羟基红花黄色素A抗兴奋毒性神经元死亡的神经保护作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     1.探讨谷氨酸(Glu)兴奋毒性损伤后,羟基红花黄色素A(HSYA)对器官型脑片海马齿状回(HDG)神经发生的影响。
     2.研究Glu兴奋毒性损伤后,HSYA对器官型海马脑片神经细胞死亡的影响,以及保护线粒体功能的机制。
     3.探讨Glu兴奋毒性损伤后,HSYA对大鼠皮层神经细胞凋亡的影响,以及对p38MAPK途径诱导凋亡的作用。
     方法
     1.制备出生后6天SD乳鼠器官型海马脑片,按随机数字表法分为4组(每组6张脑片):(1)生理盐水对照组(3.5mM Glu+1ml生理盐水干预,CG);(2)空白对照组(正常培养,不造模+不干预,Nor);(3)大剂量HSYA组(3.5mMGlu+1ml0.072mg/ml HSYA干预,HG1);(4)小剂量HSYA组(3.5mM Glu+1ml0.036mg/ml HSYA干预,HG2)。建立Glu损伤模型,造模前及造模后1d、3d和6d通过倒置显微镜及免疫荧光染色观察脑片生长情况,按常规方法分别进行BrdU与Nestin免疫荧光双标染色。计数HDG中神经干细胞(Neural stem cells, NSCs)并进行重复测量的方差分析,每个时间点各组之间的比较采用单因素方差分析,各组内不同时间之间的比较采用重复测量的方差分析,主效应不同水平间的多重比较采用LSD法,P<0.05为差异有统计学意义。
     2.制备出生后6天SD乳鼠器官型海马脑片,按随机数字表法分为5组(每组5张脑片):(1)正常对照组(正常培养基培养,Nor);(2)大剂量HSYA干预组(3.5mM Glu+lml0.072mg/ml HSYA干预,HGl);(3)小剂量HSYA干预组(3.5mM Glu+lml0.036mg/ml HSYA干预,HG2);(4)生理盐水对照组(3.5mMGlu+1ml生理盐水干预,CG);(5)大剂量HSYA对照组(1ml0.072mg/ml HSYA干预,Only)。建立Glu损伤模型,加入含有不同浓度HSYA的培养基(0.072mg/ml,0.036mg/ml)(?)化72小时,加入HSYA前、24和48小时后分别测量PI摄取量。蛋白免疫印迹分析5-LO,caspase-3, SOD2, P-Akt蛋白表达水平。各组之间PI荧光值,5-LO, caspase-3, SOD2, P-Akt蛋白表达量的比较采用单因素方差分析(One-way ANOVA),方差齐时组内两两多重比较采用LSD法,方差不齐时组内两两多重比较采用Tamhane's T2法,P<0.05为差异有统计学意义。
     3.用胚胎18天(E18)SD大鼠制备前额叶皮层神经元的原代培养,在体外培养10至14天后建立Glu损伤模型。按随机数字表法将神经细胞分为5组(每组5孔):(1)正常对照组(正常培养基培养,Nor);(2)大剂量HSYA干预组(3.5mM Glu+0.072mg/ml HSYA干预,HG1);(3)小剂量HSYA干预组(3.5mM Glu+0.036mg/ml HSYA干预,HG2);(4)生理盐水对照组(3.5mM Glu+生理盐水干预,CG);(5)大剂量HSYA对照组(0.072mg/ml HSYA干预,Only).MTT法,Hoechst33258/PI双染,流式细胞术(Annexin V-FITC/PI双染法)检测神经细胞死亡和凋亡。RT-PCR法检测caspase-3、ATF2、p38MAPK、MAPKKK的表达。不同组别之间神经细胞凋亡的比较、RT-PCR相对密度的比较采用单因素方差分析(One-way ANOVA),组内两两多重比较采用LSD法,P<0.05为差异有统计学意义。
     结果
     1.低倍镜下(40×)正常脑片呈褐色,颜色均匀,透光性良好,可清晰分辨皮层、海马(CA1-4及DG区)、脑室、皮层下核团,白质纤维束等结构。高倍镜下(200×)可见胞质和胞核。Glu损伤前后不同时间点之间NSCs(BrdU+, Nestin+)的差异有统计学意义(F=228.075,P<0.001),HG1, HG2, CG及Nor均如此,F值分别为31.537,181.762,248.345和52.444,均.P<0.001。各组之间神经干细胞数的差异有统计学意义(F=947.077,P<0.001);从各时间点看,除Glu损伤前,各时间点神经干细胞数均存在下列关系:Nor>HG1>HG2>CG(均P<0.001)。Glu损伤前后与不同组别之间存在交互效应(F=123.639,P<0.001)。
     2.3.5mM Glu损伤后24和48小时主要导致海马DG区递增性细胞死亡。Glu损伤24h后各组之间PI荧光值的差异有统计学意义(F=11.305,P=0.002);HG1HG1,Nor>HG2, Nor>CG, HG1>CG, HG2>CG,差异有统计学意义(均P<0.05)。各组之间P-Akt的差异有统计学意义(F=23.299,P=0.000);Nor>HG2, Nor>CG, HG1>CG, HG1>HG2,差异有统计学意义(均P<0.05)。
     3.MTT法测得各组之间细胞存活率的差异有统计学意义(F=17.063,P=0.000); Nor     结论
     1.0.072mg/ml HSYA减轻Glu兴奋毒性对NSCs的损伤,促进NSCs再生。
     2.0.072mg/ml HSYA减少Glu造成的神经元死亡,这种保护作用24h出现,可持续至48h。Glu兴奋性损伤导致神经元线粒体功能障碍,0.072mg/ml HSYA通过降低5-LO和caspase-3,升高SOD2和磷酸化Akt的蛋白表达,保护线粒体功能,减少神经细胞死亡。
     3. HSYA主要是通过抑制Glu诱导的细胞凋亡来保护神经细胞0.072mg/ml HSYA作用于p38MAPK通路的上游激活物MAPKKK,核心蛋白激酶p38MAPK,下游转录因子ATF2,以及最后的效应蛋白caspase-3多个位点,下调其基因表达,抑制神经元的凋亡。
Object
     1. To explore the effects of hydroxysafflor yellow A (HSYA) on neurogenesis in the hippocampal dentate gyrus (HDG) of the organotypic slices after glutamate(Glu) neurotoxicity.
     2. To investigated the neuroprotective effects of HSYA on Glu induced neuronal death and mitochondrium dysfunction in organotypic hippocampal slice cultures (OHSCs).
