稀土掺杂金属氧化物微/纳米结构的液相合成、表征和荧光性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀土掺杂的金属氧化物微/纳米材料在纳米器件、光电器件、微传感器、催化、气敏以及磁性等领域有着广泛的应用前景。发展新的合成方法,获取特定尺寸、形貌、维度、单分散性的微/纳米材料并探索其形成机制,对深入系统研究微/纳米结构与性能的关系,构建新型稀土掺杂金属氧化物微/纳米结构体系,最终实现材料的工业应用具有重要意义。本论文对Eu3+、Dy3+、Sm3+等稀土离子掺杂CeO2、Ga2O3、LaVO4和YBO3等基质的微/纳米材料的液相调控合成及其荧光性质进行了详细研究,并对微/纳米材料的形貌、形成机制和晶粒尺寸等因素与荧光性能之间的相关性进行了探索。通过大量的实验与分析,取得了一些创新性成果。
     发展了一种高分子表面活性剂(聚乙烯吡咯烷酮,PVP)辅助的水热法合成稻草状CeO2:Sm3+微米晶的水热-分解路线。通过改变初始浓度,反应时间及温度,PVP含量等参数有效地控制了CeO2:Sm3+的形貌。实验结果表明稻草状CeO2:Sm3+(5.0at.%)微米晶表现出最好的荧光强度,并且升高退火温度可以提高其黄光和蓝光的发射强度。提出了一种乙醇-水混合体系合成单分散纳米晶的溶剂热路线。以Ce(NO3)3、Eu(NO3)3和NH3·H2O为原料,控制醇-水体系pH为9,180℃下反应12h获得晶粒尺寸小于100nm的单晶结构的立方萤石型CeO2:Eu3+纳米晶。样品表现出良好的紫外吸收性能,能将吸收的能量有效传输给Eu3+,在593、612、632nm处发射较高强度的橙红光。
     采用CTAB辅助的水热合成技术,控制CTAB含量为0.6g,初始pH为9,160℃水热反应24h能够获得晶化程度高且单分散性好的方片状Ga2O3:Dy3+纳米晶。通过考察初始溶液pH值,CTAB含量,反应温度和反应时间等参数对Ga2O3:Dy3+样品的形貌和物相结构的影响,提出了方片状样品的形成机制。试验发现Dy3+的掺杂提高了Ga2O3基质与Dy3+之间的能量传递和发光效率。掺杂6at.%Dy3+的方片状样品具有最强的蓝光发射。通过简单的水热反应,以Ga2O3、Eu2O3、HCl和NaOH为基本原料,控制pH为6,140℃下反应10h获得GaOOH:Eu3+棒状前驱体,再热分解可得形貌保持的Ga2O3:Eu3+纳米棒。通过控制母液pH能很好地调节产品的纵横比,进而控制样品的形貌。棒状α-Ga2O3:Eu3+和β-Ga2O3:Eu3+能吸收波长小于275nm的紫外光,其能带隙分别为4.40 eV和4.30 eV。样品的形貌和物相结构对其色纯度、荧光强度有较大影响,其中棒状β-Ga2O3:Eu3+比α-Ga2O3:Eu3+具有更好的发光强度和较大的红橙比(R/O)。
     建立了一种pH调控水热合成新颖多面体LaVO4:Dy3+纳米晶的新方法。通过调节初始pH、反应时间以及煅烧温度等参数,实现了对LaVO4:Dy3+多面体的晶粒尺寸、物相结构、形貌以及化学组成的有效调控。多面体LaVO4:Dy3+纳米晶的最佳水热合成工艺条件为:初始溶液pH为9,水热温度为160℃,反应时间≥24h。LaVO4:Dy3+多面体具有较强的黄光发射和较高的色纯度。升高退火温度能不同程度地强化多面体的蓝光和黄光发射,而且其蓝光强度增大速率远大于其黄光。建立了EDTA络合-水热合成LaVO4:Sm3+纳米棒的新方法。考察了EDTA浓度、前驱体溶液pH、反应时间、反应温度以及不同反应底物等因素对产物的晶相、尺寸和形貌的影响,发觉络合剂(EDTA)所扮演的鳌合物基体和诱导试剂的双重作用是样品从单斜独居石型结构向四方锆石型结构转变和晶体一维生长机制的重要因素。荧光结果说明棒状t-LaVO4:Sm3+比m-LaVO4:Sm3+晶体具有更优越的红光发射,相比其它形貌,棒状晶体中的Sm3+含量较高,表现出较强的三个特征发射峰,并且在4G5/2→6H5/2处发射峰强度的增加速率高于4G5/2→6H9/2处的发射峰。另外,t-LaVO4:Sm3+纳米棒的4G5/2→6G7/2的跃迁可望实现红色激光输出。
     设计了一条简单的、环境友好的乙醇-水混合溶剂热法合成新颖鱼骨状LaVO4:Eu3+微/纳米晶体的合成路线。系统考察了各反应参数对样品形貌和物相结构的影响,提出了鱼骨状晶体的生长机制。初始pH=9,乙醇含量20 ml,Eu掺杂浓度为4.0 at.%,水热温度160℃反应24h时所得的样品是规整形貌的鱼骨状LaVO4:Eu3+纳米晶并表现出最强的红光发射。鱼骨样品的Eu3+的5D1-7F2跃迁发射的衰减曲线遵循指数衰减规律,其荧光寿命稍长于棒状样品,是一种颇具前途的红色荧光粉
     建立了乙二醇-水混合溶剂热法以及表面活性剂(PVP)辅助的水热法,通过控制乙二醇浓度及PVP含量,分别获得了新颖花瓣扇形和夹心薄饼状的YBO3:Eu3+微/纳米晶。研究了晶体结构、颗粒形貌、荧光性能与生长行为的相关性。详细考察了不同形貌样品的紫外吸收性能和荧光特性。实验结果显示,花瓣扇形样品具有优异的红光发射,是彩色等离子平板显示器(PDP)用红色荧光粉的理想材料。
Metal oxide micro-/nanomaterials doped with rare earth ions have enormous potential applications in photoelectric devices, nanodevices, sensors, catalysis and magnetism due to its special physical and chemical properties. Preparation of micro/nanomaterials with well-defined size, morphology dimensionality and diversity through novel synthesis approaches and investigation of their formation mechanism should be a key precodition to reveal the relation between the structures and properties, fabricate a novel micro/nano-structure system for metal oxides doped by rare earth ions and pave the way to real applications. New solution-based manipulated synthetic strategies and fluorescent properties of CeO2, Ga2O3, LaVO4 and YBO3 micro/nanomaterials doped by Eu3+, Dy3+ and Sm3+, respectively, have been detailedly investigated in this dissertation. The valuable explorations have been carried out on the relationship between fluorescence and size/morphology of the prepared micro/nanomaterials. Some new and interesting results were achieved and listed as follows.
     A new hydrothermal-decomposition method was developed to prepare straw-like CeO2:Sm3+ microcrystals in water solution assisted by macromolecule surfactant (PVP). Herein, the morphologies could be well-controlled through the changes of original concentration, reaction time and temperature as well as the content of PVP. Straw-like CeO2:Sm3+(5.0 at.%) microcrystals prepared exhibited the best fluoresence intensity in comparation with other shapes, and high annealing temperature was helpful to enhance intensities of yellow and blue emission. Besides, a simple solovthermal route was proposed to synthesize monodispersed nanocrystals in ethanol-water mixed solution. Employing Ce(NO3)3, Eu(NO3)3 and NH3·H2O as reaction materials, cubic fluorite CeO2:Eu3+ with single crystal structure, the diameter of which was shorter than 100 nm, could be prepared in the solution with the pH value of 9 at 180℃for 12 h. CeO2:Eu3+ nanocrystal possessed a good ultraviolet absorption and effectively transmited the absorbed energy to Eu3+, resulting in high strength emissions at 593,612, and 632 nm, respectively. The hydrothermal/ solvothermal methods are availed to controlled synthesize polymorphological CeO2:Ln3+ micro-/nanocrystals.
     When the content of CTAB was 0.6 g, and the pH value of solution was 9, as well as the reaction was carried out at 160℃for 24 h, monodispersed squarelike Ga2O3:Dy3+ particles with well-crystallization could easily synthesized via hydrothermal route assisted by CTAB. The effects of pH, the content of CTAB, reaction time and temperature on the morphology and structure of the sample were detailedly discussed. The formation mechanism of squarelike Ga2O3:Dy3+ nanocrystals was proposed. It was found that the doping of Dy3+ enhanced the efficiency of energy transfer between Ga2O3 and Dy3+ and improved its luminescence, and squarelike Ga2O3:Dy3+ nanocrystal with doped Dy3+of 6 at.% showed the highest blue emisssion. With Ga2O3, EU2O3, HCl and NaOH as original materials, a simple hydrothermal method was applied to prepare rodlike GaOOH in water solution with the pH value of 6 at 140℃for 10 h. The as-prepared GaOOH could be decomposed thermally into Ga2O3:Eu3+ nanorod. It was found that the aspect ratios and morphologies of the samples could be well-controlled by adjusting pH values of the solutions. Both a-Ga2O3:Eu3+and p-Ga2O3:Eu3+ could absorb ultraviolet radiation (≤275 nm), and the energy bands of which were 4.40 and 4.30eV, respectively. The morphologies and crystal structures of the obtained samples showed significant influences on color purity, fluorescene intensity of the samples. Rodlikeβ-Ga2O3:Eu3+ had better luminous intensity and a larger ratio of red emission to orange emission than rodlikeα-Ga2O3:Eu3+.
