寄主为夹竹桃的红花桑寄生提取物(Nispex)的抗肿瘤作用及其成分研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
恶性肿瘤严重困扰人类健康。由于目前临床常用抗肿瘤药物大多存在严重的毒副作用以及肿瘤细胞耐药性的问题,不断寻找新的高效低毒的抗肿瘤药物一直是抗肿瘤研究的重要课题。从植物中寻找天然抗肿瘤活性成分是研究抗肿瘤药物的一条重要途径,目前临床上常用的抗肿瘤药物如紫杉醇、长春新碱、喜树碱、足叶乙苷、三尖杉酯碱均来源于植物。除了从植物中分离单一结构的药物成分外,传统的植物药物近几年来在德国、法国、意大利和瑞士等欧洲国家也得到了科学界的承认和应用。由于肿瘤发生发展的多因性,针对肿瘤发生发展过程中的多种分子靶标、多种信号途径进行肿瘤的联合治疗可能会比单一药物成分的治疗有更好的治疗效果。而植物药的特点正是药效物质多成分、多途径、多靶点的整体作用。将抗肿瘤植物药作为传统化疗药物的增效减毒剂应用于恶性肿瘤的治疗是今后抗肿瘤研究的重要方向之一。
     Nispex是我们首次从寄主为夹竹桃的红花桑寄生叶中提取分离的主要含多酚类成分一种抗肿瘤植物提取物。文章分四个部分对其制备方法、成分、体内外抗白血病细胞株HL-60的效果、抑瘤机制、抑瘤作用的广谱性等进行了研究,还研究对比了不同寄主来源红花桑寄生提取物的体外抑瘤效果。
     第一部分为Nispex的制备方法和成分分析。Nispex系寄主为夹竹桃的红花桑寄生叶80%乙醇提取物经聚酰胺柱层析纯化所得,按药材重量计得率约为3%。采用颜色鉴定反应、高效液相-质谱联用分析和资料对比分析,Nispex中主要含槲皮素、槲皮苷、广寄生苷等黄酮类成分和与夹竹桃成分类似的强心苷类成分以及生物碱类成分。以芦丁为对照品测得的黄酮含量为72.37%。
     第二部分为本文的重点研究部分。测定了Nispex对小鼠的近似LD50,在此基础上以人急性髓系白血病细胞株HL-60为模型,研究了Nispex的体内外抑瘤效果及其与多柔比星联用的体内抑瘤效果,并探讨了其可能的抑瘤作用机制。用MTT法和集落形成实验检测了Nispex对HL-60细胞增殖的抑制活性。Nispex显著地抑制HL-60细胞增殖,表现出明显的量效关系和时效关系。药物作用48 h的IC50值为0.54μg/ml。集落形成实验表明Nispex对肿瘤增殖细胞群作用更为敏感。Nispex对正常人骨髓单个核细胞无抑制作用。体内抑瘤效果研究以HL-60裸鼠移植瘤为模型,连续给药14 d,以相对瘤体积和瘤重的变化来评估药物的抑瘤效果。Nispex 10 mg/kg/d瘤内给药按相对体积计算的抑制率(肿瘤生长抑制率)为59.4%,按瘤重计算的抑制率(抑瘤率)为45.3%(P<0.05);10 mg/kg/d腹腔给药的肿瘤生长抑制率为18.3%,抑瘤率为15.5%(P>0.05);30 mg/kg/d腹腔给药肿瘤生长抑制率为60.6%,抑瘤率为31.2%(P<0.05);Nispex 10 mg/kg/d腹腔给药与多柔比星15 mg/kg(尾静脉一次性给药)联用的肿瘤生长抑制率为94.4%,抑瘤率为92.9%(P<0.01)。进一步研究了Nispex与多柔比星联用的体内协同抑瘤效果,以药物相互作用指数(CDI)来评价药物联合作用疗效,判断标准:CDI>1,CDI=1和CDI<1分别表示两药拮抗,相加和协同,当CDI<0.7(P<0.05)时,表示协同作用非常显著。Nispex 10 mg/kg/d腹腔给药(连续给药9 d)与15 mg/kg多柔比星(尾静脉一次性给药,下同)联用对HL-60移植瘤有较好的抑制作用,抑瘤率89.0%,CDI为0.43(P<0.01),协同作用非常显著;与10 mg/kg的多柔比星联用抑瘤率为56.9%,CDI值为0.80(P<0.05),协同作用显著;与5 mg/kg的多柔比星联用抑瘤率为8.0%,CDI为1.51。病理检查各主要脏器无明显异常。Nispex对小鼠的近似LD50为126.81 mg/kg,主要表现为心脏毒性。
     采用AO/EB荧光染色、AnnexinⅤ-FITC/PI双标记流式细胞术检测、DNA倍体分析及细胞周期分析、TdT酶介导的原位缺口标记法和细胞DNA片段化检测证明Nispex对肿瘤细胞的杀伤作用主要表现为诱导细胞凋亡,研究结果还显示Nispex抑制HL-60细胞增殖主要是通过将细胞周期阻滞于G0/G1期。EMSA分析、Western Blot分析和免疫荧光分析显示Nispex是一种天然NF-κB抑制剂。Nispex的抗肿瘤活性可能与其抑制肿瘤细胞核中NF-κB的异常激活及抑制肿瘤细胞分泌VEGF有关。
     第三部分研究了Nispex的广谱抗肿瘤作用。Nispex对小鼠肉瘤细胞株S180、小鼠黑色素瘤细胞株B16等4种鼠源肿瘤细胞株和小鼠胚胎成纤维细胞株3T3等均无细胞毒活性。而Nispex对所检测的人小细胞肺癌细胞株NCI-H446、人宫颈癌细胞株Hela、人T淋巴细胞白血病Jurkat、人急性早幼粒白血病细胞株NB4、人慢性粒细胞白血病细胞株K562、人T淋巴细胞白血病细胞株Molt4、人鼻咽癌细胞株CNE和人骨髓瘤细胞株U266等8种人源肿瘤细胞株均有较强的细胞毒作用,抑制细胞增殖和诱导细胞凋亡,表现出明显的量效关系和时效关系,其作用72 h时的IC50值在0.1~2.5μg/ml之间。对原代培养的慢性粒细胞白血病细胞也有良好的抑制作用,其作用72 h时的IC50值为2.48μg/ml。Nispex对有轻微致瘤性的人胚肾成纤维细胞株293T有抑制细胞增殖的作用,但未发现存在明显的量效关系,即使高达50μg/ml的浓度也不明显诱导其凋亡。细胞集落形成实验表明,与HL-60中的情况一样,Nispex对NB4和Jurkat中的增殖细胞群作用更为敏感。
     第四部分以培养的HL-60细胞为模型,比较了寄主分别为夹竹桃、桑树、无患子和桂花的红花桑寄生提取物的体外抑瘤效果。夹竹桃寄生抑制肿瘤细胞增殖的效果最好,桑树寄生抑制肿瘤细胞增殖的效果次之,无患子寄生又次之,桂花寄生在检测的浓度范围内基本无抑制作用。
     以上的研究证明,寄主为夹竹桃的红花桑寄生叶提取物Nispex是一种有效的抗肿瘤植物提取物,对人源肿瘤细胞有较好的选择性。与肿瘤化疗药物多柔比星联用有很好的协同效果。其抗肿瘤作用可能与其抑制肿瘤细胞核中异常激活的NF-κB活性和抑制肿瘤细胞分泌VEGF相关。
Therioma is one of the most serious diseases that troubled human beings health greatly. The treatment of cancer with chemotherapeutic agents and radiation has two major problems: time-dependent development of tumor resistance to therapy (chemoresistance and radioresistance) and nonspecific toxicity toward normal cells. So, the search for new agents that effectively kill cancer cells, but that have minimal or no side effects on normal cells is always the aim of anticancer drug researchers. About 70% of the therapeutic drugs in use today are derived from plants. Paclitaxel, vincristine, camptothecin, etoposide and harringtonine are typical anticancer drugs that generally used in clinical therapy derived from plants. Except these individual component drugs, traditional herbal medicinal products have been commonly accepted and applied in European Union countries such as Germany, France, Switzerland and Italy et al. The herbalists have access to hundreds of years of observational data on the anticancer activity of many herbs. Laboratory studies are confirming the knowledge that is already documented in traditional texts.