     3. To approach anti-apoptotic effects of HSYA on neurotoxicity of glutamate in primary cultured rat cortical neurons along with its possible mechanism of action through p38MAPK pathway.
     Materials and Methods
     1. The organotypic hippocampal slices (300μm) from postnatal6th day SD rats were prepared and randomly divided into four groups(n=6brain slices):(1) saline control group (3.5mM Glu+1ml normal saline intervention, CG);(2) blank control group (normal culture, not modeling+nonintervention. Nor):(3) large doses HSYA group (3.5mM Glu+1ml0.072mg/ml HSYA intervention, HG1);(4) small doses HSYA group (3.5mM Glu+lml0.036mg/ml HSYA intervention, HG2). Each group except Nor was received the same model of Glu intervention and then cultured with different dose of HSYA for72h. Double staining of BrdU and Nestin immunofluorescence according to conventional methods. After that, Neural stem cells(NSCs) in hippocampal dentate gyrus(HDG) were observed under invert microscope or detected by immuno fluorescence staining in different time points(before.24and48h after the application of HSYA). Count NSCs and make the comparison in groups. Repeated measure analysis of NSCs was used in different time points with different intervention, so did in different time in each group; at each time point, comparisons in groups using one-way analysis of variance (One-way ANOVA), two groups'comparisons using LSD method. P<0.05was considered statistically significant.
     2. The organotypic hippocampal slices (300μm) from postnatal6th day SD rats were prepared and randomly divided into five groups(n=5brain slices):(1) normal control group (normal culture, not modeling+nonintervention, Nor);(2) large doses HSYA group (3.5mM Glu+1ml0.072mg/ml HSYA intervention, HG1);(3) small doses HSYA group (3.5mM Glu+1ml0.036mg/ml HSYA intervention, HG2);(4) saline control group (3.5mM Glu+1ml normal saline intervention, CG);(5) large doses HSYA control group(1ml0.072mg/ml HSYA intervention, OnlyHGl). Each group except Nor and OnlyHG1was received the same model of Glu intervention and then cultured with different dose of HSYA for72h. PI uptake was measured before,24and48h after the application of HSYA. Protein expressions of5-LO, caspase-3, the SOD2and phospho-Akt(P-Akt) were deteced by using western blot analysis. Each of these indicators was compared in groups using one-way analysis of variance (One-way ANOVA). If homogeneity of variance, pairwise multiple comparisons using LSD method within groups, and if not, using Tamhane's T2method. P<0.05was considered statistically significant.
     3. Primary cultures of prefrontal cortical neurons were prepared from embryonic18days old (E18) Sprague-Dawley rats. Cultures were used for challenge with Glu between10and14days in vitro (DIV). Cultures were randomly divided into five groups(n=5walls):(1) normal control group (normal culture, not modeling+nonintervention, Nor);(2) large doses HSYA group (3.5mM Glu+0.072mg/ml HSYA intervention, HG1);(3) small doses HSYA group (3.5mM Glu+0.036mg/ml HSYA intervention, HG2);(4) saline control group (3.5mM Glu+normal saline intervention, CG);(5) large doses HSYA control group(0.072mg/ml HSYA intervention, OnlyHG1). Cell death and apoptosis were detected with MTT assay, Hoechst33258/PI double staining and flow cytometry (Annexin V-FITC/PI double staining). mRNA expressions of caspase-3, ATF2, p38MAPK and MAPKKK were detected by RT-PCR. Each of these indicators was compared in groups using one-way analysis of variance (One-way ANOVA), two groups' comparisons using LSD method. P<0.05was considered statistically significant.
     Results
     1. Low power lens (40x):normal brain slices were brown, uniform and good light transmission, can be clearly distinguished between the cortex, hippocampus (CA1-4and DG District), intraventricular, subcortical nuclei and white matter fiber bundle structure. High power lens (200x):visible cytoplasm and nuclei. NSCs (BrdU+, Nestin+) difference was statistically significant in different time points before or after Glu intervention (F=228.075, P<0.001), HG1, HG2, CG and Nor, F value31.537,181.762,248.345and52.444respectively, all P<0.001. Neural stem cell numbers between the groups there were statistically significant differences (F=947.077, P<0.001); except Glu intervention before, from the time point of view, each time point the number of neural stem cells have the following relationship: Nor>HG1>HG2>CG (P<0.001). Glu intervention different time points and different groups there is interactive effect (F=123.639, P<0.001).
     2.3.5mM Glu damage after24and48hours caused increasing cell death in hippocampal DG area.Glu damage after24h PI fluorescence values between the groups had significant difference (F=11.305; P=0.002); HG1HG1, Nor>HG2, Nor>CG, HG1>CG, HG2>CG the differences were statistically significant (all P<0.05). Phospho-Akt had a significant difference (F=23.299, P=0.000); Nor>HG2, Nor>CG, HG1>CG, HG1> HG2, the differences were statistically significant (all P<0.05).
     3. The MTT measuring method of cell survival rate differences between the groups was statistically significant (F=17.063, P=0.000); Nor     Conclusions
     1.0.072mg/ml HSYA alleviated Glu intervention on NSCs damage, promoted the regeneration of NSCs.
     2.0.072mg/ml HSYA reduced Glu induced neuronal death, this protective effect of24h to48h, sustainable. Glu excitotoxicity led to mitochondrial dysfunction,0.072mg/ml HSYA protected mitochondrial function and reduced neuronal cell death through reducing of5-LO and caspase-3, increasing SOD2and phospho-Akt protein expression.
     3. HSYA mainly by inhibiting the apoptosis induced by Glu to protect nerve cells.0.072mg/ml HSYA inhibited neuronal apoptosis through down-regulating p38MAPK pathway gene expression of MAPKKK, p38MAPK, ATF2, caspase-3multiple loci.
引文
[1]Takahashi Y, Miyassaka N, Tasaka SH, et al.Constitution of two coloting matters in the flower petals of carthamus tinctorius L[J]. Tetrahedron Lett, 1982,23(49):51-63.
    [2]Meselhy MR, Kadota S, Momose Y, et al. Two new quinochalcone yellow pigments from Carthamus tinctorius and Ca2+ antagonistic activity of tinctormine[J]. Chem Pharm Bull,1993,41(10):1796-1805.
    [3]Zang BX, Jin M, Si N, et al. Antagonistic effect of hydroxysafflor yellow A on the Platelet activating factor receptor[J]. Yao Xue Xue Bao,2002,37(9): 696-699.