     A simple hydrothermal method was adopted to synthesize a novel polyhedron LaVO4:Dy3+ nanocrystal. For LaVO4:Dy3+polyhedrons, the crystal size, crystal structure, shapes and chemistry constituent of the samples could be controlled by adjusting the parameters of pH, reaction time and temperature, which have been synthesized in the solution with the pH value of 9 at 160℃for more than 24 h. It was found that the as-prepared polyhedron showed higher color purity and stronger yellow emission. Higher annealing temperatures for the samples enhanced the intensities of blue and yellow emission, and the increasing rate of intensity from blue emisssion was more larger than yellow emission. Furthermore, a novel complexing-hydrothermal method assisted by EDTA was also proposed to synthesize LaVO4:Sm3+ nanorods. The effects of concentration of EDTA, pH values, reaction time and temerature on crystal structure, size and morphology of the samples were discussed. It was found that double reactions of mating reaction and induction behavior from EDTA played important roles for LaVO4:Sm3+ to accomplete the transformation from monoclinic (m-) structure to tetragonal (t-) phase and to facilely form nanorods. Rodlike t-LaVO4:Sm3+ showed higher red emisssion than m-LaVO4:Sm3+ nanorod. The content of Sm3+ of nanorod was more than the sample with other shapes, taking on three stronger characteristic emisssions. Increasing rate of emission intensity from 4G5/2→6H5/2 was higher than that of emission from 4G5/2→6H9/2. Besides,4G5/2→6G7/2 transition of t-LaVO4:Sm3+ nanorod could be used as red laser output.
     A simple and environmentally friendly solvothermal strategy was designed to fabricate a novel fishbonelike LaVO4:Eu3+micro-/nanocrystals in mixed ethanol-water solution. The formation mechanism for fishbonelike LaVO4:Eu3+ crystal has been investigated in detail after the effects of experimental parameters on the structure and morphology of the samples were disscussed. A great deal of fishbonelike LaVO4:Eu3+ crystals with stronger red emission could be facilitatedly synthesized when the content of ethanol was 20 ml, the concentration of Eu3+ was 4.0 at.% and the pH value of solution was 9, as well as the reaction was carried out at 160℃for 24h. The delay curve from 5D1-7F2 transition of Eu3+ in the as-prepared crystals accorded to exponential delay rule. The fluorescence lifetime of 5D1-7F2 transition of Eu3+ for fishbonelike LaVO4:Eu3+ crystal was a little longer than rod-like sample. As a red phosphor, fishbone-like LaVO4:Eu3+did possess the undoubted advantages.
     YBO3:Eu3+ micro/nanocrystals with novel morphologies of petal sector and sandwich cake were synthesized by surfactant-assisted hydrothermal/solvothermal methods. The studies on the crystal growth revealed the relationship among the crystal Structures, the morphology and fluorscence.The experimental results from ultraviolet light absorbancy and fluorescence properties presented by YBO3:Eu3+ crystals with various morphologies indicated that petal sector-like YBO3:Eu3+ possessed some red emission advantages than the others, becoming a promising candidate of PDP red phosphor.
引文
[1]R.P. Feynman, The Man Who Dared to think Small. Science,1991,254,1300.
    [2]张立德,牟季美.纳米材料和纳米结构.科学出版社.2001,140-146.
    [3]王世敏,许祖勋,傅晶.纳米材料制备技术.北京:化学工业出版社,2001.1-105.
    [4]A.P. Davis. Synthetic molecular motors. Nature,1999,401:120-125.
    [5]P. Shor, R.Y. Kain. Analog Computational Power. Science,1996,271:92-97.
    [6]Y. Masumoto, Luminescence and lasing of CuCl nanocrystals Yasuaki Masumoto Journal of Luminescence,1994,60-61:256-261.
    [7]J. Q. Xiao, J. S. Jiang, C. L. Chien. Giant magnetoresistance in nonmultilayer magnetic systems. Physical Review Letters..1992,68:3749-3751.
    [8]J. J. Pietron, R. Stroud, M.Rolisn, et al. Using Three Dimensions in Catalytic Mesoporous Nanoarchitectures. Nano Letters,2002,2 (5):545-549.
    [9]A.E.Berkoowitz, J.R.Mitchell, M.J.Carey. Giant Magnetoresistance in Heterogenous Cu-Co Alloys. Physical Review Letters,1992,68 (25):3745-3748.
    [10]M.Li, H. Schnabiegger, S. Mann. Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization. Nature,1999,402: 393-395.
    [11]S. Mann. Synthesis of barium sulfate from surfactant-inorganic nanoparticles. Angewandte Chemie International Edition,2000,39:3392-3406.
    [12]L.A.Estroff, A.D.Hamilton, At the Interface of Organic and Inorganic Chemistry:Bioinspired Synthesis of Composite Materials. Chemistry of Materials,2001,13:3227-3235.
    [13]S.Mann, G.A.Ozin. New Biological Synthetic Route Preparation Silica Nano-Particles. Nature,1996,382:313-316.
    [14]H.Yang, N.Coombs, G A.Ozin. Morphologenesis of shapes and surface patterns in mesoporous sillica. Nature,1997,386:692-695.
    [15]L. S. Li, J.T. Hu, A. P. Alivisatos, et al. Band Gap Variation of Size-and Shape-Controlled Colloidal CdSe Quantum Rods. Nano Letters,2001,1(7): 349-351.
    [16]J.T. Hu, L.S Li,W.D. Yang, et al. Linersly Polarized Emission from Colloidal Semiconductor Quantum Rods. Science,2001,292:2060-2063.
    [17]S. V. Gaponenko in Optical Properties of Semiconductor Nanocrystals, Cambridge University Press, New York,1998,23-29.
    [18]Y. Xia, P. Yang, Y. Sun, Y. Wu, et al. One-Dimensional Nanostructures: Synthesis, Characteriztion, and Applications. Advanced Materials,2003,15 (5): 353-389.
    [19]E. P. A. M. Bakkers, M. A. Verheijen, Synthesis of InP Nanotubes. Journal of the American Chemical Society,2003,125:3440-3441.
    [20]P.X. Gao, Z. L. Wang. Substrate Atomic-Termination-Induced Anisotropic Growth of ZnO Nanowires/Nanorods by the VLS Process. Journal of Physical Chemistry B,2004,108:7534-7537.
    [21]J. Goldberger, R. He, P.Yang, et al. Single-crystal gallium nitride nanotubes. Nature,2003,422:599-602.
    [22]W. Y. Kong, Y. Ding, Z. L.Wang, et al. Single-Crystal Nanorings Formed by Epitaxial Self-Coiling of Polar Nanobelts. Science,2004,303:1348-1351.
    [23]M. Christopher, Y. Ding, Z. L. Wang, et al. Single-Crystal CdSe Nanosaws. Journal of the American Chemical Society,2004,126:708-709.
    [24]Y.S. Zhang, L.S. Wang, Jing Zhu, et al. Synthesis of Nano/Micro Zinc Oxide Rods and Arrays by Thermal Evaporation Approach on Cylindrical Shape Substrate. Journal of Physical Chemistry B,2005,109:13091-13093.
    [25]D. F. Zhang, L. D. Sun, J. L. Yin, C.-H. Yan, Low-Temperature Fabrication of Highly Crystalline SnO2 Nanorods. Advanced Materials,2003,15:1022-1025.
    [26]C. Liu, B. Zou, A. J. Rondinone, Z. J. Zhang,et al. Reverse Micelle Synthesis and Characterization of Superparamagnetic MnFe2O4 Spinel Ferrite Nanocrystallites. Journal of Physical Chemistry B,2000,104 (6):1141-1145.
    [27]Y.J Lee, J.W. Lee, T. G. Hyeon, et al. Large-Scale Synthesis of Uniform and Crystalline Magnetite Nanoparticles Using Reverse Micelles as Nanoreactors under Reflux Conditions. Advanced Functional Materials,2005,15(3):503-509.
    [28]J. Tang, M. Myers, K. A. Bosnick, L. E. Brus, Magnetite Fe3O4 Nanocrystals: Spectroscopic Observation of Aqueous Oxidation Kinetics. Journal of Physical Chemistry B,2003,107:7501-7506.
    [29]T. Ishikawa, E. Matijevic, Preparation and properties of uniform colloidal metal phosphates:Ⅲ. Cobalt(Ⅱ) Phosphate. Journal of Colloid Interface Science,1998, 123:122-128.
    [30]Y. S. Kang, S. Risbud, P. Stroeve, et al. Synthesis and Characterization of Nanometer-Size Fe3O4 and γ-Fe2O3 Particles. Chemistry of Materials,1996,8: 2209-2211.
    [31]S. W. Chung, D. S. Ginger, C. A. Mirkin, et al. Top-Down Meets Bottom-Up: Dip-Pen Nanolithography and DNA-Directed Assembly of Nanoscale Electrical Circuits. Small,2005,1(1):64-69.
    [32]A. Benzyadin, C. Dekker,G. Schmid. Electrostatic trapping of single conducting nanoparticles between nanoelectrodes. Applied Physics Letters,1997,71: 1273-1275.
    [33]A. P. Alivisatos. Electrostatic trapping of single conducting nanoparticles between nanoelectrodes, Nature Biotechnology,2004,22:47-52.
    [34]G. Schmid, Y. P. Liu. Quasi One-Dimensional Arrangements of Au55(PPh3)12Cl6 Clusters and Their Electrical Properties at Room Temperature. Nano Letters, 2001,1,405-407.
    [35]L. E. Brus. Electron-electron and electron-hole interactions in small semiconductor crystallites:The size dependence of the lowest excited electronic state. Journal of Physical Chemistry,1984,80:4403-4408.
    [36]Y. Chen, Y.S. Wang, F. Bao,et al.. Shape control of monodisperse CdS nanocrystals:Hexagon and pyramid. Journal of Physical Chemistry B,2006, 110:9448-9451.
    [37]Q. Song, Z. J. Zhang. Shape Control and Associated Magnetic Properties of Spinel Cobalt Ferrite Nanocrystals. Journal of the American Chemical Society, 2004,126:6164-6168.