     The induction, promotion and progression of cancer is a multistepprocess that involves biochemical interactions from the level of the genes, through cell-signaling pathways, intercellular communication mechanisms, supply of nutrients, channels for metastases, and a host immune response. An integrative approach for managing a patient with cancer should target the multiple biochemical and physiological pathways that support tumor development while minimizing normal tissue toxicity. Traditional herbal medicinal products always contain a range of complex organic chemicals that may have synergistic activity. Given the multiple effects of these agents, their future use for cancer therapy probably lies in synergistic combination. During active cancer therapy, they should generally be evaluated in combination with chemotherapy and radiation. In this role, they may act as biological response modifiers potentially enhancing the efficacy of the so-called conventional therapies and protecting from therapy-associated toxicities.
     Research of the last few years has shown that many plant products exhibit chemopreventive effect on carcinogenesis. Many plant-derived polyphenols have been studied intently for their potential chemopreventive properties and are pharmacologically safe. Recent research has suggested that these plant polyphenols might be used to sensitize tumor cells to chemotherapeutic agents and radiation therapy by inhibiting pathways that lead to treatment resistance. These agents have also been found to be protective from therapy-associated toxicities.
     Nispex is an extract mainly composed by polyphenols of Scurrula parasitica L., a Chinese medicinal herb, which parasitized on Nernium indicum Mill. . It inhibits human cancer cells proliferation and induces human cancer cells apoptosis, but not murine cancer cells.
     In this doctoral dissertation, we described the preparation method of Nispex, analyzed its components preliminarily, and studied its anticancer effects in vitro and in vivo, its mechanisms of anticancer. The anticancer effects of extracts of Scurrula parasitica L. parasitized on other host plant had compared here, also.
     PartⅠ: in this part, the preparation method of Nispex was described. Leaves of Scurrula parasitica L. was extracted by 80% ethanol. And the extracts were purified by polyamides column chromatography further, the eluates of 30%, 50%, 70% and 90% ethanol were mixed being called Nispex (means extracts of Scurrula parasitica L. on Nernium indicum Mill.). Colour reactions indicted that Nispex consisted mainly of flavonoids, cardiac glycosides and alkaloids. Nispex contained 72.37% flavonoids, determined by colorimetry with rutin as the reference substance. There were about 30 components in Nispex by LC-MS analysis, including rutin, hyperoside, quercetin, quercitroside, kaempferol, genistin, liquidamboside, epicatechingallate, avicularin, liquiritin, daidzein4, 7-diglucoside, adynerin and oleandrin derivative, odoroside H, uzarigenin, et al.
