稀土掺杂钙镁铝硅系微晶玻璃结构及发光性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全固体白光发光二极管(light emitting diode, LED)作为新一代照明光源,具有节能、环保、长寿命等优点。在白光LED的配色方案中,紫外LED芯片结合三基色荧光材料这一模式当前还难以用于大功率照明,但是由于其色品质的优越性,具有很大的发展前景。在这一模式下可以使用的众多荧光材料中,稀土掺杂硅酸盐基荧光材料已经成为一个研究热点,除了其固有的稳定性外,还具有优异的发光性能和潜在的余辉特性。硅酸盐基质的晶体和非晶体作为基质材料各有优缺点,而微晶玻璃作为一种晶态和非晶态共存的复合材料,兼具了晶体材料良好的发光性能及玻璃材料优异的物化稳定性,具有重要的研究价值。
     本文用整体析晶法和烧结法制得了Sm3+、Tb3+、Eu2+掺杂的钙镁铝硅系发光玻璃及微晶玻璃。借助X射线衍射、扫描电子显微镜测量手段探寻微晶玻璃的晶相种类与形貌;使用Jasco FP-6500型荧光光谱仪测量发光微晶玻璃的荧光光谱,并利用PMS-80增强型光谱分析系统得到光色的色品坐标;采用拉曼光谱、X射线衍射、X射线光电子能谱、研究了稀土掺杂微晶玻璃的结构;并用析晶动力学的方法和分形理论研究了该系统玻璃的析晶性能。结果表明:
     钙镁铝硅系玻璃不论析出主晶相为硅灰石或透辉石,晶体的生长方式为表面向内部生长。随着热处理温度的升高或热处理时间的延长,晶体逐渐长大,晶相含量增多。在透辉石玻璃中,稀土氧化物作为玻璃修饰体存在于玻璃网络结构中,热处理之后,几乎所有的稀土离子取代透辉石中的Ca2+存在于晶相中。
     Sm3+、Tb3+在钙镁铝硅系微晶玻璃中的发射、激发峰的位置不随环境、浓度等因素的变化而改变。Sm3+掺杂的试样在404 nm紫光激发下发出4G5/2→6HJ(J=5/2,7/2,9/2,11/2)跃迁引起的位于红光波段的可见光;在377 nm近紫外光的激发下,Tb3+掺杂的试样可以发出5D4,3→7F6,5,4,3引起的蓝绿波段的可见光。稀土掺杂的钙镁铝硅微晶玻璃,与同组成玻璃相比,具有更强的发光性能。荧光光谱强度大小与晶相含量多少密切相关,这点是由稀土离子所在环境的声子能量变化引起的。在硅灰石微晶玻璃中,当外加稀土氧化物Sm2O3或Tb4O7的量在实验范围内逐渐变大时,激发与发射谱线强度有明显增强。而在透辉石微晶玻璃中,随着Sm3+外加量由0.05 mol%增至0.30 mol%,出现由Sm3+间的交叉弛豫及能量传递引起的浓度猝灭现象;实验浓度范围内,在该微晶玻璃中没有发现Tb3+猝灭现象。
     Sm2O3、Tb4O7共掺杂的透辉石微晶玻璃可以在350nm-385nm波长下同时被激发出两种离子的特征发射。且350nm,355nm,380nm波长芯片激发下的试样发出的光皆在色品图中的白光区域内,并具有1800-5400K的低色温。
     Eu2+掺杂的透辉石及方石英为晶相的微晶玻璃,在355nm光的激发下可以得到442nm的蓝光发射峰。随着热处理时间的延长,荧光光谱强度增加,随着试验范围内Eu2+浓度的增加,浓度猝灭发生。
     在透辉石母体玻璃中,随着硼含量的增加,分相(乳浊)现象逐渐严重,并且热处理后硼含量较多的试样中容易析出次晶相方石英。随着硼含量的增多,Sm3+、Tb3+分别掺杂的微晶玻璃强度呈先增大再减小的趋势。
     还原剂的引入会抑制透辉石玻璃的析晶速率,此时玻璃的析晶符合扩散受限制的凝聚模型。
     本项目得到湖北省教育厅科学技术研究计划重大项目(20091g0041)的资助。
White light emitting diode (white LED) is becoming a new lighting application as its efficient energy use, environment friendly and long life. Of the approaches to creating white light, the model of phosphors together with ultraviolet LED can not achieve high ligh output, but the outstanding color quality decide its exciting application prospects. In the phosphors of this model, the rare earth doped silicate phosphor gains great interest due to their stability and optical properties. Glass ceramic, as the glass and crystal composites, owns the excellent luminescence properties from crystal phase and outstanding machinability, high uniformity and stability from glass phase.