    [38]N. R. Jana, Y. Chen, X. Peng. Size-and Shape-Controlled Magnetic (Cr, Mn, Fe, Co, Ni) Oxide Nanocrystals via a Simple and General Approach. Chemistry of Materials,2004,16:3931-3935.
    [39]J. Cheon, N. J. Kang, S.-M. Lee, et al. Shape Evolution of Single-Crystalline Iron Oxide Nanocrystals. Journal of American Chemical Society,2004,126: 1950-1951.
    [40]T. A. Heimer, G. J. Meyer. Luminescence of charge transfer sensitzers anchored to metal oxide nanoparticles. Journal of Luminecence,1996,70(1-6):468-4781
    [41]R.Mauricot, J. Dexpert-Ghys, M.Evain. Photoluminescence of the undoped y-Ln2S3 and doped γ-[Na]Ln2S3 rare earth sulfide (Ln=La, Ce). Journal of luminescence,1996,69(1):41-48.
    [42]X. Peng, L. Manna,W.Yang, J. Wickham, E. Scher, A. Kadavanich, A. P. Alivisatos. Nature,2000,404:59.
    [43]H. Zhang, X.Ren, Z.L.Cui. Shape-controlled synthesis of Cu2O nancrystals assisted by PVP and application as catalyst for synthesis of carbon nanofibers. Journal of Crystal Growth,2007,304:206-210.
    [44]H. Ogihara, S. Masahiro, Y. Nodasaka, et al. Sythesis, characterization and formation process of transition metal oxide nanotubes using carbon nanofibers as template. Journal of Solid State Chemistry,2009,182:1587-1592.
    [45]Y. Jun, M. F. Casula, J.-H. Sim, et al. Alivisatos, Surfactant-Assisted Elimination of a High Energy Facet as a Means of Controlling the Shapes of TiO2 Nanocrystals. Journal of the American Chemical Society,2003,125, 15981-15985.
    [46]Y. Zhang, E. Shi, Z. Chen, et al. Influence of solution concentration on the hydrothesis preparation of titaia crystallites. Journal of Materials Chemistry, 2001,11:1547-1551.
    [47]T. Kasuga, M. Hiramatsu, A. Hoson, et al. Titania nantubes prepared by chemical processing. Advanced Materials,1999,11(15):1307-1311.
    [48]Z.Y. Yuan, B.L.Su. Titanium dioxide nanotubes, nanofibers and nanowires. Colloids and Suefaces A:Physicochemical and Engineering Aspects,2004,241: 173-183.
    [49]C. Pacholski, A. Kornowski, H. Weller, Self-Assembly of ZnO:From Nanodots to Nanorods. Angewandte Chemie International Edition,2002,41:1188-1191.
    [50]J. H. Yu, Jin Joo, T. Hyeon, et al. Synthesis of Quantum-Sized Cubic ZnS Nanorods by the Oriented Attachment Mechanism. Journal of the American Chemical Society,2005,127:5662-5670.
    [51]K.S. Cho, D. V. Talapin, Christopher B. Murray, et al. Designing PbSe Nanowires and Nanorings through Oriented Attachment of Nanoparticles. Journal of the American Chemical Society,2005,127,7140-7147.
    [52]J. Park, E.Kang, T.G. Hyeon, et al. Synthesis, Characterization, and Magnetic Properties of Uniform-sized MnO Nanospheres and Nanorods. Journal of Physical Chemistry B,2004,108:13594-13598.
    [53]K. Lee, W. S. Seo, J. T. Park. Synthesis and Optical Properties of Colloidal Tungsten Oxide Nanorods. Journal of Physical Chemistry,2003,125: 3408-3409.
    [54]M. Yin, Y. Gu, Stephen O'Brien, et al.. Zinc Oxide Quantum Rods. Journal of the American Chemical Society,2004,126:6206-6207.
    [55]Z.T. Liu, X. Li, Z.W. Liu. Synthesis and catalytic behaviors of cobalt nanocrystals with special morphologies. Powder Technology,2009, 189:514-519.
    [60]A. Ghezelbash, B. A. Korgel. Nickel Sulfide and Copper Sulfide Nanocrystal Synthesis and Polymorphism. Langmuir,2005,21:9451-9456.
    [56]J. Seo, Y. Jun, S. J. Ko, J. Cheon, et al. In Situ One-Pot Synthesis of 1-Dimensional Transition Metal Oxide Nanocrystals. Journal of Physical Chemistry B,2005,109:5389-5391.
    [57]J. U. Jeffrey, H. k. Park, et al. Synthesis of Single-Crystalline Perovskite Nanorods Composed of Barium Titanate and Strontium Titanate. Journal of the American Chemical Society,2002,124 (7):1186-1187.
    [58]V. F. Puntes, D. Zanchet, A. P. Alivisatos, et al. Synthesis of hcp-Co Nanodisks. Journal of the American Chemical Society,2002,124,12874-12880.
    [59]V. F. Puntes, K. M. Krishnan, A. P. Alivisatos. Colloidal Nanocrystal Shape and Size Control:The Case of Cobalt. Science,2001,291,2115-2117..
    [60]A. Ghezelbash, B. A. Korgel. Nickel Sulfide and Copper Sulfide Nanocrystal Synthesis and Polymorphism. Langmuir,2005,21:9451-9456.
    [61]M. B. Sigman, J. A. Ghezelbash, B. A. Korgel, et al. Solventless Synthesis of Monodisperse Cu2S Nanorods, Nanodisks, and Nanoplatelets. Journal of the American Chemical Society,2003,125:16050-16057.
    [62]A. Ghezelbash, M. B. Sigman, Jr., B. A. Korgel. Solventless Synthesis of Nickel Sulfide Nanorods and Triangular Nanoprisms. Nano Letters,2004,4:537-542.
    [63]Y. C. Cao. Synthesis of Square Gadolinium-Oxide Nanoplates. Journal of the American Chemical Society,2004,126:7456-7457.
    [64]R. Si, Y.W. Zhang, C.H.Yan, et al. Rare-Earth Oxide Nanopolyhedra, Nanoplates, and Nanodisks. Angewandte Chemie International Edition,2005, 117:3256-3260.
    [65]L. Manna, E. C. Scher, A. P. Alivisatos, Synthesis of Soluble and Processable Rod-, Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals. Journal of the American Chemical Society,2000,122,12700-12706.
    [66]Y.W. Jun, Y.Y. Jung, J.W.Cheon. Architectural Control of Magnetic Semiconductor Nanocrystals. Journal of the American Chemical Society,2002, 124,615-619.
    [67]Satoshi Sato, Ryoji Takahashi, Mika Kobune. Basic properties of rare earth oxides. Applied Catalysis A:General,2009,356:57-63.
    [68]Ryan Georg Gerlach, Surinderjit Singh Bhella, Venkataraman Thangadurai. Facile Conversion of Layered Ruddlesden-Popper-Related Structure Y2O3-Doped Sr2CeO4 into Fast Oxide Ion-Conducting Fluorite-Type Y2O3-Doped CeO2. Inorganic Chemistry,2009,48:257-266.
    [69]M.A. Panhans, R.N.Blumenthal. A thermodynamic and electrical conductivity study of nonstoichiometric cerium dioxide. Solid State Ionics,1993,60: 279-298.
    [70]H. Arai,T. Kunisaki, Y. Shimizu, et al. Electrical properties of calcia-doped ceria with oxygen ion conduction. Solid State Ionics,1986,20:241-248.
    [71]H.Yahiro, T. Ohuchi, K. Eguchi, et al. Electrical properties and microstructure in the system ceria-alkaline earth oxide. Journal of Materials Science,1988,23: 1036-1041.
    [72]H. Yahiro, K. Eguchi, H.Arai. Electrical properties and reducibilities of ceria-rare earth oxide systems and their application to solid oxide fuel cell. Solid State Ionics,1989,36(1-2):71-75.
    [73]K. Huang, M. Feng, J.B.Goodenough. Synthesis and electrical properties of dense Ceo.9Gdo.101.95 ceramics. Journal of the American Chemical Society,1998, 81(2):357-362.
    [74]H. Inaba, T. Nakajima, H. Tagawa. Sintering behavior of ceria and gadolinia-doped ceria. Solid State Ionics,1998,106:263-268.
    [75]M.G.Sanchez,J.L.Gazquez. Oxygen Vacancy Model in Strong Metal-Support Interaction. Journal of Catalysis,1987,104:120-126.
    [76]S. Kacimi, J.Barbier, J.R.Taha. Oxygen Storage Capacity of Promoted Rh/CeO2 Catalysts-Exceptional Behavior of RhCu/CeO2. Catalysis Letters,1993,22: 343-249.
    [77]B. Harrison, A.F.Diwell, C.Hallet, Promoting Platinum Metals by Ceria. Platinum Metals Review,1988,32(2):73-83.
    [78]S.Bernal,J.J.Calvino,G.A.Cifredo,J.M.Rodrigvez. Reversibility of Hydrogen Chemisorption on a Ceria-Supported Rhodium Catalyst, Journal of Catalysis, 1992,137:1-6.
    [79]S.Bernal, J.J.Calvino, M.A.Gatica, et al. Some Recent Results on Metal/Support Interaction Effects in NM/CeO2 (NM:Noble Metal) Catalysts, Catalysis Today, 1999,50:175-179.
    [80]B. Skarman, D. Grandjean, R. E. Benfield, et al., Carbon Monoxide Oxidation on Nanostructured CuOx/CeO2 Composite Particles Characterized by HREM, XPS, XAS, and High-Energy Diffraction. Journal of Catalysis,2002,211:119-123.
    [81]P. Gao, S. Chang, Z. Zhou, et al. Electrooxidation Pathways of Simple Alcohols at Platinum in Pure Nonaqueous and Concentrated Aqueous Environments as Studied by Real-Time FT-IR Spectroscopy. Journal of Electroanalytical Chemistry,1989,272:161-168.