    [4]Tian JW, Fu FH, Jiang WL, et al. Protective effect of hydroxysafflor yellow A Against rat cortex mitochondrial injuries induced by cerebral ischemia[J], Yao Xue Xue Bao,2004,39(10):774-777.
    [5]Wei X, Liu H, sun X, et al. Hydroxysafflor yellow A Protects rat brains against ischemia-reperfusion injury by antioxidant action[J]. Neurosci Lett,2005, 386(1):58-62.
    [6]Chu D, Liu W, Huang Z, et al. Pharmacokinetics and excretion of Hydroxysafflor yellow A, a Potent neuroprotective agent from safflower, in rats and dogs[J]. Planta Med,2006,72(5):418-423.
    [7]俞悦,刘柏炎.脑缺血后炎症反应对神经发生的影响[J].国际脑血管病杂志,2011(19)10:797-800.
    [8]Keyoung HM, Roy NS, Benraiss A, et al. High-yield selection and extraction of two promoter-defined phenotypes of neural stem cells from the fetal human brain[J]. Nat Biotechnol,2001,19(9):843-850.
    [9]Sugaya K. Neuroreplacement therapy and stem cell biology under disease conditions[J]. Cell Mol Life Sci,2003,60(9):1891-1902.
    [10]Arvidsson A. Collin T, Kirik D, et al. Neuronal replacement from endogenous precursors in the adult brain after stroke[J]. Nat Med,2002.8(9):963-970.
    [11]Gahwiler BH, Capogna M, Debanne D.et al. Organotypic slice cultures:a technique has come of age. Trends Neurosci,1997,20:471-477.
    [12]Noraberg J, Poulsen FR, Blaabjerg M, et al. Organotypic hippocampal slice cultures for studies of brain damage, neuroprotection and neurorepair[J]. Curr Drug Targets CNS Neurol Disord,2005,4(4):435-452.
    [13]Moroni F, Meli E. Peruginelli F. et al. Poly(ADP-ribose) polymerase inhibitors attenuate necrotic but not apoptotic neuronal death in experimental models of cerebral ischemia[J]. Cell Death Differ,2001.8:921-932.
    [14]Pellegrini-Giampietro DE, Cozzi A, Peruginelli F, et al.1-Aminoindan-1, 5-dicarboxylic acid and (S)-(+)-2-(3'-carboxybicyclo(1.1.1) pentyl)-glycine, two mGlul receptor-preferring antagonists, reduce neuronal death in in vitro and in vivo models of cerebral ischemia[J]. Eur J Neurosci,1999, 11:3637-3647.
    [15]Renic M, Kumar SN, Gebremedhin D, et al. Protective effect of 20-HETE inhibition in a model of oxygen-glucose deprivation in hippocampal slice cultures[J]. Am J Physiol Heart Circ Physiol.2012 Jan 13. [Epub ahead of print]
    [16]Radley E, Akram A, Grubb BD, et al. Investigation of the mechanisms of progesterone protection following oxygen-glucose deprivation in organotypic hippocampal slice cultures[J]. Neurosci Lett,2012 Jan 6;506(1):131-5.
    [17]Won R, Lee KH, Lee BH. Coenzyme Q10 protects neurons against neurotoxicity in hippocampal slice culture [J]. Neuroreport,2011,22(14): 721-726.
    [18]Feiner JR, Bickler PE, Estrada S, et al. Mild hypothermia, but not propofol, is neuroprotective in organotypic hippocampal cultures[J]. Anesth Analg, 2005,100(1):215-225.
    [19]Zhu H, Wang Z, Ma C, et al. Neuroprotective effects of hydroxysafflor yellow A:in vivo and invitro studies[J]. Planta Med,2003,69:429-433.
    [20]Ye SY and Gao WY. Hydroxysafflor yellow A protects neuron against hypoxia injury and suppresses inflammatory responses following focal ischemia reperfusion in rats[J]. Arch Pharm Res,2008,31:1010-1015.
    [21]Sheng YY and Wen YG. Hydroxysafflor Yellow A Protects Neuron Against Hypoxia Injury and Suppresses Inflammatory Responses Following Focal Ischemia Reper-fusion in Rats[J]. Arch Pharm Res,2008,31(8):1010-1015.
    [22]Wei X, Liu H, Sun X, et al. Hydroxysafflor yellow A protects rat brains against ischemia-reperfusion injury by antioxidant action[J]. Neurosci Lett, 2005,386:58-62.
    [23]Zhu HB, Zhang L, Wang ZH, et al. Therapeutic effects of hydroxysafflor yellow A on focal cerebral ischemic injury in rats and its primary mechanisms [J]. J Asian Nat Prod Res,2005,7(4):607-613.
    [24]Yang Q, Yang ZF, Liu SB, et al. Neuroprotective effects of hydroxysafflor yellow A against excitotoxic neuronal death partially through down-regulation of NR2B-containing NMDA receptors[J]. Neurochem Res,2010,35(9): 1353-1360.
    [25]Ziobrob JM, Deshpandea LS, DeLorenzon RJ. An organotypic hippocampal slice culture model of excitotoxic injury induced spontaneous recurrent epileptiform discharges. Bain Res,2011,1371:110-120
    [26]中华医学会神经病学分会脑血管病学组急性缺血性脑卒中诊治指南撰写组.中国急性缺血性脑卒中诊疗指南2010.中华神经科杂志[J],2010,43:146-153.
    [27]Yamamoto N. Kurotani T, Toyama K. Neural connections between the lateral geniculate nucleus and visual cortex in vitro[J]. Science.1989,14:192-194.
    [28]Stoppini L. Buchs PA, Muller D. A simple method for organotypic cultures of nervous tissue[J]. J Neurosci Methods.1991,37:173-182.
    [29]Gerace E, Landucci E, Scartabelli T. et al. Rat hippocampal slice culture models for the evaluation of neuroprotective agents [J]. Methods Mol Biol. 2012.846:343-354.
    [30]Landucci E, Scartabelli T, Gerace E.et al. CB1 receptors and post-ischemic brain damage:studies on the toxic and neuroprotective effects of cannabinoids in rat organotypic hippocampal slices[J]. Neuropharmacology,2011,60: 674-682.
    [1]Dingledine R, McBain CJ. Excitatory amino acids transmitters. In:Basic Neurochemistry[J]. Raven Press, NewYork,1994:367-387.