     PartⅡ: In this part, the LD50 value of Nispex to mice was detected by 126.81 mg/kg. Pathological examination showed that the major toxicity presented in heart, cardiac muscle cells of the sudden death mice caused by Nispex becoming swollen and disturbance. The anticancer effect of Nispex in vitro was studied by MTT assay and colony forming assay with human acute myeloid leukemia cell line HL-60. Nispex inhibited HL-60 cells proliferation significantly in time and dose dependent manner, the IC50 was 0.54μg/ml when treated 48 hours. Colony forming assay indicted that proliferating-cell population were more sensitive to Nispex. Xenograft of HL-60 was established by subcutaneous implantation of cultured HL-60 cells in BALB/c nude mice. Tumor growth inhibition in these mice was used to evaluate the anticancer activity of drugs in vivo. Mice used in these experiments were randomly divided into six groups: control group, ADR 15 mg/kg group, 30 mg/kg/day Nospex-ip group, 10 mg/kg/day Nospex-ip group, 10 mg/kg/day Nospex-it group, 10 mg/kg/day Nospex-ip combined with ADR 15 mg/kg group. ADR were injected through caudal vein once only at the first day; Nospex treatment, 14 days. Tumor growth inhibition was evaluated by relative tumor volume (RTV) and tumor weight (TW). HL-60 grafts of 30 mg/kg/day Nospex-ip were inhibited by 60.6% according to RTV, 31.2% according to TW(P<0.05); grafts of 10 mg/kg/day Nospex-it were inhibited by 59.4% according to RTV, 45.3% according to TW(P<0.05); and grafts of ADR wre inhibited by 65.2% (RTV), 60.4% (TW), grafts of 10 mg/kg/day Nospex-ip combined with ADR were inhibited by 94.4% according to RTV, 92.9% according to TW(P<0.01), the coefficient of drug interaction (CDI) was 0.24<0.7, meaning the synergistic effect was very significant. Enhancement of Adriamycin by Nispex was explored further by 10 mg/kg/day Nospex-ip with ADR 15mg/kg, ADR 10 mg/kg and ADR 5 mg/kg. The inhibition of tumor growth by ADR was enhanced significantly combined by Nispex 10 mg/kg/day. CDI was 0.43 when combined with ADR 15 mg/kg, 0.80 when combined with ADR 10mg/kg. Apoptotic HL-60 cells induced by Nispex were detected by staining with AO/EB, flow cytometry analysis, TUNEL assay and DNA fragmentation analysis. The cell cycles were mainly arrested at G0/G1 after treated by Nispex. Nispex was confirmed to be a natural inhibitor of NF-κB pathway by EMSA, Western blot and immunofluorescence assay. VEGF levels were reduced significantly in the supernatant of HL-60 cell cultures treated by Nispex with ELISA .
     PartⅢ: In this part, MTT assay and colony forming assay was used to detected the inhibition of cell proliferation by Nispex on 8 human cancer cells (human acute lymphoblastic leukemia cell line Molt4, human small cell lung cancer cell line NCI-H446, human myeloma cell line U266, human acute promyelocytic leukemia cell line NB4, human chronic myelocytic cell line K562, human nasopharyngeal carcinoma cell line CNE, human cervical carcinoma cell line Hela, human T cell leukemia cell line Jurkat ) , primary human chronic myelocytic cells, and 5 murine cancer cell lines. Nispex inhibited human cancer cells proliferation significantly in time and dose dependent manner. But Nispex had no cytotoxicity on murine cancer cells. Nispex also inhibited 293T cells (a human embryoic kidney cell line) proliferation, but not showing dose dependent manner, Nispex did not induce 293T cells apoptosis as high as 50.0μg/ml drug concentration.
     PartⅣ: In this part, MTT assay was used to compare the effects of inhibiting human cancer cells proliferation by extracts of Scurrula parasitica L. from four diffenent host, Nernium indicum Mill., Morus alba L., Opsmanthus fragrans Lours., and Sapindus mulorossi Gaertn. . Extract of Scurrula parasitica L. parasitized on Nernium indicum Mill. was the most effective, and extract of Scurrula parasitica L. parasitized on Morus alba L. taken the second place. Extract of Scurrula parasitica L. parasitized on Opsmanthus fragrans Lours. had no effectiveness even if as high as 50.0μg/ml drug concentration.
     Conclusion: Nispex, an extract of Scurrula parasitica L. parasitized on Nernium indicum Mill. , has effective anticancer activity in vitro and in vivo; it selectively kills human cancer cells, but not murine cancer cells. Nispex enhanced Adriamycin anticancer effects significantly. Nispex’s anticancer effects may be partially ascribed to the inhibition of activation of NF-kB and suppression of VEGF secretion.
引文
1. 肖崇厚主编.中药化学[M].上海,上海科学技术出版社.1997.
    2. 张贵君主编. 常用中药薄层色谱鉴定[M].北京,化学工业出版社.2005.
    3. 元晓梅 蒋明蔚.聚酰胺吸附—硝酸铝显色法测定山楂及山楂制品中的总黄酮含量[J].食品与发酵工业,1996.
    4. 史焱.川、渝产不同寄主产不同寄主四川桑寄生及五种药用寄生的生药学研究.硕士论文.2000,万方数据库.
    5. 陈玲,朱贲峰,王政峰.闽产 10 种桑寄生科药材的化学成分比较[J].福建中医学院学报,1997,7(3):32~33.
    6. 李美蓉, 李良琼.桑寄生化学成分的研究[J].华西药学杂志,1986,1 (3) : 131-133.
    7. 李良琼, 李美蓉.广寄生叶中金丝桃苷的分离鉴定[J].华西药学杂志,1989,4(3 ):153-156.
    8. 难波恒雄.原色和汉药图鉴(下) [M].1980: 173.
    9. 李美蓉, 李良琼.四川寄生与灰毛寄生黄酮成分的研究[J].中药通报,1987, 12(1 2) :34-35.
    10. 李良琼, 李美蓉.离瓣寄生化学成分的研究[J].中草药,1994, 25(6):283-286.
    11. 李良琼,李美蓉,杨智彪,等.毛叶寄生化学成分的研究[J].中草药,1995, 26 (3) :118-121.