    [82]A. Vedda, N. Chiodini, D. Di Martino, et al. Insights into Microstructural Features Governing Ce3+ Luminescence Efficiency in Sol-Gel Silica Glasses. Chemistry of Materials,2006,18:6178-6185.
    [83]K. Krishna, A. Bueno-Lo'pez, M. Makkee. Potential rare earth modified CeO2 catalysts for soot oxidation I. Characterisation and catalytic activity with O2. Applied Catalysis B:Environmental,2007,75:189-200.
    [84]S.F. Wang, F.Gu, C.Z. Li, et al. Shape-controlled synthesis of CeOHCO3 and CeO2 microstructures. Journal of Crystal Growth,2007,307:386-394.
    [85]T.Taniguchi, T.Watanabe, N. Sakamoto, et al. Aqueous Route to Size-Controlled and Doped Organophilic Ceria Nanocrystals. Crystal Growth & Design,2008,8 (10):3725-3730.
    [86]S. Acharya, A.Bandyopadhyay, S.Modak, et al. XRD, HRTEM,magneticandMo" ssbauer studiesonchemicallyprepared Fe3+-doped nanoparticlesofceriumoxide. Journal of Magnetism and Magnetic Materials,2009,321:2701-2706.
    [87]B. Yan, W.G. Zhao. Wet chemical synthesis of nanometer CeO2 with strong ultraviolet absorption property by in situ assembly of hybrid precursors, Materials Science and Engineering B,2004,110:23-26.
    [88]H. Guo. Green and red upconversion luminescence in CeO2:Er3+ powders produced by 785nm laser. Journal of Solid State Chemistry,2007,180:127-131.
    [89]K. L.Yu, G. L. Ruan, Y.H. Ben, et al. Convenient synthesis of CeO2 nanotubes. Materials Science and Engineering B,2007,139:197-200.
    [90]X. H. Liu, S.J. Chen, X.D. Wang. Synthesis and photoluminescence of CeO2:Eu3+ phosphor powders. Journal of Luminescence,2007,127:650-654.
    [91]G. R. Li, D. L. Qu, L. Arurault, et al. Hierarchically Porous Gd3+-Doped CeO2 Nanostructures for the Remarkable Enhancement of Optical and Magnetic Properties. Journal of Physical Chemistry C,2009,113:1235-1241.
    [92]J. Zhang, F.H. Jiang. Catalytic growth of Ga2O3 nanowires by physical evaporation and theirphotoluminescence properties. Chemical Physics,2003, 289:243-249.
    [93]D.D. Edwards, T.O. Mason, F. Goutenoire. A new transparent conducting oxide in theGa203-ln203-Sn02 system. Applied Physics Letters,1997,70:1706-1710.
    [94]M. Passlack, E. F. Schubert, W. S. Houson, et al. Ga2O3 films for electronic and optoelectronic applications. Journal of Applied Physics,1995,77:686-693.
    [95]N. Ueda, H. Hosono, R. Waseda, et al. Synthesis and control of ultraviolet transmitting β-Ga2O3 single crystals. Applied Physics Letters,1997,70: 3561-3563.
    [96]A. Bezryadin, C.N.Lau, M.Tinkham. Quantum suppression of superconductivity in ultrathinnanowires. Nature,2000,404:971-974.
    [97]X. C. Wu, W. H. Song, W. D. Huang. Crystalline gallium oxide nanowires:intensive blue lightemitters. Chemical Physics Letters,2000,328:5-8.
    [98]W. S. Shi, Y. F. Zheng, N. Wang. A general synthetic route to Ⅱ-Ⅴ compound semiconductornanowires. Advanced Materials,2001,13(8):591-593.
    [99]Dai Z R, Pan Z W, Wang Z L. Gallium oxide nanoribbon and nanosheets. Journal of Physical Chemistry B,2002,106:902-904.
    [100]向杰,贾圣果,冯孙齐,等.氧化稼纳米带的制备,研究固体电子学研究与进展.2002,22(4):449-452.
    [101]X. Xiang, C. B. Cao, Y. J. Guo, et al. A simple method to synthesize gallium oxide nanosheets and nanobelts. Chemical Physics Letters,2003,378: 660-664.
    [102]朱峰.氧化镓准一维纳米结构材料的制备、特性及应用的基础研究:[博士论文].上海:上海交通大学,2006
    [103]F. Zhu, Z. X. Yang, W. M. Zhou, et al. Single-crystal nanorings of β-gallium oxide synthesized using a microwave plasma, Physical Status Solidi,2006 (a), 203(8):2024-2028.
    [104]G. Gundiah, A. Govindaraj, C. N. Rao. Nanowires, nanobelts and related nanostructures of Ga2O3. Chemical Physics Letters,2002,351:189-194.
    [105]J. Q. Hu, Q. Li, X. M. Meng, et al. Synthesis of β-Ga2O3 Nanowires by Laser Ablation. Journal of Physical Chemistry B,2002,106:9536-9539.
    [106]G. S. Park, W. B. Choi, J. M. Kim, et al. Structural investigation of gallium oxide (β-Ga2O3) nanowires grown by arc-discharge. Journal of Crystal Growth, 2000,220:494-500.
    [107]Z. X. Yang, F. Zhu, Y. J. Wu, et al. β-Ga2O3 nanowires and nanobelts synthesized by thermal evaporation. Physica E,2005,27:351-354.
    [108]Z. X. Yang, Y. J. Wu, F. Zhu, et al. Synthesis of single-crystalline p-Ga2O3 nanoribbons, Physica Status Solidi(a),2004,201:3501-3504.
    [109]H. W. Kim, N. H. Kim, C. Lee. Annealing effects on the structural and optical properties of gallium oxide nanowires. Journal of Materials Science:Materials in Electronics,2005,16:103-105.
    [110]J. Zhang, Z.G. Liu, J. Lin, et al. A simple method to synthesize β-Ga2O3 nanorods and their photoluminescence properties. Journal of Crystal Growth, 2005,280:99-106.
    [111]M. Ristic'T, S. Popovic', S. Music. Application of sol-gel method in the synthesis of gallium(Ⅲ)-oxide. Materials Letters,2005,59:1227-1233.
    [112]G.X. Liu, G.Y. Hong, J.X. Wang. Hydrothermal synthesis of spherical and hollow Gd2O3:Eu3+ phosphors. Journal of Alloys and Compounds,2007,432: 200-204.
    [113]X. H. Liu, G. Z. Qiu, Y. Zhao, et al. Gallium oxide nanorods by the conversion of gallium oxide hydroxide nanorods. Journal of Alloys and Compounds,2007,439:275-278.
    [114]H. B. Xie, L.M. Chen, Y. N. Liu, et al. Preparation and photoluminescence properties of Eu-dopeda-andp-Ga2O3 phosphors. Solid State Communications, 2007,141:12-16.
    [115]S. Ishihara. Hole dynamics in spin and orbital ordered vanadium Perovskites. Physieal Review Letters,2005,94(15):156408(1)-156408(4).
    [116]F.Zhong, N. Naoto, T. Kiyoyuki. Anisotropic optical conductivities duo to spin and orbital ordering in LaVO3 and YVO3:First-principles studies. Condensed Matter,2004,0212024(1):1-6.
    [117]M. Shigeki, O. Yoiehi, T. Yoshinori. Anisotropy of Mott-Hubbard gap transitions duo to spin and orbital ordering in LaVO3 and YVO3. Condensed Matter,2004,0207664 (1):1-12.
    [118]M. Hasse, K. Riwotzki, H.Meyssamy, et al. Synthesis and properties of colloid lanthanide-doped nanocrystal. Journal of Alloys and Compounds,2003, 303-304:191-197.
    [119]H.W.Zhang, X.Y.Fu, S.Y.Niu, et al. Low temperature synthesis of nanocrystalline YVO4:Eu via polyacrylamide gel method. Journal of Solid State Chemistry,2004,177:2649-2654.
    [120]G. Z. Li, Z. L. Wang, M. Yua, et al. Fabrication and optical properties of core-shell structured spherical SiO2@GdVO4:Eu3+phosphors via sol-gel process. Journal of Solid State Chemistry,2006,179:2698-2706.
    [121]V.Buissette, A.Huignard, T.Gacoin, et al. Luminescence properties of YVO4:Ln (Ln=Gd, Yb, and Yb-Er)nanoparticles. Surface Science,2003,532-535: 444-449.
    [122]Y. H. Li, G.G. Hong. Synthesis and luminescence properties of nanocrystalline YVO4:Eu3+. Journal of Solid State Chemistry,2005,178:645-649.
    [123]L.M. Chen, Y.N. Liu, K.L. Huang. Hydrothermal synthesis and characterization of YVO4-based phosphors with Eu3+ ion. Materials Research Bulletin,2006,41: 158-166.
    [124]G. H. Pan, H.W.Song, X. Bai, et al. Novel Energy-Transfer Route and Enhanced Luminescent Properties in YVO4:Eu3+/YBO3:Eu3+ Composite. Chemistry of Materials,2006,18:4526-4532.
    [125]L.W.Qian, J. Zhu, X. F. Qian, et al. Self-Assembled Heavy Lanthanide Orthovanadate Architecture with Controlled Dimensionality and Morphology. Chemistry-A European Journal,15:1233-1240
    [126]H. Wang, Y.Q. Meng, H. Yan. Rapid synthesis of nanocrystalline CeVO4 by microwave irradiation. Inorganic Chemistry Communications,2004,7: 553-555.
    [127]L.M. Chen. Hydrothermal synthesis and ethanol sensing properties of CeVO4 and CeVO4-CeO2 powders. Materials Letters,2006,60:1859-1862.
    [128]F. Luo, C. J. Jia,W. Song, et al. Chelating ligand-mediated crystal growth of cerium orthovadae. Crystal Growth & Design,2005,5(1):137-142.
    [129]F.Luo, W. Song, Z. F. Li, et al. Synthesis and magneitic properties of CeVO3 nanostructures. Solid State Communications,2004,132:595-599.