     Sm3+, Tb3+, Eu2+doped CaO-MgO-Al2O3-SiO2 luminescent glass ceramics were prepared by melting-quenching and sintering method in this paper. X-ray Diffraction (XRD) and scanning electron microscope (SEM) were availed to measure the crystalline phase and microstructure of the glass ceramics. Jasco FP-6500 fluorescence spectrometer was used to get the emission and excitation spectra of samples. The color coordinates were measured by PMS-80 spectral analysis system. The structure of rare earth doped glass and glass ceramics were studied by XRD, XPS and Raman spectroscopy. And the crystallization of this glass was discussed by the kinetic analysis and fractal geometry. The results indicate:
     The crystallization manner of CaO-MgO-Al2O3-SiO2 glass is surface crystallization, and the possible main crystal is diopside or wollastonite. The crystal content of glass ceramic increased as heat treatment temperature or the time icreasing. For the diopside glass, RE3+exist in the glass as networkmodifier, after heat treatment, all the RE3+enter the diopside lattice and replace Ca2+sites.
     With the increase of reheat temperatures, RE3+concentration and the precipitate of diopside, the wavelength of peaks of Sm3+and Tb3+in optical spectra has no change. Sm3+doped glass ceramics can emit red light due to transitions 4G(?)→6HJ (J=5/2,7/2,9/2,11/2) under the excitation of long UV and blue lights. Tb3+doped glass ceramics emit intense cyan color light due to transitions 5D4,3→>7F6,5,4,3 under UV excitation. The luminescence of the glass ceramics is stronger than corresponding glass. We also found the direct correlation between luminescent intensity and crystal content, which was caused by the changed phonon energy. In the wollastonite glass ceramics, the luminescence intensity is increased with the increasing of the Sm2O3 or Tb4O7 content. In the diopside glass ceramics, concentration quenching effect was observed in the Sm3+doped glass ceramic, but not found in Tb3+doped glass ceramics.
     The flurescent spectras of Sm3+and Tb3+codoped glass ceramics under 350nm-385nm excitation were consist of the characteristic spectrim of Sm3+and Tb+ respectively. After excitaition of 350nm,355nm and 380nm LED, the color coordinates of the emission light fall within the white region of the 1931 CIE diagram, with low color temperatures of 1800-5400K.
     The Eu2+doped diopside glass ceramics could emit 442nm blue light under 355nm excitation. After heat treatment, short-wave-length shift and increased intensity were found in the luminescent spectra. With the increase of heat treatment time, the luminescence intensity increased. And the concentration quenching effect appeared with the increasing of the Eu2+content.
     In the matrix glass, the increased B2O3 induced separate phase, and another crystal cristobalite beta precipitated. The luminescent intensity of Sm3+and Tb3+doped glass ceramics increased firstly and then decreased with the increasing of the B2O3 content.
     The addition of reductant to the diopside glass inhibits the surface crystallization, and the crystallization process could be described by Diffusion-Limited Aggregation model.
     This work was supported by the Science and Technology Project of Hubei (20091g0041).