    [2]Zipfel GJ, Babcock DJ, Lee JM, et al. Neuronal apoptosis after CNS injury: the roles of glutamate and calcium[J].J Neuro-trauma,2000,17(10):857-869.
    [3]Hill IE, Memans JP, Rasquinha I, et al. Mechanisms of delayed cell death following hypoxic-ischemic injury in immature rat[J]. Brain Res, 1995,676:177.
    [4]Whestell WOJr. Current concepts of excitotoxicity[J]. J Neuropath Exp Neurol,1996,55(1):1.
    [5]Meschia JF, Brott TG, Brown RDJr, et al. Phosphodiesterase 4D and 5-lipoxygenase activating protein in ischemic stroke[J]. Ann Neuro,2005, 58(3):351-361.
    [6]Zhu C, Wang X, Hagberg H, et al. Correlation on between CaSpaSe-3 activation and three different markers of DNA damage in neonatal cerebral hypoxia-ischemia[J]. Neuro-chem,2000,75:819-829.
    [7]Ramuz O, Isnardon D, Devilard E, et al. Constitutive nuclear localization and initial cytoplasmic apoptotic activation of endogenous caspase-3 evidenced by confocal microscopy [J]. Int J Exp Pathol,2003,84:75-81.
    [8]尹昌林,熊健琼,文亮.Caspase-3在缺血再灌注大鼠脑海马神经元凋亡中作用的实验研究[J].第三军医大学学报,2004,26:1245-1247.
    [9]Domenico E, Giampietrop, Cherici G, et al. Excitatory amino acid release from rat hippocampal slices as a consequence of free-radicalformation[J]. J Neuro chemia,1988,51(6):1960.
    [10]夏绪纲,黄兆民,欧阳珊.氯喹、SOD防治脑缺血再灌注损伤的实验研究[J].中风与神经疾病杂志,1997,14:84.
    [11]Zhang L, Qu Y, Tang J, et al. PI3K/Akt signaling pathway is required for neuroprotection of thalidomide on hypoxic-ischemic cortical neurons in vitro[J]. Brain Res,2010,1357(21):157-165.
    [12]Jover-Mengual T, Miyawaki T, Latuszek A. et al. Acute estradiol protects CA1 neurons from ischemia-induced apoptotic cell death via the PI3K/Akt pathway[J]. Brain Res.2010,1321(3):1-12.
    [13]Horn AP, Gerhardt D, Geyer AB, et al. Cellular death in hippocampus in response to PI3K pathway inhibition and oxygen and glucose deprivation[J]. Neurochem Res,2005,30(3):355-61.
    [14]Ziobrob JM, Deshpandea LS, DeLorenzon RJ. An organotypic hippocampal slice culture model of excitotoxic injury induced spontaneous recurrent epileptiform discharges [J]. Bain Res,2011,1371:110-120.
    [15]Dawson LA, Djali S, Gonzales C, et al. Haracterization of transient focal is chemical-induced increases in extra cellular glutamate and aspartame in spontaneously hypertensive rats[J]. Brain Res Bull,2000,53(6):767-776.
    [16]Rae VL, Bowen KK, Dempsey RJ. Transient focal cerebral ischemia down regulates glutamate transporters GLT-1 and EAACL expression in rat brain [J]. Neurochemistry Res,2001,26(5):407-502.
    [17]Zhu HB, Wang ZH, et al. Neuroprotective effects of hydroxysafflor yellow A: In vivo and in vitro studies[J]. Planta Med,2003,69(5):429.
    [18]Bruce AJ, Malfroy B, Baudry M. Beta-amyloid toxicity in organotypic hippocampal cultures:protection by EUK-8, a synthetic catalytic free radical scavenger[J]. Proc Nat1 Acad Sci,1996, (93):2312-2316.
    [19]Holopainen IE. Jrvel J. Lopez-Picon FR, et al. Mechanisms of kainate-induced region-specific neuronal death in immature organotypic hippocampal slice cultures[J]. Neurochem Int,2004(45):1-10.
    [20]Lindroos M, Soini SL, Kukko-Lukjanov T, et al. Maturation of cultured hippocampal slices results in increased excitability in granule cells[J]. Int J Dev Neurosci,2005(23):65-73.
    [21]Kim EJ, Won R, Sohn J.et al. Anti-oxidant effect of ascorbic and dehydroascorbic acids in hippocampal slice culture[J]. Biochem Biophys Res Commun,2008(366):8-14.
    [22]Chu LS. Fang SH, Zhou Y, et al. Minocycline inhibits 5-lipoxygen-ase activation and brain inflammation after focal cerebral ischemia in rats[J]. Acta Pharmacol Sin,2007; 28(6):763-772.
    [23]Nathoo N. Prayson RA, Bondar J, et al. Increased expression of 5-lipoxygenase in high-grade astrocytomas[J]. Neurosurgery,2006,58(2): 347-354.
    [24]IkonomovicMD, Abrahamson EE, UzT, et al. Increased 5-lipoxyge-nase immunoreactivity in the hippocampus of patients with Alzheimer's disease[J]. J H istochem Cytochem,2008,56 (12):1065-1073.
    [25]许琳,余涓,刘颖,等.5-脂氧合酶抑制剂zileuton对大鼠局灶性脑缺血/再灌注损伤的保护作用[J].中国药理学通报,2006,22(7):853-855.
    [26]Manev H, Uz T, Qu T. Early upregulation of hippocampal 5-lipoxygenase following systemic administration of kainate to rats[J]. Restor Neurol Neurosci, 1998(12):81-85.
    [27]Manev H, Uz T, Qu T.5-Lipoxygenase and cyclooxygenase Mrna expression in rat hippocampus:early response to glutamate receptor activation by kainate[J]. Exp Gerontol,2000(35):1201-1209.
    [28]Werz O, Szellas D, Steinhilber D. Reactive oxygen species released from granulocytes stimulate 5-lipoxygenase activity in a B-lymphocyticcell line[J]. Eur J Biochem,2000(267):1263-1269.
    [29]Liu W, Liu R, Schreiber SS, et al. Role of polyamine metabolism in kainic acid excitotoxicity in organotypic hippocampal slice cultures[J]. J Neurochem, 2001(79):976-984.
    [30]Monari M, Foschi J, et al. Implications of antioxidant enzymes in human gastric neoplasms[J]. Int J Mol Med,2009,24:693-700.
    [31]Rana N. Sonali M, Jawaid I. Superoxide dismutase-applications and relevance to human diseases[J]. Med Sci Monit,2002,8(9):210-215.