    [130]R.C. Ropp, B.Carroll. The tetragonal form of lanthanum orthovanadate. Journal of Inorganic and Nuclear Chemistry,1973,35:1153-1157.
    [131]D.F. Mullica, EL. Sappenfield, Abraham MM. Structural Invetigations of several LnVO4 compounds. Inorganica Chimica Acta,1996,248:85-88.
    [132]S. Mahapatra, A. Ramanan. Hydrothermal synthesis and structural study of lanthanide orthovanadates, LnVO4 (Ln=Sm, Gd, Dy and Ho). Journal of Alloys and Compounds,2005,395(1-2):149-153.
    [133]W.L. Fan, W. Zhao, L.P. You, et al. A simple method to synthesize single-crystalline lanthanide orthovanadate nanorods. Journal of Solid State Chemistry,2004,177:4399-4403.
    [134]W. L. Fan, Y. X. Bu, X. Y. Song, et al. Selective Synthesis and Luminescent Properties of Monazite-and Zircon-Type LaVO4:Ln (Ln) Eu, Sm, and Dy) Nanocrystals. Crystal Growth & Design,2007,7(11):2361-2366.
    [135]W. L. Fan, X.Y. Song, Y.X. Bu, et al. Selected-Control Hydrothermal Synthesis and Formation Mechanism of Monazite-and Zircon-Type LaVO4 Nanocrystals. Journal of Physical Chemistry B,2006,110:23247-23254.
    [136]C. J. Jia, L. D. Sun, L. P. You, et al. Selective synthesis of monazite and zircon-type LaVO4 nanocrystals. Journal of Physical Chemistry B,2005,109: 3284-3290.
    [137]C. J. Jia, L. D. Sun, L. P. You, et al. Structural transformation induced improved luminescent properties for LaVO4:Eu nanocrystals. Apllied Physics Letters, 2004,84(26):5305-5307.
    [138]J. F Liu, Y.D. Li. Synthesis and Self-Assembly of Luminescent Ln3+-Doped LaVO4 Uniform Nanocrystals. Advanced Materials,2007,19:1118-1122.
    [139]J. F. Liu, Y.D. Li. General synthesis of colloidal rare earth orthovanadate nanocrystals. Journal of Materials Chemistry,2007,17:1797-1803.
    [140]W.L. Fan, X.Y. Song, S.X. Sun, et al. Microemulsion-mediated hydrothermal synthesis and characterization of zircon-type LaVO4 nanowires. Journal of Solid State Chemistry,2007,180:284-290.
    [141]J. Ma, Q. S. Wu, Y. P. Ding. Selective synthesis of monoclinic and tetragonal phase LaVO4 nanorods via oxides-hydrothermal route. Journal of Nanoparticle Research,2008,10:775-786.
    [142]B.Yan, J. H. Wu. Solid state-hydrothermal synthesis and photoluminescence of LaVO4:Eu3+ nanophosphors. Materials Letters,2009,63:946-948.
    [143]G. Blasse, I. P.M.Van Vliet, J.W.M.Verwweij, et al. Luminescence of LnBO3:Bi3+. Journal of Physics and Chemistry of Solids,1989,50:123-127.
    [144]R. P Rao, D. J. Devine. RE-activated lanthanide phosphate phosphors for PDP applications. Journal of Luminescence,2000,87-89:1260-1263.
    [145]D. S. Kim., R.Y. Lee. Synthesis and photoluminescence properties of (Y,Gd)BO3:Eu phosphor prepared by ultrasonic spray. Journal of Materials Science,2000,35:4777-4782.
    [146]Z.G. Wei, P. Xie, W.W. Zhang. et al., Structure and luminescence of Ln1-xBO3:Eux(Ln=Y,Gd). Journal of Inorganic Materials,2001,16(1):9-15.
    [147]W.W. Zhang, P. Xie, W. Zhang, et al. Site selective luminescence and phase transition of PDP phosphor GdBO3:Eu. Journal of Inorganic Materials,2001, 16(3):470-474.
    [148]W. Zhang, P. Xie, W.W. Zhang, et al. Preparation and site selective luminescence of Eu3+ in triclinic GdBO3. Journal of Chemical Physics(化学物理学报),2001,14(3):323-328.
    [149]G Bertrand-Chadeyron, R.Mahiou, M. EI-Ghozzi, et al. Luminescence of the orthoborate YBO3:Eu3+ and Relationship with crystal structure. Journal of Luminescence,1997,72-74:564-566.
    [150]D. Boyer, G Bertrand-Chadeyron, R. Mahou, et al. Synthesis dependent luminescence effciency in Eu3+ doped polycrystalline YBO3. Journal of Materials Chemistry,1999,9:211-214.
    [151]B. W. Jeoung, G. Y. Hong, W. T. Yoo, et al. Preparation of Spherical Phosphor (Y, Gd)BO3:Eu3+ by Polymeric-Aerosol Pyrolysis, Journal of the Electrochemical Society,2004,151(10):H213-H216.
    [152]K. G. Sandesh, C. Dinesh. Agrawal, Yashowanta N. Mohapatra. Photoluminscence and Morphological Studies of Y0.5Gd0.5BO3:Eu Phosphor Powders Prepared by the Urea Hydrolysis Route, Journal of the Electrochemical Society,2004,151(11):H239-H242.
    [153]M. Tukia, J. Ho Lsa, M. Lastusaari, eta 1. Eu3+ doped rare earth orthoborates, RBO3 (R=Y, La and Gd), obtained by combustion synthesis. Optical Materials, 2005,27:1516-1522.
    [154]Y. H. Wang, K. Uheda, H. Takizawa, et al. GdBO3:Eu3+ phosphor particales with uniform size, plate morphology and non-aggregatin. Chemistry Letters, 2001,3:206-207.
    [155]Z. G. Wei, L. D. Sun, C. S. Liao, et al. Fluorescence intensity and color purity improvement in nanosized YBO3:Eu. Applied physocs Letters.,2002,80(8): 1447-1449.
    [156]冯华君,陈渊,唐芳琼,等.单分散GdxY2-xO3:Eu3+纳米颗粒的制备及其荧光性能.感光科学与光化学,2006,24(3):180-186.
    [157]H. Z. Wang, L. Gao, NIIHARA K. Synthesis of nanoscaled yttrium aluminum garnet powder by the co-precipitation method. Materials Science and
    Engineering A,2000,288(1):1-4.
    [158]孙曰圣,陈达,魏坤等.纳米晶Y2O:Eu3+的合成及其光谱性质研究.光谱学与光谱分析,2001,21(3):339-342.
    [159]S. K. Ruan, J. G Zhou, G. M. Zhon, et al. Synthesis of Y3Al5O12:Eu3+ phosphor by sol-gel method and its luminescence behavior. Journal of Alloys and Compounds,1998,275:72-75.
    [160]张巍巍,谢平波,张慰萍,等.稀土正硼酸盐Ln1-xBO3:Eux (Ln= Y,Gd)的结构和与发光特性.无机材料学报,2001,16(1):9-16.
    [161]T. Hirai, T. Hirano, I. Komasawa. Preparation of Gd2O3:Eu3+ and Gd2O2S:Eu3+ phosphor fine particles using an emulsion liquid membrane system. Journal of Colloid and Interface Science,2002,253(1):62-69.
    [162]L. D. Sun, C. Qing, C.S. Liao, et al. Luminescent properties of Li+ doped nano-sized Y2O3:Eu. Solid State Communications,2001,119(6):393-396.
    [163]周永慧,林君,于敏,等.喷雾热解法制备发光材料研究进展.发光学报,2002,23(5):503-508.
    [164]Y. Hakuta, T. Haganuma, K. Sue, et al. Continuous production of phosphor YAG:Tb nanoparticles by hydrothermal synthesis in supercritical water Materials Research Bulletin,2003,38(7):1257-1265.
    [165]李建宇.稀土发光材料及其应用。北京:化学工业出版社,2003.14
    [166]徐叙蓉, 苏勉曾.发光学与发光材料,北京:化学工业出版社,2004:165-172.
    [167]周炳琨,高以智.激光原理(第五版.北京:国防工业出版社,2004:9-13.
    [168]M.J.J. Lammers, H. Donker, G. Blasse. The luminescence of Eu3+, Tb3+ and Tm3+ actives Ga2BaZnO5 and La2BaZnO5. Materials Chemistry and Physics, 1985,13(6):527-539.
    [169]B. R. Judd. Optical absorption intensities of rare-earth ions. Journal of Physical Review,1962,127(3):750-761.
    [170]G. S. Ofelt. Intensities of crystal spectra and decay of Er3+ fluorescence in LaF3. Journal of Chemical Physics,1962,37(3):511-520.
    [171]S. Tanabe, T. Ohyagi, N. Soga, et al. Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses. Journal of Physical Review B,1992,46(6):3305-3310.
    [172]M. J. Weber, Prbabilities for radiative and nonradiative deccay of Er3+ in LaF3. Physical Review A:Atomic, Molecular, and Optical Physics,1967,157(2): 262-272.
    [173]M. J.Weber, Radiative and multiphonon relaxation of rare-earth ions in Y2O3, Physical Review A:Atomic, Molecular, and Optical Physics,1968,171: 283-261.
    [174]R. Pappalardo, Calculated quantum yield for photo-cascade emission (PCE) for Pr3+ and Tm3+ in fluoride host. Journal of Luminescence,1976,14:159-193.
    [175]H. Tanabe, K. Morinaga, T. Izumitani. Correlation between radiative transition probabilities of rare-earth ions and composition in oxide glasses. Journal of Non-Crystalline Solids,1994,178:58-63.
    [176]B. F. Aull, H. P. Jenssen. Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross section. IEEE Journal of Quantum Electronics,1982, QE18:925-930.
    [177]S. Tanabe. Optical transitions of rare earth ions for amplifiers:how the local structure works in glass. Journal of Non-Crystalline Solids,1999,259(1-3):1-9.