引文
[1]孙家跃,杜海燕.固体发光材料.北京:化学工业出版社,2003
    [2]张中太,张俊英.无机光致发光材料及应用.北京:化学工业出版社,2005
    [3]杨清德,康娅.LED及其工程应用.北京:人民邮电出版社,2007
    [4]肖志国.半导体照明发光材料及应用.北京:化学工业出版社,2008
    [5]Yuexiao Pan, Mingmei Wu, Qiang Su. Comparative investigation on synthesis and photoluminescence of YAG:Ce phosphor. Materials Science and Engineering B,2004,106 (3):251-256
    [6]尹长安,赵成久,等.白光LED的最新进展.发光学报,2000,21(4):380-382
    [7]吴昊,潘跃晓,等.白光LED用稀土荧光粉的制备和性质.发光学报,2006,27(2):201-205
    [8]Zhang Yanfang, Li Lan, et. al. Temperature effects on photoluminescence of YAG:Ce3+ phosphor and performance in white light-emitting diodes. Journal of rare earth,2008,26(3): 446-449
    [9]R. Asakura, T. Isobe, et. al. Effects of citric acid additive on photoluminescence properties of YAG:Ce3+ nanoparticles synthesized by glycothermal reaction. Journal of Luminescence,2007, 127:416-422
    [10]Eugeniusz Zych, Adam Walasek, et.al. Variation of emission color of Y3Al5O12:Ce induced by thermal treatment at reducing atmosphere. Journal of Alloys and Compounds,2008, 451(1-2):582-585
    [11]Wendong Wang, Jinke Tang, et. al. Energy transfer and enriched emission spectrum in Cr and Ce co-doped Y3Al5O12 yellow phosphors. Chemical Physics Letters,2008,457(1-3):103-105
    [12]Heesun Yang, Dong-Kyoon Lee, et. al. Spectral variations of nano-sized Y3Al5O12:Ce phosphors via codoping/substitution and their white LED characteristics. Materials Chemistry and Physics,2009,114(2-3):665-669
    [13]Heesun Yang, Yong-Seog Kim. Energy transfer-based spectral properties of Tb-, Pr-, or Sm-codoped YAG:Ce nanocrystalline phosphors. Journal of Luminescence,2008,128(10):1570-1576
    [14]张梅,刘德强,等.高显色性稀土发光材料的研究.中国稀土学报,2002,20(6):608-611
    [15]李盼来,杨志平,王志军,郭庆林,李旭.用于白光LED的Sr3SiO5:Eu2+材料制备及发光特性研究.科学通报,2007,52(13):1495-1498
    [16]王继磊,王达健,等.硅酸盐单基质白光LED荧光体的制备和光谱性质.发光学报,2006,27(4):463-468
    [17]杨志平,刘玉峰,王利伟,余泉茂,熊志军,徐小岭.用于白光LED的单一基质白光荧光粉Ca2SiO3Cl2:Eu2+,Mn2+的发光性质.物理学报,2007,56(7):546-550
    [18]杨志平,刘玉峰,李雪清.用于白光LED的高亮度蓝白色荧光粉Ca2SiO3Cl2:Eu2+的发光性质.发光学报,2006,27(4):629-632
    [19]J. Wang, D. Wang, L. Li, et al. Preparation of single host silicate phosphors for white LED s and its photoluminescent properties. Chinese Journal of Luminescence,2006,27(4):463-468
    [20]Jong Su Kim, Kwon Taek Lim, et al. Full-color Ba3MgSi208:Eu2+, Mn2+ phosphors for white-light-emitting diodes. Solid State Communications,2005,135:21-24
    [21]Jong Su Kim, Ae Kyung Kwon. Luminescent and thermal properties of full-color emitting X3MgSi208:Eu2+, Mn2+ (X=Ba, Sr, Ca) phosphors for white LED. Journal of Luminescence,2007, 122-123:583-586
    [22]张国有,赵晓霞,孟庆裕,王晓君.白光LED用红色荧光粉Gd2Mo3O9:Eu3+的制备及表征.发光学报,2007,28(1):57-60