    12. 季宇彬主编.抗癌中药药理与应用[M].哈尔滨,黑龙江科学技术出版社.1999.
    13. http://sun.ars-grin.gov:8080/npgspub/xsql/duke/plantdisp.xsql?taxon=659
    14. 汪茂田,谢培山,王忠东,等. 天然有机化合物分离提取与结构鉴定[M]. 北京,化学工业出版社.2005.
    15.刘育梅,苏燕评,陈炳华,等.红花桑寄生枝、叶中总黄酮成分的测定[J].海峡药学,2002,14(2)20-23.
    16. 孙日强,隋长惠,许春泉,等. 桑寄生,四呼寄生,红花寄生中槲皮素的含量测定[J].现代应用药学, 1993, 10(3):36~38.
    17.黄泰康主编.常用中药成分与药理手册[M].北京,中国医药科技出版社.1994.
    18.潘鑫,刘山莉.中药桑寄生凝集素的分离及体外抗肿瘤活性的研究[J].天然产物研究与开发,2006,18:210-213.
    19.张林苏,刘山莉.中药桑寄生(Lorathlorace)抗肿瘤毒蛋白的分离及部分性质初步研究[J].天然产物研究与开发,2006,18:43-46.
    20.国家药典委员会编.中华人民共和国药典(2000 年版一部)[M].北京,化学工业出版社.2005.
    21.章观德.马桑寄生及马桑子中内醋成分分析方法的研究[J].药学学报,1984 ,19 (1): 56-60.
    22.刘广雄,郑志玲,李树明.大菟丝子所致中毒与其寄主马桑成分的关系[J].华西药学杂志,2000,15(4):314-315.
    23.Tseng TH, Lee YJ. Evaluation of natural and synthetic compounds from East Asiatic folk medicinal plants on the mediation of cancer [J]. Anticancer Agents Med Chem. 2006, 6(4):347-365.
    24.王修杰,袁淑兰,魏于全.植物多酚的防癌抗癌作用[J].天然产物研究与开发.2005,17(4)508-516.
    25.杨镇洲,糜漫天.大豆异黄酮的抗癌效应研究进展[J].国外医学肿瘤学分册.2001, 28(2):107-110.
    26 . Soobrattee MA, Bahorun T, Aruoma OI. Chemopreventive actions of polyphenolic compounds in cancer Biofactors [J] . 2006, 27(1-4):19-35.
    27.甄永苏主编.抗肿瘤药物研究与开发[M].北京,化学工业出版社.2004.
    28.刘昌孝,孙瑞元编著.药物评价实验设计与统计学基础[M].北京,军事医学科学出版社.1998.
    29.张均田.现代药理实验方法学[M].北京:北京医科大学、中国协和医科大学联合出版社,1998,1814-1821.
    30.荣风年,刘薇,汤春生.丁酸钠对子宫膜癌抑制作用的裸鼠体内实验研究[J]. 肿瘤防治杂志, 2005,12(4):261-262.
    31.Nemati F, Livartowski A, De Cremoux P,et al. Distinctive potentiating effects of cisplatin and/or ifosfamide combined with etoposide in human small cell lung carcinoma xenografts [J].Clinical Cancer Research, 2000, 69(5):2075-2086.
    32.Iwauma Y,Chen F,Egilmez N.et a1.Anti-tumor immune response of human periperal blood lymphocytes coengrafted with tumor into severe combined immunodeficie mice[J].Cancer Res,1997,57(4):2937-2942.
    33.廖志勇,张胜华,甄永苏. Synergistic effects of geldanamycin and antitumor drugs [J]. 药学学报. 2001, 36(8):569-575.
    34.Cao SS, Zhen YS. Potentiation of antimetabolite antitumor activity in vivo by dipyridamole and amphotericin B [J] .Cancer Chemother Pharmacol, 1989, 24 (3):181-186.
    35.陈丽娟,盛瑞兰,汪承亚,等.AO/EB 荧光染色法测定阿糖胞苷诱导 HL-60 细胞凋亡[J].中华血液学杂志,1998,19(1):41-42.
    36.王亚利,宋天保, 王西京,等. Survivin mRNA 反义寡核苷酸诱导胰腺癌细胞凋亡[J]. 世界华人消化杂志 2004,12(8):1872-1874.
    37.Chaturvedi MM, Kumar A, Darnay BG, et al. Sanguinarine (pseudochelerythrine) is a potent inhibitor of NF-kB activation [J]. J Biol Chem 1997, 272:30129–30134.
    38.Huang YT, Pan SL, Guh JH, et al. YC-1 suppresses constitutive nuclear factor-kappaB activation and induces apoptosis in human prostate cancer cells[J]. Mol Cancer Ther. 2005, 4(10):1628-1635.
    39.王艳芳,王新华,朱宇同.槲皮素药理作用研究进展[J].天然产物研究与开发,2003, 15(2):171-173.
    40.Ferry DR, Smith A, Malkhandi J, et al. Phase I clinical trial of the flavonoid quercetin: pharmacokinetics and evidence for in vivo tyrosine kinase inhibition [J]. Clin Cancer Res. 1996, 2(4):659-668.
    41.Psotova J, Chlopcikova S, Miketova P, et al. Chemoprotective effect of plant phenolics against anthracycline-induced toxicity on rat cardiomyocytes. Part III. Apigenin, baicalelin, kaempherol, luteolin and quercetin [J]. Phytother Res. 2004, 18(7):516-521.
    42.Donnini S, Finetti F, Lusini L, et al. Divergent effects of quercetin conjugates on angiogenesis [J]. Br J Nutr. 2006, 95(5):1016-1023.