    [178]J. Sanz, R. Cases, R. Alcala. Optical properties of Tm3+ in fluoroziconate glass. Journal of Non-Crystalline Solids,1987,93:377-396.
    [179]M. J. Weber. Selective excitation and decay of Er3+ fuorescence in LaF3. Physical Review A:Atomic, Molecular, and Optical Physics,1967,156(2): 231-241.
    [180]K. Tanimura, M. D. Shinn, W. A. Sibley, et al. Optical transitions of Ho3+ ions in fluorozirconate glass. Physical Review B:Condensed Matter,1984,30(5): 2429-2437.
    [181]R. R. Jacobs, M. J. Weber. Dependence of the 4F3/2-4I11/2 induced emission cross section for Nd3+ on glass composition. IEEE Journal of Quantum Electronics, 1976, QE-12:102-111.
    [182]M. J. Weber, J. D. Myers, D. H. Blackburn. Optical properties Nd3+ in tellurite and phosphotellurite glasses. Journal of Applied Physics,1981,52:2944-2949.
    [183]Y. Q. Zhai, S. Y. Zhang, H. Pang. Preparation, characterizationand photocatalytic activity of CeO2 nanocrystalline using ammonium bicarbonate as precipitant. Materials Letters,2007,61(8-9):1863-1866.
    [184]D. H. Kim, J. E. Cha. A CuO-CeO2 mixed-oxide catalyst for CO clean-up by selective oxidation in hydrogen-rich mixtures. Catalysis Letters,2003,86: 107-110.
    [185]朱兆武,龙志奇,崔大立,等.超细CeO2粉体的制备及其紫外线吸收性能. 中国有色金属学报,2005,15(3):435-439.
    [186]X. D. Feng, D. C. Sayle, Z. L. Wang, et al. Converting ceria polyhedral nanoparticles into single-crystal nanospheres. Science,2006, 312:1504-1510.
    [187]I. Noriya, S. Woosuck, M. Norimitsu. Fast response of resistive-type oxygen gas sensors based on nano-sized ceria powder. Sensors and Actuators B,2003, 93; 449-453
    [188]T. S. Zhang, J. Ma, S. H. Chan, et al. Grain boundary conduction of Ceo.9Gdo. 1O2-δ ceramics derived fromoxalate coprecipitation:effects of Fe loading and sintering temperature. Solid State Ionics,2005,176:377-384.
    [189]D. J. Brett, A. Atkinson, D.Cumming, et al. Methanol as a direct fuel in intermediate temperature (500-600℃) solid oxide fuel cells with copper based anodes. Chemical Engineering Science,2005,60:5649-5662.
    [190]C. W. Sun, H. Li, H. R.Zhang, et al. Controlled synthesis of CeO2 nanorods by a solvothermal method. Nanotechnology,2005,16 (9):1454-1463.
    [191]C. M. Ho, J. Yu, T. Kwong. Morphology-controllable synthesis of Mesoporous CeO2 nano- and microstructures.Chemistry of Material,2005,17(17): 4514-4522.
    [192]H. R. Xu, L. Gao, H. C. Gu. Synthesis of solid,spherical CeO2 particles prepared by the spray hydrolysis reaction method. Journal of the Amerian Ceramic Society,2002,85(1):139-144.
    [193]J. Hyun, J. Kim, S. Kim, e tal. Ultrasonic Study on Conglomeration of Cerium Oxalate Particles Produced by Reaction Crystallization in Series Reactor Including T-mixer and Stirred Tank. Journal of Chemical. Engineer of Japan, 2002,35(11):1211-1218.
    [194]Y.X. Li, W. F. Chn, X. Z. Zhou, et al. Synthsis of CeO2 nanoparticles by mechanochemical processing and the inhibiting action of NaCl on particle aggomeration. Materials Letters,2005,59 (1):48-52.
    [195]A. Bumajdad, M. I. Zaki, J. Eastoe, et al. Microemulsion-based synthesis of CeO2 powders with high surface area and high-temperature stabilities. Langmuir,2004,20:11223-11233.
    [196]L.X. Yin, Y. Q. Wang, G. S. Pang, et al.Sonochemical synthesis of Cerium oxide nanoparticals-effect of additives and quantum size effect. Journal of Colloid and Interface Science,2002,246(1):78-84.
    [197]M. S. Tsal. Powder synthesis of nano grade cerium oxide via homogenous precipitation and its polishing performance. Materials Science and Engineering B,2004,110:132-134.
    [198]H. M.Yang, K. Zhang, R. R. Shi. Sol-gel synthesis and photocatalytic active of CeO2/TiO2 nanocomposites. Journal of the American Ceramic Society,2007, 90(5):1370-1374.
    [199]Y. P. Fu, C. H. Lin, C. S. Hsu. Preparation of ultrafine CeO2 powder by microwave-induced combustion and precipitation. Journal of Alloys and Compounds,2005,391:110-114.
    [200]X. H. Liu, S. J. Chen, X. D. Wang. Synthesis and photoluminescence of CeO2:Eu3+ phosphor powder. Journal of Luminescence,2007,127:650-654.
    [201]宋晓岚,何希,杨海平,等.沉淀法合成的纳米CeO2前驱体的热分解动力学.中南大学学报(自然科学版),2007,38(3):428-432.
    [202]G. C. Liu, X. C. Duan, H. B.Li, et al. Novel polyhedron-like t-LaVO4:Dy3+ nanocrystals:Hydrothermal synthesis and photoluminescence properties Journal of Crystal Growth,2008,310:4689-4696.
    [203]刘国聪,段学臣,李海斌,等,鱼骨状LaVO4:Eu3+纳米晶的水热合成和荧光性能.中国有色金属学报,2009,19(1):119-126.
    [204]F. Shinobu, O. Masashi. Structure and luminescent property of CeO2:rare earth (RE= Eu3+ and Sm3+thin films. Journal of Applied Physics,2004(95):8002-8006.
    [205]M. Zhang, X. D. Wang, F. M. Wang, et al. Oxygen sensity of nano-CeO2 coating TiO2 materials. Sensor and Actuators B,2003,92:167-170.
    [206]R. J. La, Z.A. Hu, H. L. Li, et al. Template synthesis of CeO2 ordered nanowire arrays.Materials Science and Engineering A,2004,368:145-148.
    [207]L.M. G mez-Sainero, R.T. Baker, I.S. Metcalfe, et al. Investigation of Sm2O3-CeO2-supported palladium catalysts for the reforming of methanol:The role of the support. Applied Catalysis A:General 2005,294:177-187.
    [208]S. V. N. T. Kuchibhatla, A. S. Karakoti. One dimensional nanostructured materials. Progress in Materials Science,2007,52:699-913.
    [209]G. C. Liu, L. M. Chen, X. C. Duan, et al. Synthesis and characterizaton of Sm3+-doped CeO2 powders. Trans. The Nonferrous Metals Society of China, 2008,18:897-903.
    [210]K. Shantha Shankar, A.K. Raychaudhuri. Fabrication of nano wires of
    multicomponent oxides:Review of recent advance. Materials Science and Engineering C,2005,25:738-751.
    [211]L. Zhou, W.Z. Wang, S.W. Liu, et al. A sonochemical route to visible-light-driven high-activy BiVO4 photocatalyst. Journal of Molecular Catalysis A-Chemical,2006,252(1-2):120-124.
    [212]S. Fujihar, M. Oikawa, S. Masa. Structure and luminescenct properties of CeO2:rare earth (RE=Eu3+ and Sm3+) thin film. Journal of Applied Physics, 2002,95(12):8002-8006.
    [213]D.E. L. ROSA-CRUZ, L. A. D.Torres, P. Salas, et al. Luminescenct properties and energy transfer in ZrO2:Sm3+ nanocrystals. Journal of Apllied Physics,2004, 94(5):3509-3515.
    [214]Y. H. Zhou, J. Lin, S. B. Wang. Energy transfer and upconversion luminescence properties of Y2O3:Sm and Ga2O3:Sm phosphors. Journal of Solid State Chemistry,2003,171(1-2):391-395.
    [215]L. X. Yu, H. W. Song, S. Z. Lu, et al. Influence of shape anisotropy on photoluminescence characteristic in LaPO4:Eu nanowires. Chemical Physics Letters,2004,399(3/6):384-388.
    [216]J. P. Holgado, R. Alvarez, G. Munuera. Study of CeO2 XPS spectra by factor analysis:reduction of CeO2. Applied Surface Science,2000,161(3-4):301-315.
    [217]H. Guo, Y. M. Qiao. Preparation, structure and photoluminescenct properties of CeO2:Eu3+ films drived by Pechini sol-gel process. Applied Surface Science, 2008,254:1961-1965.
    [218]D. S. Zhang, H. X. Fu, L. Y. Shi, et al. Synthesis of CeO2 Nanorods via Ultrasonication Assisted by Polyethylene Glycol. Inorganic Chemistry,2007, 46:2446-2451.
    [219]王孝东,刘晓华,陈绍军,等.CeO2:Eu3+粉末的溶胶-凝胶法制备及发光性能研究.光谱学与光谱分析,2007,27(11):2182-2185.
    [220]Shinobu F, Masashi O. Structure and luminescent property of CeO2 rare earth (RE= Eu3+ and Sm3+thin films. Journal of Applied Physics,2004(95):8002-8006.
    [221]Takahiro Maruyama, Hisashi Yamada, Takashi Mochizuki, et al. Quenching mechanism of luminescence in Sm-doped ZnS. Journal of Crystal Growth,2000, 214/215:954-957.
    [222]J. A. Olmsted, G. M. Williams. Chemistry,4th Edition, John Wiley & Sons,
    Inc,2005,1120-1122.
    [223]H.Z. Zhang, Y. C. Kong, Y. Z. Wamg, et al. Ga2O3 nanowires prepared by physical evaporation, Solid State Communications,1999,109(11/3):677-682.