    [23]Yunsheng Hu, Weidong Zhuang,Hongqi Ye, Donghui Wang, et al. A novel red phosphor for white light emitting diodes. Journal of Alloys and Compounds,2005,390:226-229
    [24]Xiao-xiao Wang, Jing Wang, Jian-xin Shi, Qiang Su, Meng-lian Gong. Intense red-emitting phosphors for LED solid-state lighting. Materials Research Bulletin,2007,42:1669-1673
    [25]T. Kim, S. Kang. Potential red phosphor for UV-white LED device. Journal of Luminescence, 2007,122-123:964-966
    [26]Panlai Li, Zhijun Wang, et. al. Emission features of LiBaBO3:Sm3+ red phosphor for white LED. Materials Letters,2009,63(9-10):751-753
    [27]Chaofeng Zhu, Yunxia Yang. Rare earth ions doped full-color luminescence glasses for white LED. Journal of Luminescence,2007,126(2):707-710
    [28]Zhu Chaofeng, Yang Yunxia, Liang xiaoluan, Yuan shuanglong, Cheng guorong. Photoluminescence properties of rare earth ion-doped borosilicate glasses for white LED
    [29]Chaofeng Zhu, Xiaoluan Liang. Luminescence properties of Tb doped and Tm/Tb/Sm co-doped glasses for LED applications. Journal of Luminescence,2010,130:74-77
    [30]Shimin Liu, Gaoling Zhao, Hao Ying, Jianxun Wang, Gaorong Han. Eu/Dy ions co-doped white light luminescence zinc-aluminoborosilicate glasses for white LED. Optical Materials, 2008,31:47-50
    [31]R. Martinez-Martinez, A. Speghini, et.al. White light generation through the zinc metaphosphate glass activated by Ce3+, Tb3+ and Mn2+ ions. Journal of Luminescence,2009, 129(11):1276-1280
    [32]Yangxian Li, Pingjuan Niu. Blue-excited luminescence of Eu-doped strontium boroaluminate glasses. Journal of Luminescence,2008,128:273-276
    [33]Chengyu Li, Qiang Su. New blue phosphorescent glass-ceramic:Rare-earth-doped calcium aluminoborate. Journal of Alloys and Compounds,2006,408-412:875-78
    [34]黄浪欢,陈文新,刘应亮.稀土掺杂对长余辉发光玻璃发光性能的影响.稀有金属,2006,30(3):329-332
    [35]黄浪欢,陈文新,刘应亮.硼铝酸锶长余辉发光玻璃的制备及发光性能研究.功能材料,2006,3(6):861-863
    [36]Reisfeld R., Kisilev A., Buch A., et. al. Transparent glass-ceramics doped by chromium (Ⅲ): spectroscopic properties and characterization of crystalline phases. Journal of non-crystalline solids,1987,91(3):333-350
    [37]Kisilev A., Reisfeld R., Buch A., Ish-Shalom M. Cr (Ⅲ) in gahnite-containing transparent glass-ceramics:Influence of melting conditions and heat treatment on crystallization and spectroscopic properties. Chemical Physics Letters,1986,129(5):450-457
    [38]Reisfeld R., Kisilev A., Greenberg E., Buch A, et. al. Spectroscopy of Cr(Ⅲ) in transparent glass ceramics containing spinel and gahnite. Chemical physics letters,1984,104(2-3):153-156
    [39]M.Itoh, T.Sakurai, T.Yamakami, J.Fu. Time-resolved luminescence study of CaF2:Eu2+ nanocrystals in glass-ceramics. Journal of luminescence,2005,112:161-165.