    43.Stenkvist B, Pengtsson E, Dahlqvist B, et al. Cardiac glycosides and breast cancer, revisited [J]. N Engl J Med. 1982, 306(8):484.
    44.Stenkvist B, Bengtsson E, Eriksson O, et al. Cardiac glycosides and breast cancer [J]. Lancet. 1979, 8115:563.
    45.Stenkvist B, Bengtsson E, Eklund G, et al. Evidence of a modifying influence of heart glucosides on the development of breast cancer[J]. Anal Quant Cytol, 1980, 2(1):49-54.
    46.Stenkvist B. Is digitalis a therapy for breast carcinoma [J]? Oncol Rep. 1999, 6(3):493-496.
    47.Svensson A, Azarbayjani F, Backman U, et al. digoxin inhibits neuroblastoma tumor growth in mice [J]. Anticancer Res, 2005, 25(1A): 207-212.
    48.Smith JA, Madden T, Vijjeswarapu M, et al. Inhibition of export of fibroblast growth factor-2 (FGF-2) from the prostate cancer cell lines PC3 and DU145 by Anvirzel and its cardiac glycoside component, oleandrin [J]. Biochem Pharmacol, 2001, 62(4):469-472.
    49.彭海燕 , 章永红 , 韩英, 等 . 槲寄生碱抗肿瘤作用的研究 [J]. 中国中药杂志 , 2005, 30(5):381-382.
    50.王俊,王国基,颜辉,等.槲寄生的化学成分及药理作用研究进展[J].时珍国医国药,2005,16(4)300-304.
    51.Bussing A. Immune modulation using mistletoe (Viscum album L.) extracts Iscador [J]. Arzneimittelforschung, 2006, 56(6A):508-515.
    52.Jackson SJ, Venema RC. Quercetin inhibits eNOS, microtubule polymerization, and mitotic progression in bovine aortic endothelial cells [J]. J Nutr. 2006, 136(5):1178-1184.
    53.Yance DR Jr, Sagar SM. Targeting angiogenesis with integrative cancer therapies [J]. Integr Cancer Ther. 2006, 5(1):9-29.
    54.Ma ZS, Huynh TH, Ng CP, et al. Reduction of CWR22 prostate tumor xenograft growth by combined tamoxifen-quercetin treatment is associated with inhibition of angiogenesis and cellular proliferation [J]. Int J Oncol. 2004, 24(5):1297-1304.
    55.Kim JD, Liu L, Guo W, et al. Chemical structure of flavonols in relation to modulation of angiogenesis and immune-endothelial cell adhesion [J]. J Nutr Biochem. 2006, 17(3):165-176.
    56.Kitagawa S, Nabekura T, Takahashi T, et al. Structure-activity relationships of the inhibitory effects of flavonoids on P-glycoprotein-mediated transport in KB-C2 cells[J]. Biol Pharm Bull. 2005, 28(12):2274-2278.
    57.李世红,王绍军.多柔比星心脏毒性发病机制新近展[J].临床心血管病杂志, 2005, 21(4): 249-252.
    58.Garg AK, Buchholz TA, Aggarwal BB. Chemosensitization and radiosensitization of tumors by plant polyphenols [J]. Antioxid Redox Signal. 2005, 7(11-12):1630-1647.
    59.王立忠,贺兼斌,李杰平,等. 槲皮素联合顺铂对肺腺癌小鼠移植瘤及 NF-κB 和 HIF-1a 表达的影响[J].中国现代医学杂志, 2006,16(9):1349-1352.
    60.王海忠,王沁.槲皮素联合顺铂对胃癌 SGC-7901 细胞增生和凋亡的影响世界华人消化杂志[J]. 2005, 3(3):303-307.
    61.Scambia G, Ranelletti FO, Benedetti Panici P, et al. Synergistic antiproliferative activity of quercetin and cisplatin on ovarian cancer cell growth [J]. Anticancer Drugs. 1990, 1(1):45-48.
    62.Teofili L, Pierelli L, Iovino MS, et al. The combination of quercetin and cytosine arabinosidesynergistically inhibits leukemic cell growth [J]. Leuk Res. 1992, 16(5):497-503.
    63.Jakubowicz-Gil J, Paduch R, Piersiak T, et al. The effect of quercetin on pro-apoptotic activity of cisplatin in HeLa cells [J]. Biochem Pharmacol. 2005, 69(9):1343-1350.
    64.Scambia G, Ranelletti FO, Panici PB, et al. Quercetin potentiates the effect of adriamycin in a multidrug-resistant MCF-7 human breast-cancer cell line: P-glycoprotein as a possible target [J]. Cancer Chemother Pharmacol, 1994, 34(6):459-464.
    65.蔡讯,陈芳源,韩洁英,等.槲皮素逆转白血病细胞株 HL-60 / ADM 多药耐药的研究[J]. 中华肿瘤杂志, 2005,27 (6):326~329.
    66.Nasu S, Milas L, Kawabe S, et al. Enhancement of radiotherapy by oleandrin is a caspase-3 dependent process [J]. Cancer Lett, 2002, 185(2): 145-151.
    67.万晓华,李忠武,张京秀.NF-κB 在肿瘤恶变、演进及治疗反应中的作用[J].中华医药杂志,2005.12(8):1-6.
    68.Basseres DS, Baldwin AS. Nuclear factor-kappaB and inhibitor of kappaB kinase pathways in oncogenic initiation and progression [J]. Oncogene, 2006, 25(51):6817-6830.
    69.Sreenivasan Y, Sarkar A, Manna SK. Oleandrin suppresses activation of nuclear transcription factor-kappa B and activator protein-1 and potentiates apoptosis induced by ceramide [J]. Biochem Pharmacol. 2003, 66(11):2223-2239.