    [224]Y. C. Choi, W. S. Kim, Y. S. Park, et al. Catalytic Growth of β-Ga2O3 Nanowires by Arc Discharge. Advanced Materials,2000,12:746-750.
    [225]C. Huang, C. Yel, C. Ho, et al. Laser Ablation Synthesis of Spindle-like Gallium Oxide Hydroxide Nanoparticles with the Presence of Cationic Cetyltrimethylammonium Bromide. Journal of Physics Chemistry B,2004(108): 4940-4945.
    [226]侬健桃,黄翰.超细氧化镓的制备.稀有金属,2003,27(1):186-187
    [227]J. L Sommerdijk, A. C. Van Amstel, F. M. J. H. Hoex-Strik. On the luminescence of β-Ga2O3:Dy3+. Journal of lumiescence,1976,11(5-6):433-436.
    [228]L. Binet, D. Gourier. Origin of the blue luminescence of β-Ga2O3. Journal of Physics Chemistry of Solids,2004,132(7):1241-1249.
    [229]S. Fujihara, Y. Shibata. Luminescence of Cr3+ ions associated with surpassing the green-emission defect centers in β-Ga2O3. Journal of Luminescence,2006, 121(2):470-474.
    [230]C. Martin, I.artin, V. Rives, et al. A FTIR spectroscopy study of isopropanol reactivity on alkali-metal-doped MoO3/TiO2 catalysts. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,1996,52, (7):733-740.
    [231]赵宗彦,柳清菊,张瑾,等.3d过渡金属掺杂锐钛矿相TiO2的第一性原理研究.物理学报,2007,56(11):6592-6599.
    [232]Q. J. Xu, S. Y. Zhang. Fabrication and photoluminescence of β-Ga2O3 nanorods. Superlattices and Microstructures,2008,44(6):715-720.
    [233]翟庆洲,裘式伦,肖丰收,等.纳米材料研究进展Ⅰ-纳米材料结构与化学性质.化学研究与应用,1998,10(3):226-235.
    [234]S. D. Han, S. P. Khatkar, V.B. Taxak, et al. Synthesis, luminescence and effect of heat treatment on the properties of Dy3+ -doped YVO4 phosphor. Materials Science and Engineering B 2006,129:126-130.
    [235]R. C. Naik, N. P. Karanjikar, M. A. N. Razvi. Concentration quenching of fluorescence from 1D2 state of Pr3+ in YPO4. Journal of Luminescence,1992, 54(3):139-144.
    [236]J.S. Kim, S.B. Lee, J.H. Bahng, et al. Optical Characteristics of Emission from β-Ga2O3 with Group-VIb Ions. Physical Status Solidi A,2001,187(2):569-573.
    [237]R.L. Penn, J. F. Banfield. Imperfect Oriented Attachment:Dislocation Generation in Defect-Free Nanocrystals.Science,1998,281:969-971.
    [238]Wissanu Patungwasa, Jose H. Hodak. pH tunable morphology of the gold nanoparticles produced by citrate reduction. Materials Chemistry and Physics, 2008,108:45-54.
    [239]A. C. Tas, P.J. Majewski, F. Aldinger. Synthesis of Gallium Oxide Hydroxide Crystals in Aqueous Solutions with or without Urea and Their Calcination Behavior. Journal of the American Ceramic Society,2002,85 (6):1421-1429
    [240]J. Zhang, Z. Lin, C. Lin. A simple method to synthesize (3-Ga2O3 nanorods ad their photoluminescence pproperties. Journal of Crystal Growth,2005,280(1-2): 99-106.
    [241]H. D. Xiao, H. L. Ma, W. Liang, et al. GaOOH,α-Ga2O3 andβ-Ga2O3 powder synthesized from ball-milled GaN powder. Materials Chemistry and Physics, 2005,94:261-265.
    [242]M. Marezio, J. P. Remeika.Bond Lengths in the α-Ga2O3 Structure and the High-Pressure Phase of Ga2-xFexO3. Journal of Chemical Physics,1967, 46;1862-1867.
    [243]T. Vosegaard, I.P. Byriel, L. Binet, et al. Crystal Structure Studies by Single-Crystal NMR Spectroscopy.71Ga and 69Ga Single-Crystal NMR of β-Ga2O3 Twins. Journal of the American Ceramic Society,1998,120: 8184-8188.
    [244]L. M. Chen, Y. N. Liu, Y. D. Li, et al. Preparation and characterization of ZrO2:Eu3+ phosphors. Journal of Alloys and Compound,2004,381:266-271.
    [245]C. Yan, L. Sun, C. Liao, et al. Eu3+ ion as fluorescent probe for detecting the surface effect in nanocrystals. Applied Physics Letters,2003,82 (20): 35113513.
    [246]G.. C. Liu, X. C. Duan, H. B. Li, et al. Preparation and photolumiescence properties of Eu3+-doped Ga2O3 nanorods. Materials Chemistry and Physics, 2008.110:206-211.
    [247]K. Kitayama, T. Katsura, M.Yamant. Phase transtransformation of LaVO4. Bulletin of the Chemical Society of Japan,1983,56:689-1084.
    [248]G. Heydecke, F. Butz, J. R. Binder, et al. Material characteristics of a novel shrinkage-free ZrSiO4 ceramic for the fabrication of posterior crowns. Dental Materials,2007,23(7):785-791.
    [249]L. Karpowich, S. Wilcke, R. Yu, et al. Synthesis and characterization of mixed-morphology CePO4 nanoparticles. Journal of Solid State Chemistry,2007, 180(3):840-846.
    [250]U. Rambabu, D. Amalnerkar, B. Kale, et al. Morphology control and luminescence Fluorescence spectra of Eu3+-doped LnVO4 (Ln= La and Y) powder phosphors. Materials Research Bulletin,2000,35:929-932.
    [251]M. Yu, J. Lin, Z. Wang, et al. Fabrication, patterning, and optical properties of nanocrystalline YVO4:A (A= Eu3+, Dy3+, Sm3+, Er3+) phosphor films via sol-gel soft lithography. Chemistry of Materials,2002,14:2224-2230.
    [252]Y. Zhou, J. Lin. Properties of YVO4:Eu phosphors prepared by spray pyrolysis. Optical Materials,2005,27:1426-1471.
    [253]N. Wang, W. Chen, Q. F. Zhang, et al. Synthesis, luminescent, and magnetic properties of LaVO4:Eu nanorods. Materials Letters,2008,62(1):109-112.
    [254]O. A. Yeshchenko, I. M. Dmitruk, A. M. Dmytruk, et al. Influence of annealing conditions on size and optical properties of copper nanoparticles embedded in silica matrix. Materials Science and Engineering:B,2007,137(1-3):247-254.
    [255]S. Lee, H. Permana, K.Y.S. Ng. Study of the Effects of Annealing on the Morphology of Platinum Cluster size on Highly Oriented Pyrolytic Graphite by Scanning Tunneling Microscopy. Studies in Surface Science and Catalysis, 1993,75(Part2):1863-1866.
    [256]I. H. Leubner. Particle nucleation and growth models. Current Opinion in Colloid & Interface Science,2000,5(1-2):151-159.
    [257]S. E. Mazzetto, M. H. Gehlen, M.G. Neumann, et al. Size effects on the luminescence quenching of Tb3+ by Ru(Ⅱ) tetraammines with alkyl trans-phosphane ligands. Journal of Photochemistry and Photobiology A: Chemistry,1997,104(1-3):39-43.
    [258]S. Sadhu, T. Sen, A. Patra. Shape controlled synthesis and luminescence properties of ZnO:Eu3+ nanostructures. Chemical Physics Letters,2007,440, (1-3):121-124; bY.J. Sun, Y. Chen, L. J. Tian, et al. Morphology-dependent upconversion luminescence of ZnO:Er3+ nanocrystals. Journal of Luminescence, 2008,128,(1):15-21.
    [259]Z. Qi, C. Shi, Y. Wei, Z. et al. An EXAFS study of the nanocrystalline transformationof ZrO2:Y2O3(5%). Journal of Physics:Condensed Matter,2001, 13:11503-11509.
    [260]A.Upendra, J. Joshi, S. Lee, et al. Low-temperature, solvent-free solid-state synthesis of single-crystalline titanium nitride nanorods with different aspect ratios. Journal of Solid State Chemistry,2005,178:755-760.
    [261]黄昆,韩汝珂.固体物理学.北京:高等教育出版社,1990.
    [262]徐科,严洁.钙钦矿型稀土纳米复合氧化物制备及应用的研究进展.贵州大学学报(自然科学版),2003,20(4):421-425.
    [263]K. Nakamoto. Infrared and Raman Spectra of Inorganic and Coordination Compound. N. Y.:John Wiley & Sons,1986,4Th Edition, PP.138.
    [264]S. T.Frey, W. Horrock. On correlating the frequency of the 7F0-5D0 transition in Eu3+ complexes with the sum of'nephelauxetic panameters' for all of the coordinating atoms. Inorganica Chimica Acta,1985,229:383-389.
    [265]C.K. Jayasankar, E. Rukmini. Optical Properties of Sm3+ ions in Zinc and Alkali Zinc Borsulphate Glass. Optical Materials,1997,8:193-205.
    [266]张国春,傅佩珍.Na3La(VO4)2:Sm3+的合成及其发光光谱特性.发光学报,2001,22(3):237-242.
    [267]Y. H. Zong, G. G. Zhao. Growth and its Spectroscopic Properties of Sm:YAP Crystal. Journal of Crysta Growth,2006,291:468-471.
    [268]U.Kersen, R.L. Keiski. Preliminary study on the selective oxidation of H2S over LaVO4 and Fe2(MoO4)3 oxides, produced by a solvothermal method. Catalysis Commnications,2009,10(7):1039-1042.
    [269]R.A. Fields, M. Birnbaum, C.L. Fincher, Highly efficient Nd:YVO4 diode-laser end-pumped laser. Applied Physics Letters,1987,51:1885-1886.