    [40]Shunsuke Fujita, Satoru Yoshihara. YAG glass-ceramic phosphor for white LED (Ⅰ): background and development. Fifth International Conference on Solid State Lighting.Proc. of SPIE Vol.5941 594111-1
    [41]Setsuhisa Tanab, Shunsuke Fujita. YAG glass-ceramic phosphor for white LED (Ⅱ): Luminescence characteristics. Fifth International Conference on Solid State Lighting, Proc. of SPIE Vol.5941594112-1
    [42]Takayuki Nakanishi, Setsuhisa Tanabe. Novel Eu2+-Activated Glass Ceramics Precipitated With Green and Red Phosphors for High-Power White LED. Journal on Selected Topics in Quantum Electronics,2009,15(4):1171-1176
    [43]Nishiura Shotaro, Tanabe Setsuhisa. Preparation and optical properties of Eu2+ and Sm3+ co-doped glass ceramic phosphors emitting white color by violet laser excitation. Journal of the Ceramic Society of Japan,2008,116 (1358):1096-1099
    [44]Shotaro Nishiura, Setsuhisa Tanabe. Preparation and Luminescence Properties of Glass Ceramics Precipitated With M2MgSi207:Eu2+(M=Sr, Ca) Phosphor for White Light Source. Journal of Selected Topics in Quantum Electronics,2009,15(4):1177-1180
    [45]Qun Luo, Xianping Fan, et. al. Eu2+-Doped Glass Ceramics Containing BaF2 Nanocrystals as a Potential Blue Phosphor for UV-LED. Journal of the American Ceramic Society,2009,92 (4): 942-944
    [46]L.Jiang, C.Chang, et al. Luminescent properties of CaMgSi2O6-based phosphor co-doped with different rare earth ions. Journal of Alloys and Compounds,2004,377:211-215
    [47]Ling Jiang, Chengkang Chang, Dali Mao.Luminescent properties of Ca2MgSi2O7 phosphor activated by Eu2+, Dy3+and Nd3+. Optical Materials,2004,27:51-55
    [48]Qin Fei, Chengkang Chang, Dali Mao. Luminescent properties of Sr2MgSi2O7 and Ca2MgSi2O7 long lasting phosphors activated by Eu2+, Dy3+. Journal of Alloys and Compounds, 2005,390:133-137
    [49]程金树,李宏,汤李缨,何峰.微晶玻璃.北京:化学工业出版社,2006
    [50]P. Alizadeh, M. Yousefi, B. Eftekhari Yekta, N. Ghafoorian, F. Molaie. Sintering behavior of SiO2-CaO-MgO (Na2O) glass-ceramics system. Ceramics International,2007,33:767-771
    [51]P. Alizadeh, V.K. Marghussian, The effect of compositional changes on the crystallization behaviour and mechanical properties of diopside-wollastonite glass-ceramics inthe SiO2-CaO-MgO (Na2O) system. Journal of the European Ceramic Society,2000,20:765-773
    [52]M. Rezvani, B. Eftekhari Yekta, et al. Utilization of DTA in determination of crystallization mechanism in SiO2-Al2O3-CaO-MgO(R2O) glasses in presence of various nuclei. Journal of the European Ceramic Society,2005,25 (9):1525-1530
    [53]M. Rezvani, B. Eftekhari Yekta, et al. Effect of Cr2O3, Fe2O3 and TiO2 nucleants on the crystallization behaviour of SiO2-Al2O3-CaO-MgO(R2O) glass-ceramics. Ceramics International, 2005,31(1):75-80
    [54]D.U. Tulyaganov, S. Agathopoulos. Synthesis of glass-ceramics in the CaO-MgO-SiO2 system with B2O3, P2O5, Na2O and CaF2 additives. Journal of the European Ceramic Society, 2006,26:1463-1471
    [55]V.M.F. Marques a, D.U. Tulyaganov, et al. Low temperature production of glass ceramics in the anorthite-diopside system via sintering and crystallization of glass powder compacts. Ceramics International,2008,34:1145-1152