    [32]Majewski N, Nogueira V, Bhaskar P, et al. Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak[J]. Mol Cell,2004,16:819-830.
    [33]Kim H, Jang HS, Park KM. Reactive oxygen species generated by renal ischemia and reperfusion trigger protection against subsequent renal ischemia and reperfusion injury in mice[J]. Am J Physiol Renal Physiol,2009.
    [34]Shin EJ, Jeong JH, Bing G, et al. Kainate-induced mitochondrial oxidative stress contributes to hippocampal degeneration in senescence-accelerated mice[J]. Cell Signal, 2008(20):645-658.
    [35]Dudek H, Datta SR, Franke TF, et al. Regulation of neuronal survival by the serine-threonine protein kinase Akt[J]. Science,1997(275):661-665.
    [36]Kennedy SG, Kandel ES, Cross TK, et al. Akt/protein kinase B inhibits cell death by preventing the release of cytochrome c from mitochondria[J]. Mol Cell Biol,1999(19):5800-5810.
    [37]Khwaja A, Rodriguez-Viciana P, Wennstrom S, et al. Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/Akt cellular survival pathway [J]. EMBOJ,1997(16):2783-2793.
    [1]肖培根.《新编中药志》[M].第二卷,第一版版.北京:化学工业出版社,2002.684页.
    [2]Takahashi Y, Miyassaka N, Tasaka SH. et al. Constitution of two coloting matters in the flower petals of carthamus tinctorius L[J]. Tetrahedron Lett, 1982,23(49):5163.
    [3]天津医药工业研究所.红花的研究(二).山西医药杂志,1980,9(1):2
    [4]Ono K, Han J. The p38 signal transduction pathway:activation and function[J]. Cell Signal,2000,12(1):1-13.
    [5]New L, Han J. The p38 MAP Kinase pathway and its biological function [J]. Trends Cardiovasc Med,1998,8:220-228.
    [6]Kohsuke T, Hidenori I. Neuronal p38 MAPK signalling:an emerging regulator of cell fate and function in the nervous system[J]. Genes Cells,2002,7:1099-1111.
    [7]Pedersen SF, Darborg BV, Ren tschML, et al. Regulation of mitogen-activated protein kinase pathways by the plasma membrane Na+/H+exchanger, NHE1 [J]. Arch Biochem Biophy,2007,462 (2):195-201.
    [8]Darzynkiewicz Z, Juan G, Li X, et al. Cytometry in cell necrobiology: Analysis of apoptosis and accidental cell death (necrosis) [J]. Cytometry, 1997,27:1-20.
    [9]Vermes I, haanen C, Steffens-Nakken H, et al. A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V[J]. J Immunol Methods,1995, 184:39-51.
    [10]Koopman G, Reutelingsperger CP, Kuijten GA, et al. Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis[J]. Blood,1994,84:1415-1420.
    [11]Martin SJ, Reutelingsperger CP, McGahon AJ, et al. Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus:Inhibition by over expression of Bcl-2 and Ab1[J]. J Exp Med,1995,182:1545-1556.
    [12]Fadok VA, Voelker DR, Campbell PA, et al. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages[J]. J Immunol,1992,148:2207-2216.
    [13]Wang H, Wu LJ, Kim SS, et al. FMRP acts as a key messenger for dopamine modulation in the fore brain[J]. Neuron,2008(59):634-647.
    [14]Brewer GJ, Torricelli JR, EvegeEK, et al. Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination [J]. Jneurosci Res,1993(35):567-576.
    [15]Shen H, Yuan Y, Ding F, et al. Theprotective effects of Achyranthes bidentat apolypeptides against NMDA-induced cell apoptosis in cultured hippocampal neurons through differential modulation of NR2A- and NR2B-containing NMD A receptors [J]. Brain Res Bull [Epubaheadofprint].
    [16]Ziobrob JM, Deshpandea LS, DeLorenzon RJ. An organotypic hippocampal slice culture model of excitotoxic injury induced spontaneous recurrent epileptiform discharges[J]. Bain Res,2011,1371:110-120.
    [17]Behbahani H, Rickle A, Concha H, et al. Flow cytometry as a method for studying effects of stressors on primary rat neurons [J]. Jneurosci Res, 2005(82):432-441
    [18]Nicoll RA, Malenka RC. Expression mechanisms underlying NMDA receptor-dependent long-term potentiation[J]. Ann N Y Acad Sci, 1999(868):515-525
    [19]Malenka RC. Nicoll RA. NMDA-receptor-dependent Synaptic plasticity: multiple forms and mechanisms[J].Trends Neurosci,1993(16):521-527.
    [20]Bliss TV,Collingridge GL. A synaptic model of memory:long-term potentiation in the hippocampus[J]. Nature,1993(361):31-39
    [21]Suzuki Y, Takagi Y, Nakamuro R, et al. Ability of NMDA and ono-NMDA receptor antagonists to inhibit cerebral ischemic damage in rats[J]. Brain Res,2003,964:116-120.
    [22]Brennan AM, Won SS, Joon WS, et al. NADPH oxidase is the primary source of superoxide induced by NMDA receptor activation [J]. Nat Neuroscil, 2009(2):857-863.
    [23]Stanika RI, Pivovarova NB, Brantner CA, et al. Coupling diverse routes of calcium entry to mitochondrial dysfunction and glutamate excitotoxicity[J]. Proc Natl Acad Sci USA,2009(106):9854-9859.
    [24]Arundine M, Tymianski M. Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity[J].Cell Calcium,2003(34):325-337.
    [25]Hardingham GE, Bading H. The Yin and Yang of NMDA Receptor signalling[J].Trends Neurosci,2003(26):81-89.
    [26]Chen X. Liu J, Gu X, et al. Salidroside attenuates glutamate-induced apoptotic cell death in primary cultured hippocampal neurons of rats[J]. Brain Res, 2008(1238):189-198.
    [27]梁辉,范今英,李爱华,等.羟基红花黄色素A对大鼠局灶性脑缺血再灌注NMDAR1蛋白表达的影响[J].中华老年心脑血管病杂志,2004,6(3):194-196.
    [28]Yang Q, Yang ZF, Liu SB, et al. Neuroprotective Effects of Hydroxysafflor Yellow A Against Excitotoxic Neuronal Death Partially Through Down-Regulation of NR2B-Containing NMDA Receptors[J]. Neurochem Res, 2010(35):1353-1360.