    [270]aA.K. Levine, F.C. Papilla. A new highly efficient red-emitting cathodoluminescent phosphor (YVO4:Eu) for color television. Applied Physics Letters,1964,5:118; b M. Yu, J. Lin, Z.Wang, et al. Fabrication, Patterning, and Optical Properties of Nanocrystalline YVO4:A (A=Eu3+, Dy3+, Sm3+, Er3+) Phosphor Films Via Sol-Gel Soft Lithography. Chemistry of Materials,2002,4: 2224-2231.
    [271]Z. M. Fang, Q. Hong, H.L.Wan, et al. Oxidative dehydrogenation of propane over a series of low-temperature rare earth orthovanadate catalysts prepared by the nitrate method. Catalysis Letters,1999,61:39-44.
    [272]B.Yan, J. H. Wu. Solid state-hydrothermal synthesis and photoluminescence of LaVO4:Eu3+ nanophosphors. Materials Letters,2009,63:946-948.
    [273]J. Ma, Q.Wu, Y. Ding. Selective synthesis of monoclinic and tetragonal phase LaVO4 nanorods via oxides-hydrothermal route. Journal of Nanoparticle Research,2008,10:775-786.
    [274]Y. W. Jun, J. S. Choi, J. Cheon. Shape control of semiconductor and metal oxide nanocrystal through nonhydrolytic colloidal routes. Angewandte Chemie Interbational Edition,2006,45:3414-3439.
    [275]S. Ray, A. Banerjee, P. Pramanik. Shape controlled synthesis,characterization and photoluminescence properties of YVO4:Dy3+/Eu3+ phosphors. Materials Science and Engineering B,2009,156:10-17.
    [276]E.J. Baran, P.J. Aymonino, Z. Anorg, Ueber Lanthanorthovanadat. Zeitschrift fur anorganische und allgemeine Chemie,1971,388:220-226.
    [277]aM. Gotic, S. Music, M. Ivanda, et al. Synthesis and characterisation of bismuth (III) vanadate. Journal of Molecular Structure,2005,535:744-747; b S. Music, M. Gotic, S. Popovic, K. Furic,et al. Structural properties of lead vanadate glasses containing La3+or Fe3+ ions. Journal of Materials Science-Materials in Electronics,1994,29:1227-1232.
    [278]K. Riwotzki, M. Haase. Wet-Chemical Synthesis of Doped Colloidal Nanoparticles:YVO4:Ln (Ln) Eu, Sm, Dy). Journal of Physical Chemistry B, 1998,102:10129-10135.
    [279]G. Mill, Z. Li, D. Meisel, Photochemlstry and Spectroscopy of Colloidal As2S3. Journal of Physical Chemistry,1988,92:822-828.
    [280]L. Brus. Electronic Wave Functions in Semiconductor Clusters:Experiment and Theory. Journal of Physical Chemistry,1986,90:2555-2560.
    [281]Z. Wei, L. Sun, C. Liao, et al. Size dependence of luminescent properties for hexagonal YBO3:Eu nanocrystals in vacuum ultraviolet region. Journal of Applied Physics,2003,93:9783-9788.
    [282]P. Dorenbos. The Eu3+ charge transfer energy and relation with the band gap of compound, Journal of Luminescence,2005,111:89-104.
    [283]O. K. Michael, G. H. Bruce. Crystal structures-I:Patterns and symmetry. Mineralogical Society of America,2003,10:125-129.
    [284]C. P. Frank, K. L. Albet, R. Maij. Synthesis and luminescent properties of LaVO4:Re nanocrystales. Electrochemical Society Interface,1965,112(8): 776-781.
    [285]H. Song, J. Wang, B.Chen, et al. Size-dependent electronic transition rates in YBO3:Eu nanocrystalline europium doped yttria. Chemical Physics Letters, 2003,376:1-5.
    [286]G. C. Liu, X. C. Duan, H. B.Li, et al. Hydrothermal synthesis, characterization and optical properties of novel fishbone-like LaVO4:Eu3+ nanocrystals. Materials Chemistry and Physics,2009,115:165-171.
    [287]R. S. Yadav, R. K. Dutta, M. Kumar, et al. Improved color purity in nano-size Eu3+-doped YBO3 red phosphor. Journal of Luminescence,2009,129(9): 1078-1082.
    [288]X. Guo, Y. H. Wang, J. C. Zhang. Synthesis multifarious morphologies and sizes of YBO3:Eu3+ phosphors, and clarification of the crystal structure of YBO3. Journal of Crystal Growth,2009,311,(8):2409-2417.
    [289]M. Ren, J. Lin, Y. Dong, et al. Structure and Phase Transition of GaBO3. Chemistry of Materials,1999,11(6):1576-1580.
    [290]J. Lin, D. Sheptyakov, Y. Wang, et al. Structures, Phase Transition of Vaterite-Type Rare Earth Orthoborates. A Neutron Diffraction Study. Chemistry of Materials,2004,16(12):2418-2424.
    [291]D. Boyer, G Bertrand-Chadeyron, R. Mahiou, et al. Synthesis dependent luminescence efficiency in Eu3+ doped polycrystalline YBO3. Journal of Materials Research,1999,9:211-214.
    [292]Z. Wei, L. Sun, C. Liao, et al. Fluorescence Intensity and Color Purity Improvement in Nanosized YBO3. Applied Physics Letters,2002,80(8): 1447-1449.
    [293]H. Xu, W. Wang, W. Zhu. Shape Evolution and Size-Controllable Synthesis of CU2O Octahedra and their Morphology-Dependent Photocatalytic Properties. Journal of Physical Chemistry B,2006,110 (28):13829-13834.
    [294]K. Jung, E. J. Kim, Y. Kang. Morphology Control and Optimization of Luminescent Property of YBO3:Tb Phosphor Particles Prepared by Spray Pyrolysis.Journal of the Electrochemical Society,2004,151 (3):H69-73.
    [295]Z. Li, J. Zeng, C. Chen, Y. Li. Hydrothermal Synthesis and Luminescent Properties of YBO3:Tb3+ Uniform Ultrafine Phosphor. Journal of Crystal Growth,2006,286(2):487-493.
    [296]X. Jiang, L. Sun,W. Feng, C. Yan. Acetate-Mediated Growth of Drumlike YBO3:Eu3+ Crystals. Crystal Growth & Design,2004,4 (3):517-520.
    [297]X. Jiang, L. Sun, C. Yan. Ordered Nanosheet-Based YBO3:Eu3+Assemblies: Synthesis and Tunable Luminescent Properties. Journal of Physical Chemistry B,2004,108(11):3387-90.
    [298]J. Zhang and J. Lin. Vaterite-Type YBO3:Eu3+Crystals:Hydrothermal Synthesis, Morphology and Photoluminescence Properties. Journal of Crystal Growth, 2004,271 (2):207-215.
    [299]G. Pan, H. Song, L. Yu, et al. Luminescent Properties of YBO3:Eu3+ Nanosheets and Microstructural Materials Consisting of Nanounits. Journal of Luminescence,2007,122-123:882-885.
    [300]J. Zhang, J. Lin. Vaterite-type YBO3:Eu3+ crystals:hydrothermal synthesis, morphology and photoluminescence properties. Journal of Crystal Growth, 2004,271:207-215.
    [301]X.C. Jiang, C. H. Yan, L. D. Sun, et al. Hydrothermal homogeneous urea precipitation of hexagonal YBO3:Eu3+ nanocrystals with improved luminescent properties. Journal of Solid State Chemistry,2003,175:245-251.
    [302]W. P. Zhang, P. B. Xie, C. K. Duan, et al. Preparation and size effect on concentration quenching of nanocrystalline Y2SiO5:Eu. Chemical Physics Letters,1998,292,(1-2):133-136.
    [303]H. S. Peng, S. H. Huang, L. D. Sun, et al. Analysis of surface effect on luminescent properties of Eu3+ in YVO4 nanocrystals. Physics Letters A,2007, 367:211-214.
    [304]闫阔、宁丽新、金健、张巍巍、张慰萍、夏上达,中国稀土学报,2001 19:507-510.
    [305]T. Lgarashi, M. Lhara, T. Kusunoki, et al. Relationship between optical properties and crystallinity of nanometer Y2O3:Eu phosphor. Applied Physics Letters,2000,12:1549-1551.
    [306]M. Sigman, A. Ghezelbash, T. Hanrath, et al. Solventless Synthesis of Monodisperse CU2S Nanorods, Nanodisks, and Nanoplatelets. Journal of the American Chemical Society,2003,125 (51):16050-1657.
    [307]T. Larsen, M. Sigman, A. Ghezelbash, et al. Solventless Synthesis of Copper Sulfide Nanorods by Thermolysis of a Single Source Thiolate-Derived Precursor. Journal of the American Chemical Society,2003,125 (19): 5638-5639.
    [308]C. Feldmann, T. Justel, C. R. Ronda, et al. Quantum Efficiency of Down Conversion Phosphor LiGdF4:Eu. Journal of Luminescence,2001,92 (3): 245-54
    [309]A. E. Henkes, R. E. Schaak. Synthesis of nanocrystalline REBO3 (RE=Y, Nd, Sm, Eu, Gd, Ho) and YBO3:Eu using a borohydride-based solution precursor route. Journal of Solid State Chemistry,2008,181,(12):3264-3268
    [310]J. Zhang, Y. Wang, X. Guo. Vuv-Excited Photoluminescence Dependent on Thermal Treatment of YBO3:Tb3+ Derived by Hydrothermal Process. Journal of Luminescence,2007,122:980-983.
    [311]L. Wang, J. Lin, and Y. Zhou. Synthesis of Spherical YBO3:Eu3+ Phosphors by Spray Pyrolysis Method. Chemical Journal of Chinese Universities,2004,25 (1):11-14.
    [312]夏上达.群论与光谱[M].北京:科学出版社,1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700