    70.Katula KS, McCain JA, Radewicz AT. Relative ability of dietary compounds to modulate nuclear factor-kappaB activity as assessed in a cell-based reporter system [J]. J Med Food. 2005, 8(2):269-274.
    71.Garcia-Mediavilla V, Crespo I, Collado PS, et al. The anti-inflammatory flavones quercetin and kaempferol cause inhibition of inducible nitric oxide synthase, cyclooxygenase-2 and reactive C-protein, and down-regulation of the nuclear factor kappaB pathway in Chang Liver cells [J]. Eur J Pharmacol. 2007, 557(2-3):221-229
    72.Kong D, Li Y, Wang Z, et al. Inhibition of angiogenesis and invasion by 3,3'-diindolylmethane is mediated by the nuclear factor-kappaB downstream target genes MMP-9 and uPA that regulated bioavailability of vascular endothelial growth factor in prostate cancer. Cancer Res, 2007, 67(7): 3310-3319
    73.北京大学人类疾病基因研究中心:http://gene.bjmu.cn/science/1/5.htm
    74.Graf BA, Milbury PE, Blumberg JB. Flavonols, flavones, flavanones, and human health:epidemiological evidence [J]. J Med Food. 2005, 8(3):281-290.
    75.Sreenivasan Y, Raghavendra PB, Manna SK. Oleandrin-mediated expression of Fas potentiates apoptosis in tumor cells [J]. J Clin Immunol. 2006, 26(4):308-322.
    76.Frese S, Frese-Schaper M, Andres AC, et al. Cardiac glycosides initiate Apo2L/TRAIL-induced apoptosis in non-small cell lung cancer cells by up-regulation of death receptors 4 and 5 [J]. Cancer Res, 2006, 66(11):5867-5874.
    77.Pathak S, Multani AS, Narayan S, et al. Anvirzel, an extract of Nerium oleander, induces cell death in human but not murine cancer cells [J]. Anticancer Drugs. 2000, 11(6):455-463.
    78.Bussing A, Schietzel M. Apoptosis-inducing properties of Viscum album L. extracts from different host trees, correlate with their content of toxic mistletoe lectins. Anticancer Res, 1999, 19(1A):23-28.
    79.Duong Van Huyen JP, Delignat S, Kazatchkine MD, et al. Comparative study of the sensitivity of lymphoblastoid and transformed monocytic cell lines to the cytotoxic effects of Viscum album extracts of different origin. Chemotherapy, 2003, 49(6):298-302.
    80.Osadebe PO, Okide GB, Akabogu IC. Study on anti-diabetic activities of crude methanolic extracts of Loranthus micranthus (Linn.) sourced from five different host trees. J Ethnopharmacol, 2004, 95(2-3):133-138.
    81.王志浩,杨占秋,黄铁牛,等.桑寄生乙醇提取物抗柯萨齐病毒 B3 的实验研究.中国中药杂志,2000,25(11):685-687.
    1. Shiratori O. Growth inhibitory effect of cardiac glycosides and aglycones on neoplastic cells: in vitro and in vivo studies [J]. Gann, 1967, 58: 521-528.
    2. Stenkvist B, Pengtsson E, Dahlqvist B, et al. Cardiac glycosides and breast cancer, revisited [J]. N Engl J Med, 1982, 306(8):484.
    3. Stenkvist B, Bengtsson E, Eriksson O, et al. Cardiac glycosides and breast cancer [J]. Lancet, 1979, 1(8115):563.
    4. Stenkvist B, Bengtsson E, Eklund G, et al. Evidence of a modifying influence of heart glucosides on the development of breast cancer [J]. Anal Quant Cytol, 1980, 2(1):49-54.
    5. Stenkvist B. Is digitalis a therapy for breast carcinoma? [J]. Oncol Rep, 1999, 6(3):493-496.
    6. Bielawski K, Winnicka K, Bielawska A. Inhibition of DNA Topoisomerases I and II, and growth inhibition of breast cancer MCF-7 cells by ouabain, digoxin and proscillaridin A [J]. Biol Pharm Bull, 2006, 9(7):1493-1497.
    7. Kometiani P, Liu L, Askari A. Digitalis-induced signaling by Na+/K+-ATPase in human breast cancer cells [J]. Mol Pharmacol, 2005, 67(3):929-936.
    8. Kimijima I, Urazumi K, Tsuchiya A, et al. Suppression of breast cancer cells by cardiac glycosides [J]. Gan To Kagaku Ryoho, 1992, 19(9):1399-1402.
    9. Chen JQ, Contreras RG, Wang R, et al. Sodium/potasium ATPase (Na+, K+-ATPase) and ouabain/related cardiac glycosides: a new paradigm for development of anti- breast cancer drugs? [J]. Breast Cancer Res Treat, 2006, 96(1):1-15.
    10.Lin H, Juang JL, Wang PS. Involvement of Cdk5/p25 in digoxin-triggered prostate cancer cell apoptosis[J]. J Biol Chem, 2004, 279(28):29302-29307.
    11.Yeh JY, Huang WJ, Kan SF, et al. Inhibitory effects of digitalis on the proliferation of androgen dependent and independent prostate cancer cells[J]. J Urol, 2001, 166(5):1937-1942.
    12.McConkey DJ, Lin Y, Nutt LK, et al. Cardiac glycosides stimulate Ca2+ increases and apoptosis in androgen-independent, metastatic human prostate adenocarcinoma cells [J]. Cancer Res, 2000, 60(14):3807-3812.
    13.Smith JA, Madden T, Vijjeswarapu M, et al. Inhibition of export of fibroblast growth factor-2 (FGF-2) from the prostate cancer cell lines PC3 and DU145 by Anvirzel and its cardiac glycoside component, oleandrin [J]. Biochem Pharmacol, 2001, 62(4):469-472.