    [29]Tenneti L, Lipton SA. Involvement of activated caspase-3-like proteasesin N-methyl-D-aspartate-induced apoptosis in cerebrocortical neurons [J]. J Neurochem.2000(74):134-142.
    [30]Schinder AF, Olson EC, Spitzer NC, et al. Mitochondrial dysfunction is a primary event in glutamate neurotoxicity[J]. J Neuroscil,1996(6):6125-6133.
    [31]McInnis J, Wang C, Anastasio N, et al. The role of superoxide and nuclear factor-kappa B signaling in N-methyl-D-aspartate-induced necrosis and apoptosis[J]. J Pharmacol Exp Ther,2009(301):478-487.
    [32]Schelman WR, Andres RD, Sipe KJ, et al. Glutamate mediates cell death and increases the Bax to Bcl-2 ratio in a differentiated neuronal cell line[J]. Brain Res Mol Brain Res1,2004(28):160-169.
    [33]Gu B, Nakamichi N, Zhang WS. et al. Possible protection by notoginsenoside R1 against glutamate neurotoxicity mediated by N-methyl-D-aspar-tate receptors composed of an NR1/NR2B subunit assembly [J]. J Neurosci Res, 2009(87):2145-2156.
    [34]Ji DB, Zhang LY, Li CL, et al. Effect of hydroxysafflor yellow A on human umbilical vein endothelial cells under hypoxia[J]. Vascul Pharmacol,2009(50): 137-145.
    [35]Wang C, Ma H, Zhang S, et al. Safflor yellow B suppresses pheochromocytoma cell(PC12) injury induced by oxidative stress via antioxidant system and Bcl-2/Bax pathway [J]. Naunyn Schmiedebergs Arch Pharmacol,2009(380):135-142.
    [36]Wang C, Zhang D, Li G, et al. Neuroprotective effects of safflor yellow B on brain ischemic injury[J]. Exp Brain Res,2007(177):533-539.
    [37]Ji DB, Zhu MC, Zhu B, et al. Hydroxysafflor yellow A enhances survival of vascular endothelial cells under hypoxia via upregulation of the HIF-1 alpha-VEGF pathway and regulation of Bcl-2/Bax[J]. J Cardiovasc Pharmacol, 2008(52):191-202.
    [38]Ye SY, Gao WY. Hydroxysafflor yellow A protects neuron against hypoxia injury and suppresses inflammatory responses following focal ischemia reperfusion in rats[J]. Arch Pharm Res,2008(31):1010-1015.
    [39]Zhu H, Wang Z, Ma C, et al. Neuroprotective effects of hydroxysafflor yellow A:in vivo and in vitro studies [J]. Planta Med,2003(69):429-433.
    [40]Wei X. Liu H,Sun X, et al. Hydroxysafflor yellow A protects rat brains against ischemia-reperfusion injury by antioxidant action. Neurosci Lett, 2005(386):58-62.
    [41]Irving EA, Bamf ord M. Role of mitogen- and stress-activated kinases in ischemic injury [J]. J Cereb Blood Flow Met ab,2002,22(6):631-647.
    [42]MU Jin-ye, CHEN XIao-Guang. The progress of the study on the mitogen- activated protein kinase pathways[J]. Chin Bull Life Sci,2002,14(4):208-211.
    [43]Kevin MW, Richard D, Becky A, et al. Activation of p38 MAPK in microglia after ischemia[J]. J Neurochem,1998,70(4):1764-1767.
    [44]Dohi K, Mizush ima H, Nakajo S, et al. Pituitary adenylate cyclase-activating polypeptide(PACAP) prevents hippocampal neurons from apoptosis by inhibiting JNK/SAPK and p38 signal transduction pathways [J]. Regul Pept, 2002,109(1-3):83-88.
    [45]Ghatan S,Lamer S,Kinoshita Y, et al. p38 MAP kinase mediates bax translocation in nitric oxide-induced apoptosis in neurons [J]. J Cell Biol, 2000,150(2):335-347.
    [46]Macgregor PF, Abate C and Curran T. Direct cloning ofleucine zipper proteins: Jun binds cooperatively to the CRE with CRE-BP1[J]. Oncogene,1990(5): 451-458.
    [47]Maekawa T, Sakura H, Kane H, et al. Leucine zipper structure of the protein CRE·BP1 binding to the cyclic AMP response element in brain[J]. EMBO J, 1989(8):2023-2028.
    [48]Kara CJ, Liou HC, Ivashldv LB, et al. eDNA for a human cyclic AMP response element-binding protein which is distinct from CREB and expressed preferentially in brain[J]. M Cell Bi,1990(10):1347-1357.
    [49]Pearson AG, Curtis MA. Waldvogel HJ, et al. Activating transcription factor 2 expression in the adult human brain:association with both neurodegeneration and neurogenesis[J]. Neuroseience,2005(133) 437-451.
    [50]Martin-Villalba A, Winter C, Brecht S, et al. Rapid and long-lasting suppression of the ATF-2 transcription factor is a comlnon response to neuronal injury [J]. Brain Res,1998(62) 158-166.
    [51]Herdegen T, Blume A, Buschmann T, et al. Expression of activating transcription factor-2, serum response factor and cAMP/Ca response element binding protein in the adult rat brain following generalized seizures, nerve fibre lesion and ultraviolet irradiation[J]. Neuroscienee,1997(81):199-212.
    [52]Reimold AM. Grusby MJ, Kosaras B, et al. Chondrodysplasia and neurological abnormalities in ATF-2-deficient mice[J]. Nature,1996(379)262-265.
    [53]Walton M, Woodgate AM, Sirimanne E, et al. ATF-2 phosphorylation in apoptotic neuronal death[J]. Brain Res,1998(63)198-204.
    [54]Eilers A, Whitfield J, Shah B, et al. Direct inhibition of c-Jun N-terminal kinase in sympathetic neurones prevents c-jun promoter activation and NGF withdrawal-induced death[J]. J Neurochem,2001(76):1439-1454.
    [55]Leppa S, Eriksson M, Saffrich R, et al. Complex functions of AP-I transcription factors in differentiation and survival of PC 12 cells[J]. Cell, 2001(21)4369-4378.
    [56]Yamashita S, Hirata T, Mizukami Y, et al. Repeated preconditioning with hyperbaric oxygen induces neuroprotection against forebrain ischemia via suppression of p38 mitogen activated protein kinase[J]. Brain Res, 2009,1301(12):171-179.