    [56]S. Agathopoulos, D.U. Tulyaganov, et. al. Structural analysis and devitrification of glasses based on the CaO-MgO-SiO2 system with B2O3, Na2O, CaF2 and P2O5 additives. Journal of Non-Crystalline Solids,2006,352 (4):322-328
    [57]田清波,李伟,王玥,尹衍升.添加ZnO对SiO2-CaO-Al2O3-MgO系微晶玻璃析晶的影响.硅酸盐学报,2006,34(4):495-499
    [58]Wolfram HOland, George Beall. Glass-Ceramic Technology [M]. Westerville:The American Ceramic Society,2002
    [59]Lin, X.Y.Wang, L.Lin, et al. Spectral parameters and visible fluorescence of Sm3+ in alkali-barium-bismuth-tellurite glass with high refractive index [J]. Journal of Luminescence, 2006,116:139-144
    [60]M.Jayasimhadri, L.R.Moorthy, S.A.Saleem, R.V.S.S.N.Ravikumar. Spectroscopic characteristics of Sm3+-doped alkali fluorophosphates glasses. Spectrochimica Acta Part A,2006, 64:939-944
    [61]浙江大学,武汉建筑材料工业学院,等.硅酸盐物理化学.北京:中国建筑工业出版社,1980
    [62]陶海征.(Ga,In)2S3-基硫卤玻璃的组成、结构与性能研究:[博士学位论文].武汉:武汉理工大学材料科学与工程学院,2004
    [63]W. Zhou. Method for exploring glass-forming regions in new system. Journal of non-Crystalline Solids,1996,201:251-261
    [64]Lee Sung Hun, Park Je Hong, et al. White-light-emitting phosphor:CaMgSi2O6:Eu2+, Mn2+ and its related properties with blending. Applied Physics Letters,2006,89 (22):221916
    [65]Ling Jiang, Chengkang Chang, et al. Luminescent properties of CaMgSi2O6 and Ca2MgSi2O7 phosphors activated by Eu2+, Dy3+and Nd3+. Journal of Alloys and Compounds,2003,360(1-2): 193-197
    [66]Kyeong Youl Jung, Kook Hyun Han, et al. Preparation of CaMgSi2O6:Eu blue phosphor particles by spray pyrolysis and its VUV characteristics. Materials Chemistry and Physics,2006, 98(2-3):330-336
    [67]A. Mekki, D. Holland, C.F. McConville, M. Salim. An XPS study of iron sodium silicate glass surfaces. J. Non-Cryst. Solids,1996,208:267-276
    [68]A. Mekki, M. Salim. XPS study of transition metal doped silicate glasses. J. Electron. Spectrosc.1999,101-103:227-232
    [69]B.V.R. Chowdari, GV. Subba Rao, G.Y.H. Lee. XPS and ionic conductivity studies on Li2O-Al2O3-(TiO2 or GeO2)-P2O5 glass-ceramics. Solid State Ionics,2000,136-137:1067-1075
    [70]A. Mekki, K. Ziq, D. Holland, C.F. McConville. An XPS and physical property study of sodium praseodymium silicate glass structure. Phys. Chem. Glasses,2002,43 (1):41-46
    [71]A. Mekki. X-ray photoelectron spectroscopy of CeO2-Na2O-SiO2 glasses. J. Electron. Spectrosc,2005,142:75-81
    [72]汪立今,柴凤梅,王德强.新疆某地宝石级透辉石拉曼光谱及基本特性初探.新疆大学学报(自然科学版),2002,19(3):341-343
    [73]S. H. Kirby, J. M. Christie. Mechanical twinning in diopside Ca(Mg,Fe)Si2O6:structural mechanism and associated crystal defects. Phys. Chem. Miner.1977,1:137-163
    [74]P. Richet, B. O. Mysen, J. Ingrin. High-temperature X-ray diffraction and Raman spectroscopy of diopside and pseudowollastonite. Phys. Chem. Miner.,1998,25:401-414
    [75]林宗寿.无机非金属材料工学.武汉:武汉工业大学出版社,1999
    [76]Y. Mori, S. Tanemura. Chemical analysis of semiconducting and metallic SmS thin films by X-ray photoelectron spectroscopy. Appl. Surf. Sci.,2007,253(8):3856-3859
    [77]M. Nogami, Y. Abe. Sol-Gel processing of Sm2+-doped glass and its spectral hole burning at room temperature. J. Sol-gel Sci. Techn.1997,8:867-870
    [78]Y. Ni, C. Lu, Y. Zhang, Q. Zhang, Z. Xu. Study on Optical Properties and Structure of Sm2O3 Doped Boron-Aluminosilicate Glass. J. Rare Earth,2007,25:94-98