    14.Huang YT, Chueh SC, Teng CM, et al. Investigation of ouabain-induced anticancer effect in human androgen-independent prostate cancer PC-3 cells [J]. Biochem Pharmacol, 2004, 67(4):727-373.
    15.Yeh JY, Huang WJ, Kan SF, et al. Effects osf bufalin and cinobufagin on the proliferation of androgen dependent and independent prostate cancer cells[J]. Prostat. 2003; 54(2):112-124.
    16.Lin H, Wang SW, Tsai SC, et al. Inhibitory effect of digoxin on testosterone secretion through mechanisms involving decreases of cyclic AMP production and cytochrome P450scc activity in rat testicular interstitial cells [J]. Br J Pharmacol, 1998, 125(8):1635-1640.
    17.Watabe M, Ito K, Masuda Y, et al. Activation of AP-1 is required for bufalin-induced apoptosis in human leukemia U937 cells [J]. Oncogene, 1998, 16(6):779-787.
    18.Johansson S, Lindholm P, Gullbo J, et al. Cytotoxicity of digitoxin and related cardiac glycosides in human tumor cells [J]. Anticancer Drugs, 2001, 12(5):475-483.
    19.林 心 建 , 黄自 强 , 李常春 . 洋 地 黄 体 外 抗 人 癌 细 胞 株 的 作 用 [J]. 福 建 医 学院 学报,1996,30(3):17-20.
    20.Masuda Y, Kawazoe N, Nakajo S, et al. bufalin induces apoptosis and influences the expression of apoptosis-related genes in human leukemia cells [J]. Leuk Res, 1995, 19(8):549-556.
    21.Umebayashi C, Yamamoto N, Nakao H, et al. Flow cytometric estimation of cytotoxic activity of rhodexin A isolated from Rhodea japonica in human leukemia K562 cells [J]. Biol Pharm Bull, 2003, 26(5):627-630.
    22.Lopez-Lazaro M, Pastor N, Azrak SS, et al. digitoxin inhibits the growth of cancer cell lines at concentrations commonly found in cardiac patients [J]. J Nat Prod, 2005, 68(11):1642-1645.
    23.Svensson A, Azarbayjani F, Backman U, et al. digoxin inhibits neuroblastoma tumor growth in mice [J]. Anticancer Res, 2005, 25(1A):207-212.
    24.Zhang X, Huang Z, Li C. Antitumor activity of thevetoside in vitro [J]. Chin Med J (Engl), 1996, 109(6):478-481.
    25.Newman RA, Yang P, Hittelman WN, et al. oleandrin-mediated oxidative stress in human melanoma cells [J]. J Exp Ther Oncol, 2006, 5(3):167-181.
    26.Mijatovic T, Op De Beeck A, Van Quaquebeke E, et al. The cardenolide UNBS1450 is able to deactivate nuclear factor kappaB-mediated cytoprotective effects in human non-small cell lung cancer cells [J]. Mol Cancer Ther, 2006, 5(2):391-399.
    27.Haux.J. digitoxin is a potential anticancer agent for several types of cancer [J]. Hypotheses, 1999, 53(6):543-548.
    28.Afaq F, Saleem M, Aziz MH, et al. Inhibition of 12-O-tetradecanoylphorbol-13-acetate induced tumor promotion markers in CD-1 mouse skin by oleandrin [J]. Toxicol Appl Pharmacol, 2004, 195(3):361-369.
    29.Sreenivasan Y, Sarkar A, Manna SK. digitoxin suppresses activation of nuclear transcription factor-kappa B and activator protein-1 and potentiates apoptosis induced by ceramide [J]. Biochem Pharmacol, 2003, 66(11):2223-2239.
    30.Manna SK, Sah NK, Newman RA, et al. oleandrin suppresses activation of nuclear transcription factor-kappaB, activator protein-1, and c-Jun NH2-terminal kinase [J]. Cancer Res, 2000, 60(14):3838-3847.
    31.Sreenivasan Y, Raghavendra PB, Manna SK. oleandrin-mediated expression of Faspotentiates apoptosis in tumor cells [J]. J Clin Immunol, 2006, 26(4):308-322.
    32.Manna SK, Sreenivasan Y, Sarkar A. Cardiac glycoside inhibits IL-8-induced biological responses by downregulating IL-8 receptors through altering membrane fluidity [J]. J Cell Physiol, 2006, 207(1):195-207.
    33.Aizman O, Uhlen P, Lal M, et al. Ouabain, a steroid hormone that signals with slow calcium oscillations [J]. Proc Natl Acad Sci U S A, 2001, 98(23):13420-13424.
    34.Xie ZJ, Askari. Na+/K+ATPase as a signal transducer [J]. Eur J Biochem, 2002, 269:2434-2439.
    35.Yang Q, Huang W, Jozwik C, et al. Cardiac glycosides inhibit TNF-alpha/NF-kappaB signaling by blocking recruitment of TNF receptor-associated death domain to the TNF receptor [J]. Proc Natl Acad Sci U S A, 2005, 102(27):9631-9636.
    36.Pathak S, Multani AS, Narayan S, et al. Anvirzel, an extract of Nerium oleander, induces cell death in human but not murine cancer cells [J]. Anticancer Drugs, 2000, 11(6):455-463.
    37.Langenhan JM, Peters NR, Guzei IA, et al. Enhancing the anticancer properties of cardiac glycosides by neoglycorandomization [J]. Proc Natl Acad Sci U S A, 2005, 102(35):12305-12310.