    [57]Hirata Y, Furuta K, Miyazaki S, et al. Anti-apoptotic and pro-apoptotic effect of NEPP11 on manganese-induced apoptosis and JNK pathway activation in PC12 cells[J]. Brain Res,2004,1021(2):241-247.
    [58]Klein JB, Buridi A, Coxon PY, et al. Role of extracellular signal-regulated kinase and phosphatidylinositol-3 kinase in chemoattractant and LPS delay of constitutive neutrophil apoptosis[J]. Cell Signal,2001(5):335-343.
    [1]肖培根.《新编中药志》[M].第二卷,第一版版.北京:化学工业出版社,2002.684页.
    [2]阴键,郭力弓主编.中药现代研究与临床应用[M].学苑出版社,1993, 332-336
    [3]江苏新医学院编.中药大辞典[M].上海人民出版社,1986,P1992
    [4]郭美丽,张汉明,张芝玉.红花本草考证.中药材[J].1996,19(4):202-203.
    [5]徐绥绪.红花抗炎成分的研究[J].中药通报,1984,9(1):31.
    [6]Edward H A, et al. Trans-trans3,11tridecadiene5,7,9triynel,2diol, an antifungal polyacetylene from diseased safflower[J].Phytochemistry,1971, 10(7):1579.
    [7]Zhu M, Guo Z. [Determination of the saflor yellow-A in Carthamin tinctorius][J].Zhong Yao Cai,2000,23(8):458-9.
    [8]KIM MN. et al. Flavonoids fron Carthamus tinctorirs flowers[J].Planta Medica,1992,58:285.
    [9]金鸣,王玉芹,李家实等.红花中黄酮醇类成分的分离和鉴定[J].中草药,2003,34(4):306.
    [10]张戈,郭美丽,李颖等.红花化学成分研究(Ⅱ)[J].第二军医大学学报,2005,26(2):22.
    [11]Takahashi Y, Miyassaka N, Tasaka SH, et al.Constitution of two coloting matters in the flower petals of carthamus tinctorius L[J].Tetrahedron Lett, 1982,23(49):5163.
    [12]天津医药工业研究所.红花的研究(二)[J].山西医药杂志,1980,9(1):2
    [13]Takahashi Y, Satio K, Yanagiya, et al.Chemical constitution of safflor yellow B, a quinochalcone C-glycoside from the flower petals of carthamus tinctorius L[J].Tetrahedron Lett,1984,25(23):2471.
    [14]Dnisova C, Subinova I.Study of stability of yellow pigments of carthamus tinctorius L.under laboratory conditions[J].Biologia(Bratislava),1995, 50(6):583-584.
    [15]Meselhy M R, Kadota S, Momose Y, et al.Two new quinochalcone yellow pigments from Carthamus tinctorius and Ca2+ antagonistic activity of tinctormine[J].Chem Pharm Bull,1993,41(10):1796.
    [16]Zang BX, Jin M, Si N, et al.Antagonistic effect of hydroxysafflor yellow A on the Platelet activating factor receptor[J].Yao Xue Xue Bao,2002,37(9):696-9.
    [17]Tian JW, Fu FH, Jiang WL, et al.[protective effect of hydroxysafflor yellow A Against rat cortex mitochondrial injuries induced by cerebral ischemia][J].Yao Xue Xue Bao,2004,39(10):774-777.
    [18]Wei X, Liu H, sun X, et al. Hydroxysafflor yellow A Protects rat brains against ischemia-reperfusion injury by antioxidant action[J].Neurosci Lett,2005, 386(1):58-62.
    [19]Chu D, Liu W, Huang Z, et al.Pharmacokinetics and excretion of Hydroxysafflor yellow A, a Potent neuroprotective agent from safflower, in rats and dogs[J].Planta Med,2006,72(5):418-423.
    [20]杨志福,文爱东,蒋永培等.红花黄色素在小鼠组织中的分布特征[J].第四军医大学学报,2001,22(14):1301-1303.
    [21]张海防,郭健新,黄罗生等.羟基红花黄色素A吸收机制研究[J].中国药科大学学报,2006,37(4):312-317.
    [22]王兆木,陈跃华编著.红花[M].中国中医药出版社,2001,p122-123.
    [23]朴永哲,金鸣,藏宝霞等.红花黄色素改善缺氧心肌能量代谢的研究[J].中草药,2003,34(5):436.
    [24]朴永哲,金鸣,藏宝霞等.红花黄色素缓解大鼠心肌缺血作用的研究[J].心肺血管病杂志,2002,21(4):225.
    [25]魏道武,郑云霞,齐文董.红花黄色素对实验性家兔心肌梗塞的影响[J].甘肃中医学院学报,1991,8(1):47-49.
    [26]王幼平,乔峻,钱中希等.红花黄素对缺血心肌的保护及抗氧化作用的实验研究.中华胸心血管外科杂志[J],1995,11(3):176-177.
    [27]单宏丽,徐长庆,刘凤芝等.红花黄素对豚鼠单个心室肌细胞动作电位和钙电流的影响[J].中国药理学通报,1999,15(4):351-354.
    [28]吴伟,李金荣,朴永哲等.羟基红花黄色素A缓解大鼠心肌线粒体损伤的作用研究[J].中国药学杂志,2006,41(16):1225-1227.
    [29]李欣志,刘建勋,尚晓泓等.羟基红花黄色素A对犬急性心肌缺血的保护作用[J].中国药理学通报,2006,22(5):533-537.
    [30]Dnisova C, Subinova I.Study of stability of yellow pigments of carthamus tinctorius L.under laboratory conditions[J].Biologia(Bratislava),1995, 50(6):583-584.
    [31]陆粱,胡书群,张光毅.黄色素抑制血管平滑肌细胞增殖与3种蛋白激酶的关系[J].药学学报,2000,35(3):169-172.
    [32]段文卓,宫海民.红花、郁金对血管平滑肌细胞表型及增殖变化的影响.中国病理生理杂志,2000,16(10):979-980.
    [33]谷淑玲,胡书群,赵文君,等.红花黄色素对兔主动脉平滑肌细胞增殖的抑制作用[J].徐州医学院学报,1996,16(4):350-352.
    [34]Siesjo BK, Katsura K, Zhao Q, et al. Mechanisms of secondary brain damage in global and focal iscbemia[J].a speculative synthesis.J Neurotrauma, 1995,12(5):943.
    [35]胡书群,张光毅,赵文君.红花对脑缺血Ca2+/CaM—PKⅡ活性抑制作用的影响[J].徐州医学院学报,1995,15(3):225-228.
