969.
    [97]WANG J, SHA J, YANG Q, et al. Synthesis of aluminum borate nanowires by sol-gel method[J]. Mater. Res. Bull,2005,40:1551-1557.
    [98]ZHOU J, SU D, LUO J M, et al. Synthesis of aluminum borate nanorods by a low-heating-temperature solid-state precusor method[J]. Mater. Ress. Bull, 2009,44:224-226.
    [99]ELSSFAH E M, TANG C C, ZHANG J, et al.Low temperature performance of Al4B2O9 Nanowires[J]. Mater. Res. Bull,2007,42:482-486.
    [100]CHANG S L, LI S L, ZHAO H L, et al. Synthesis and proterties of Zn4B6O13:Eu3+[J]. Funet. Mater.2002,33(6):669-670.
    [101]ZHENG M Y, WU K, LIANG H, et al. Microstructure and mechanical proterties of aluminum borate whiskers-reinforced magnesium matrix composites [J]. Mater. Lett, 2002,57:558-564.
    [102]MA R Z, BANDO Y, GOLBERG D, et al. Nanotubes of magnesium borate[J]. Angew. Chem. Int. Edt.2003,42(16):1836-1838.
    [103]BECKER P. Borate materials in nonlinear optics. Adv. Mater.1998,10(13):979-982.
    [104]高玮,古宏晨.阴极射线管(CRT)用Y202S:Eu红粉的市场、生产和研究[J].稀土,1998,19(4):66-69.
    [105]杨智,任敏,林建华等.稀土硼酸盐的结构及其真空紫外(VUV)荧光性质[J].高等学校化学学报,200,21(9):1339-1343.
    [106]于振涛.具光学及光电功能硼酸盐和铀酰化合物:合成、结构及性能[D].吉林:吉林大学化学学院,2004.
    [107]何玲.红色稀土硼酸盐荧光粉的合成及其发光性能的研究[D].甘肃:兰州大学材料物理化学学院,2007.
    [108]张克从.晶体生长科学与技术(M).北京:科学出版社,1997.
    [109]LI X X, WANG Y H.The 14th International Conference on luminescence (ICL' 05), Beijing, China.,2005[C].
    [110]李小侠.Eu3+,Tb3+离子在三种硼酸盐中的VUV-Vis范围的发光性质研究.[D].甘肃:兰州大学材料物理化学学院,2007.
    [111]YOU H P, HONG G G. The change of Eu3+-surround ings in the system Al2O3-B2O3 containing Eu3+ ions[J]. J. Phys. Chem. Solids,1999,60:325-329.
    [112]YOU H P, HONG G G, WU X Y. A new type of highly efficient luminescent materials-The syntem Al2O3-B2O3 containing Ce3+ and Tb3+ ions[J]. Chem. Mater,2003,15(10):2000-2004.
    [113]YOU H P, HONG G G, ZENG X Q, et al. VUV excitation properties of LnAl3B4O12:Re (Ln=Y,Gd; Re=Eu, Tb)[J]. J. Phys. Chem Solids,2000,61:1985-1988.
    [114]孟金贤,姚艳红,康振晋.Gd1-xEu,Al3(BO3)4纳米晶的合成及其发光性能[J].发光学报,2007,28(1):79-82.
    [115]LI X X, CHEN Z, WANG Y H. The influence of Y3+, Sc3+ and Bi3+ on the photoluminescence of GdAl3(BO3)4:Eu3+ under UV and VUV excitation[J]. J. Alloy. Compd,2009,472: 521-524.
    [116]刘瑞阳,何大伟,康凯等.(Y, Gd)Al3(BO3)4:Tb的真空紫外光谱特性[J].光谱学与光谱分析,2005,25(7):1034-1037.
    [117]肖林久,辛易,贺明睿等.GdAl3(BO3)4:Eu3红色荧光粉的结构和荧光特性[J].沈阳化工学院学报,2007,21(2):81-83.
    [118]WALRAND C, HUYGEN E, BINNEMANS K, et al. Optical absorption spectra, crystal-field energy levels and intensities of Eu3+ in GdAl3(BO3)4[J]. J. Phys. Condens.Mater,1994,6:7797-7812.
    [119]周建国,赵凤英,张秀英.Al18B4O33:Eu, Tb三基色荧光体系的合成与光谱特征[J].化学通报,1999,(1):28-31.
    [120]周建国,赵凤英,郭宝生.含Eu3+、Tb3+硼酸铝磷光体的制备及荧光特性[J].化学研究与应用,2000,12(4):409-411.
    [121]ELSSFAH E, TANG C C. Fron Al4B2O9 nanowires to Al18B4O33:Eu nanowires[J]. J. Phys. Chem. C,2007,111(23):8176-8179.
    [122]王育华,远腾忠,都云昆.GdAl3(BO3)4:Eu3+荧光粉的光致发光特性[J].无机材料学报,2004,19(4):772-777.
    [123]LI X X, WANG Y H, HAO Y, et al. Luminescence properties of Gd1-xEuxAl3(BO3)4 (0.05≤X≤1) under ultraviolet, vacuum ultraviolet and cathode ray excitation[J]. J. Electrohem. Soc,2006,153(9):807-810.
    [124]WANG Y H, LI X X. Synthesis and photoluminescence properties of LnAl3(BO3)4:Eu3+ (Ln=La3+, Gd3+) under UV and VUV exci tat ion [J]. J. Electrohem. Soc,2006,153(3): 238-241.