    38.Daniel D, Susal C, Kopp B, et al. Apoptosis-mediated selective killing of malignant cells by cardiac steroids: maintenance of cytotoxicity and loss of cardiac activity of chemically modified derivatives [J]. Int Immunopharmacol, 2003, 3(13-14):1791-1801.
    39.Akiyama M, Ogura M, Iwai M, et al. Effect of bufalin on growth and differentiation of human skin carcinoma cells in vitro [J]. Hum Cell, 1999, 12(4):205-209.
    40.Zhang LS, Nakaya K, Yoshida T, et al. bufalin as a potent inducer of differentiation of human myeloid leukemia cells [J]. Biochem Biophys Res Commun, 1991, 178(2):686-693.
    41.Zhang L, Nakaya K, Yoshida T, et al. Induction by bufalin of differentiation of human leukemia cells HL60, U937, and ML1 toward macrophage/monocyte-like cells and its potent synergistic effect on the differentiation of human leukemia cells in combination with other inducers [J]. Cancer Res, 1992, 52(17):4634-4641.
    42.Numazawa S, Inoue N, Nakura H, et al. A cardiotonic steroid bufalin-induced differentiation of THP-1 cells. Involvement of Na+, K(+)-ATPase inhibition in the early changes in proto-oncogene expression [J]. Biochem Pharmacol, 1996, 52(2):321-329.
    43.Kurosawa M, Tani Y, Nishimura S, et al. Distinct PKC isozymes regulate bufalin-induced differentiation and apoptosis in human monocytic cells [J]. Am J Physiol Cell Physiol, 2001, 280(3):459-464.
    44.Yamada K, Hino K, Tomoyasu S, et al. Enhancement by bufalin of retinoic acid-induced differentiation of acute promyelocytic leukemia cells in primary culture [J]. Leuk Res, 1998, 22(7):589-595.
    45.朱志图,金波,刘云鹏,等. 蟾蜍灵增强全反式维甲酸对急性早幼粒细胞白血病原代培养细胞的诱导分化[J]. 中华内科杂志, 2006, 45(4):314-317.
    46.Szabo E, Francis J, Birrer MJ. Alterations in differentiation and apoptosis induced by bufalin in c-Jun overexpressing U-937 cells [J]. Int J Oncol, 1998, 12(2):403-409.
    47.Numazawa S, Honma Y, Yamamoto T, et al. A cardiotonic steroid bufalin-like factor in human plasma induces leukemia cell differentiation [J]. Leuk Res, 1995, 19(12):945-953.
    48.Lee DY, Yasuda M, Yamamoto T, et al. bufalin inhibits endothelial cell proliferation and angiogenesis in vitro [J]. Life Sci, 1997, 60(2):127-134.
    49.Nasu S, Milas L, Kawabe S, et al. Enhancement of radiotherapy by oleandrin is a caspase-3 dependent process [J]. Cancer Lett, 2002, 185(2):145-151.
    50.Verheye-Dua F, Bohm L. Na+, K+-ATPase inhibitor, ouabain accentuates irradiation damage in human tumour cell lines [J]. Radiat Oncol Investig, 1998, 6(3):109-119.
    51.Hashimoto S, Jing Y, Kawazoe N, et al. bufalin reduces the level of Topo II in human leukemia cells and affects the cytotoxicity of anticancer drugs [J]. Leuk Res, 1997, 21(9):875-883.
    52.Watabe M, Nakajo S, Yoshida T, et al. Treatment of U937 cells with bufalin induces the translocation of casein kinase 2 and modulates the activity of Topo II prior to the induction of apoptosis [J]. Cell Growth Differ, 1997, 8(8):871-879.
    53.章雄文黄自强,李常春.黄花夹竹桃甙及其与氮芥合用的体内抗肿瘤活性[J].中国药理学报,1994,15(3)285-288.
    54. Frese S, Frese-Schaper M, Andres AC, et al. Cardiac glycosides initiate Apo2L/TRAIL-induced apoptosis in non-small cell lung cancer cells by up-regulation of death receptors 4 and 5 [J]. Cancer Res, 2006, 66(11):5867-5874.
    55.Huang DM, Guh JH, Huang YT, et al. Cardiac glycosides induce resistance totubulin-dependent anticancer drugs in androgen-independent human prostate cancer [J]. J Biomed Sci, 2002, 9(5):443-452.
    56.俞昌喜,林心建,黄自强,等.强心甙类药对长春新碱抗肿瘤活性的协同作用[J].福建医学院学报,1996,12(4):306-309.
    57.Haux J, Klepp O, Spigset O, et al. digitoxin medication and cancer; case control and internal dose-response studies [J]. BMC Cancer, 2001, 1:11.
    58.韩克起,顾伟,苏永华,等. 蟾毒灵抗小鼠原位移植性肝癌整体药效学研究[J].中华实验外科杂志,2004, 21(12):1436-1438.
    59.林心建,黄自强,李常春.洋地黄毒甙体内抗肿瘤活性极其增效作用[J].福建医学院学报,1996,30(2):113-116.
    60.Van Quaquebeke E, Simon G, Andre A, et al. Identification of a novel cardenolide (2''-oxovoruscharin) from Calotropis procera and the hemisynthesis of novel derivatives displaying potent in vitro antitumor activities and high in vivo tolerance: structure-activity relationship analyses [J]. J Med Chem, 2005, 48(3):849-856.
    61.Ye M, Qu G, Guo H, et al. Novel cytotoxic bufadienolides derived from bufalin by microbial hydroxylation and their structure-activity relationships [J]. J Steroid Biochem Mol Biol, 2004, 91(1-2):87-98.
    62.He X, Tang J, Qiao A, et al. Cytotoxic biotransformed products from cinobufagin by Mucor spinosus and Aspergillus nige [J]. Steroids, 2006, 71(5):392-402.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700