    [36]胡书群,张光毅.红花黄色素对脑缺血Ca2+/CaM—PKⅡ活性抑制作用的影响[J].徐州医学院学报,1999,19(5):348-351.
    [37]柏蕙英,秦月琴.红花对脑减压缺氧缺血幼鼠脑神经元的保护作用[J].中草药,1992,23(10):531-533.
    [38]臧宝霞,金鸣,司南等HSYA对血小板活化因子的拮抗作用[J]。药学学报,2002,37(9):696.
    [39]金鸣,吴伟,陈文梅等.红花总黄色素体外抑制血小板激活因子受体结合作用的研究[J].中国药学杂志,中国药学会学术年会2001,(3):167-169.
    [40]夏玉叶,闵肠,盛雨辰.羟基红花黄色素A对大鼠脑缺血损伤的神经保护作用[J].中国医药工业杂志,2005,36(12):760-762.
    [41]夏玉叶, 盛雨辰, 闵旸.羟基红花黄色素A对局灶性脑缺血后大鼠脑组织诱导型一氧化氮合酶的影响[J].中国药理学报,2006,22(9):1134-1137.
    [42]梁辉, 范今英, 李爱华等.羟基红花黄色素A对大鼠局灶性脑缺血再灌注NMDAR1蛋白表达的影响[J].中华老年心脑血管病杂志,2004,6(3):194-196.
    [43]朱海波,王振华,田京伟等.羟基红花黄色素A对实验性脑缺血的保护作用[J].药学学报,2005,40(12):1144-1146.
    [44]Zhu HB, Wang ZH, et al. Neuroprotective effects of hydroxysafflor yellow A; In vivo and in vitro studies[J].Planta Med,2003,69(5):429.
    [45]田京伟, 傅风华, 蒋王林等.羟基红花黄色素A对脑缺血所致大鼠脑线粒体损伤的保护作用[J].药学学报,2004,39(10):774-777.
    [46]黄正良,崔祝梅,任远等.红花黄色素的抗凝血作用研究[J].中草药,1987,18(4):22-25.
    [47]陈文梅,金鸣,吴伟等.食品红花黄色素抗血小板激活因子作用的研究[J].心肺血管病杂志,2001,20(4):201转240.
    [48]王玉芹,杨树东,李家实等.红花黄色素对血小板活化因子介导的中性粒细胞功能的影响[J].北京中医药大学学报,2001,23(4):21.
    [49]金鸣,吴伟,陈文梅等.红花总黄色素体外抑制血小板激活因子受体结合作用的研究[J].中国药学杂志,2001,36(3):167-169.
    [50]李江伟.红花黄色素对家兔血浆纤溶酶原激活剂及抑制剂水平的影响[J].中草药,1999,30(2):128-129.
    [51]夏玉叶,闵肠,盛雨辰.羟基红花黄色素A对大鼠血栓形成和血小板聚集 功能的影响[J].中国药理学通报,2005,21(11):1400-1401.
    [52]臧宝霞,金鸣,司南等.羟基红花黄色素A对血小板活化因子的拮抗作用[J].药学学报,2002,37(9):696.
    [53]金鸣,高子淳,王继峰.羟基红花黄色素A抑制PAF诱发的家兔血小板活化的研究[J].北京中医药大学学报,2004,27(5):32.
    [54]金鸣,高子淳,王继峰.羟基红花黄色素A抑制PAF诱发的家兔血小板活化的研究[J].北京中医药大学学报,2004,27(5):32-36.
    [55]金鸣,李金荣,蔡亚欣等.红花水溶性成分抗氧化作用的研究[J].心肺血管病杂志,1998,17(4):277-279.
    [56]徐持华,张善峰,马二民.大鼠心肌缺血再灌注损伤与红花黄色素的保护作用[J].中国临床康复,2005,9(43):93-95.
    [57]Hong-Li Shan, Bao-Feng Yang, Yang-Hua Li, et al.Effect of safflower yellow pigment on abnormal electrophysiology of cardiac myocytes induced by oxygen-derived free radical [J]. Chinese Journal of Clinical Rehabilition,2004, 8(30):6810-6812.
    [58]陈文梅,金鸣,李金荣等.红花黄色素对羟自由基损伤抗凝血酶Ⅲ的保护作用[J].心肺血管病杂志,1998,17(3):215-217.
    [59]孙佳彬,江旭东,张鹏霞等.红花总黄素对衰老模型小鼠肝线粒体的保护作用[J].中国老年学杂志,2004,24(7):650-651.
    [60]Hanada D, Folkman J.Patterns and emerging mechanisms of theangiogenic switch duriog tumorigenesis[J].cell,1996,86(3):353.
    [61]张前,牛欣,闫妍等.羟基红花黄色素A抑制新生血管形成的机制研究[J].北京中医药大学学报,2004,27(3):25.
    [62]陈铎葆,赵辉,张雷等.红花黄素预处理对缺血再灌注大鼠心肌细胞凋亡的影响[J].现代中药研究与实践,2005,19(5):24-26.
    [63]Suzuki Y, Takagi Y, Nakamuro R, et al. Ability of NMD A and ono-NMDA receptor antagonists to inhibit cerebral ischemic damage in rats[J].Brain Res, 2003,964:116-120.
    [64]张建初,夏蕾,白明等.实验性大鼠肺血栓栓塞症中ICAM-1、P-选择素的变化及红花注射液对其的影响[J].中国中西医结合杂志,2006,26(7):629-632.
    [65]丘志春,许家骝,陈玉兴等.红花黄色素对大鼠血管平滑肌细胞的作用[J].湖南中医杂志,2005,21(4):75-77.
    [66]陆正武,刘发,胡坚.红花总黄素对免疫功能的抑制作用[J].中国药理学报,1991 12(6):537-542
    [67]陆正武.红花总黄素对免疫功能的抑制作用[J].中国药理学报,1991,12(6):537.
    [68]郭美丽,张芝玉,张汉明等.不同产地红花药材的质量评价[J].中国中药杂志,2000,25(8):469-471.
    [69]Takahashi Y, Miyassaka N, Tasaka SH et al.Constitution of two coloring matters in the flower Petals of carthamus tinctorius L[J].Tetrahedron Lett, 1982,23(49):5163.
    [70]陈志强,王万强,叶秀云等.红花注射液对脑缺血/再灌注损伤家兔血清白细胞介素IL8的影响[J].中国急救医学,2005,25(2):118.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700