    [125]LI X X, WANG Y W. Synthesis of Gd1-xTbxAl3(BO3)4(0.05≤X≤1) and its luminescence properties under VUV excitation. J. Lumin,2007,122-123:1000-1002.
    [126]LI X X, WANG Y H. Synthesis and photoluminescence properties of (Y, Gd) Al3(BO3)4:Tb:3+ under VUV excitation[J]. Mater. Chem. Phys,2007,101:191-194.
    [127]FUCHS E C, SOMMER C, WENZL F P, et al. Polyspectral white light emission from Eu3+, Tb3+, Dy3+, Tm3+ co-doped GdAl3(BO3)4 phosphors obtained by combustion synthesis [J].Mat. Sci. Eng B-Solid,2009,156:73-78.
    [128]YANG C H, YANG G F, PAN Y X, et al. Synthesis and spectroscopic properties of GdAl3(BO3)4 poly-crystals codoped with Yb3+ and Eu3+[J]. J Fluoresc,2009,19:105-109.
    [129]张祥麟.络合物化学[M].北京:冶金工业出版社,1979.
    [130]化学工业部.化学试剂标准大全[M].北京:化学工业出版社,1995.
    [131]KAMITSOS E I, KIARAKASSIDES M A,CHRYSSIKOS G D. Vibrational spectra of magnesium-sodium-borate glasses.2. Raman and mid-infrared investigation of the network structure[J]. J. Phys. Chem.1987,91(5):1073-1079.
    [132]CHESSICK J J, Zettlemoyer A C. Studies of the surface chemistry of silicate minerals. IV. Adsorption and Heat of Weating measures of attapulgite[J]. J. Phys. Chem.1956,60(9):1181-1184.
    [133]LAPERCHES JP, TARTE P. Spectres d'absorption infrarouge de borates de terres rares. Spectrochimica Acta 1966,22(7)1201-1210.
    [134]MAZZA D,VALLINO M, BUSCA G. Mullite-type structures in the system Al2O3-Me2O (Me=Na, K)and Al2O3-B2O3[J]. J. Am. Ceram. Soc,1992,75(5):1929-1934.
    [135]宁桂玲.Al2O3纳米粉的制备过程及不同形状纳米颗粒形成机理的研究[D].辽宁:大连理工大学化工学院,1996.
    [136]HOOPER R M, MCARDLE B J, NARANG R S, et al. Crystallization from solution at low temperature[M]. Oxford:Pergamon Press,1980.
    [137]GIELISSE P J M, FOSTER W R. The system Al2O3-B2O3. Nature,1962,195:69-70.
    [138]ALI A B, AWALEH M O, LEBLANC M,, et al.Hydrothermal synthesis, crystal structure, thermal behaviour, IR and Raman spectroscopy of Na3Y (CO3)36H2O. C. R. Chimie. 2004,7(6-7):661-668.
    [139]YOU H P, HONG G Y, ZE5NG X Q, et al.VUV excitation properties of LnAl3B4O12:(Ln=Y, Gd, Re=Eu, Tb)[J]. J. Phys. chem. sol,2000,61:1985-1988.
    [140]张慰萍,MAYOLET A, KRUPA J C.真空紫外激发下Tb3+的稀士正硼酸的发光[J].材料研究学报,1999,13(3):234-238.
    [141]WANG Y H, GAO H. Vacuum ultraviolet optical properties of (Gd, Y)AlO3:Tb3+ [J]. Eletrochemical and solid-state letters,2006,9(4):19-21.
    [142]孙家跃,杜海燕.固体发光材料[M].北京:化学工业出版社,2003.
    [143]刘应亮,石春山.Eu3+在BaF2-xYF3体系中光谱性质及其对Tb3+的能量传递[J].应用化学,1994,11:38-41.
    [144]胡晓云,樊君,李婷等.Eu,Tb共c掺Si02凝胶基质三基色荧光体系[J].科学通报,2008,51(22):2602-2606.
    [145]杨雪峰.铝酸盐基质发光材料的制备新工艺及铁杂质猝灭研究[D].辽宁:大连理工大学化工学院,2008.
    [146]李艳凤.铁和铜对铕激活发光材料发光性能的猝灭研究[D].辽宁:大连理工大学化工学院,2006.
    [147]朱昭捷,李坚富,吴柏昌等.GdAl3(BO3)4及其Yb3+激活激光晶体的研究[J].人工晶体学报,2008,37(3):507-513.
    [148]潘文.硅酸盐基磷光体的制备、表征及性能研究[D].辽宁:大连理工大学化工学院,2008.
    [149]BLASSE G, VAN VLIET J P M, VERWEY J W M, et al. Luminescence of InBO3:Bi3+[J]. J. Phys. Chem. Solids,1989,50(6):583-585.
    [150]KELLENDONK F, BLASSE G. Luminescence and energy transfer in EuAl(BO3)4[J]. J. Chem. Phys,1981,75(2):561-571.
    [151]TSUBOI T. Absorption spectra due to the 4f7→4f7 transition of Gd3+ in GdAl3(BO3)4 crystals[J]. J. Phys. Condens. Matter,1998,10:9155-9159.
    [152]KRUPA J C, QUEFFELEC J. UV and VUV optical excitations in wide band gap materials doped with rare ions:4f-5d transitions[J]. Journal of Alloys and compounds, 1997,250(1-2):287-292.
    [153]李光值.铕、铽离子掺杂的核-壳结构发光材料的制备及发光性能研究[D].吉林:东北师范大学物理化学,2007.
    [154]任周云.稀土掺杂硼铝酸盐荧光粉的合成与发光性能的研究.吉林:吉林大学物理化学,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700