    [79]D. Holland, I.A. Gee, A. Mekki, C.F. McConville. Role of surface science in the determination of glass structure. Phys. Chem. Glasses,2001,42 (3):247-254
    [80]K. N. Dalby, H. Wayne Nesbitt, V. P. Zakaznova-Herzog, P. L. King. Resolution of bridging oxygen signals from O 1s spectra of silicate glasses using XPS:Implications for O and Si speciation. Geochim. Cosmochim. Ac.,2007,71:4297-4313
    [81]J.R. Clark, D.E. Appleman, J.J. Papike. Crystalchemical characterization of clinopyroxenes based on eight new structure. Min. Soc. Amer. Spec. Pap.,1969,2:31-50
    [82]V. P. Zakaznova-Herzog, H. W. Nesbitt, G. M. Bancroft, J. S. Tse. High resolution core and valence band XPS spectra of non-conductor pyroxenes. Surf. Sci.,2006,600(16):3175-3186
    [83]Y. Miura, H. Kusano, T. Nanba, S. Matsumoto. X-ray photoelectron spectroscopy of sodium borosilicate glasses. J. Non-Cryst. Solids,2001,290:1-14
    [84]Q. Guanshi, Q.Weiping, et. al. Up-conversion Luminescence Properties of Yb-Er: ZnF2-AlF3-PbF2-LiF Ceramic and Glass. Chin. J. Lumin.,2002,23 (1):85-89
    [85]杜丕一,潘硕.材料科学基础.北京:中国建材工业出版社,2002
    [86]Jianrong Qiu, K.Miura, N.Sugimoto. Preparation and fluorescence properties of fluoeroaluminate glasses containing Eu2+ ions. Journal of Non-Crystalline Solids,1997,213-214: 266-270
    [87]祖成奎,陈洁,等.Tb3+、Gd3+对硅酸盐发光玻璃发光性能的影响.硅酸盐通报,2001,5:7-10
    [88]冯宝山,张金朝,宋鹏.B2O3含量对硼铝锶长余辉发光玻璃陶瓷性能的影响.华东理工大学学报(自然科学报),2008,34(3):369-372
    [89]常素玲,曹立新,高英俊,孙大可.掺杂硼对铝酸锶体系长余辉材料制备及发光性能影响的研究进展.有色金属,2007,59(4):63-66
    [90]Yin Cheng, Hanning Xiao, Wenming Guo. Influences of La3+ and Er3+ on structure and properties of Bi2O3-B2O3 glass. Ceramics International,2008,34:1335-1339
    [91]R. Muller, E.D. Zanotto, V.M. Fokin. Surface crystallization of silicate glasses:nucleation sites and kinetics. J. Non-Cryst. Solids,2000,274:208-231.
    [92]G Partridge, P.W. McMillan. Strengthening of glass by surface crystallization, Glass Technol., 1974,15:127-133.
    [93]杨济忠.分形.北京:清华大学出版社,1995
    [94]Tamas Vicsek. Fractal Growth Phenomena. Singapore:World Scientific,1992
    [95]褚武扬.材料科学中的分形.北京:化学工业出版社,2004
    [96]M.J. Saxton. Lateral diffusion in an archipelago. Dependence on tracer size. Biophysical Journal,1993,64(4):1053-1062
    [97]张青.TB8合金热变形组织的分形研究及演变模拟:[博士学位论文].合肥: 合肥工业大学,2008
    [98]龙其威.金属中的分形及复杂性.上海:上海科学技术出版社,1999
    [99]M. Avrami. J. Chem. Phys.,1939,7:1103-1102
    [100]H. E. Kissinger. J. Res. Nat. Bur. Stand,1956.57:217-221
    [101]J. A. Augis, J. E. Bennett. J. Therm. Anal.,1978,13:283-292
    [102]X. Z. Guo, H. Yang, M. Cao. Crystallization and microstructure of Li2O-Al2O3-SiO2 glass containing complex nucleating agent. Therm. Acta,2006,444:201-205
    [103]Material Data, Inc., JADE 5.0 (computer software)., Material Data, Inc., California,1999
    [104]Shih, K., Leckie, J. O. Nickel Aluminate Spinel Formation during Sintering of Simulated Ni-Laden Sludge and Kaolinite. J. Eur. Ceram. Soc.,2007,27(1):91-99
    [105]Fansuri, H. Catalytic Partial Oxidation of Propylene to Acrolein:The Catalyst Structure, Reaction Mechanisms and Kinetics, Ph.D. Dissertation, Curtin University of technology,2005
    [106]Tong, Q., Wang, J., Li, Z., and Zhou, Y. Preparation and Properties of Si2N2O/β-Cristobalite Composites, J. Eur. Ceram. Soc.,2008,28(6):1227-1234

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700