西伯利亚鲟卵黄发生过程中的生理调节机制与中华鲟EST文库的生物信息学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鲟鱼现共存27种,是世界现存鱼类中最原始的种类之一,隶属于鲟形目(Acipenseriformes)、鲟科(Acipenseridae)、鲟属(Acipenser)。中华鲟(Aclpenser sinensis)是一种大型的溯河洄游性鱼类,是我国特有的古老珍稀鱼类。西伯利亚鲟(Acipenser baerii)主要分布在俄罗斯西部的颚毕河至东部的科雷马河之间的西伯利亚各河流之中,已成功引进到我国,并成为我国淡水养殖的优良新对象。鲟鱼卵是鱼籽酱的主要原材料,鲟鱼卵子的发育情况直接关系到鱼籽酱品质的高低,对生产企业乃至养殖用户的利润水平具有重要影响。
     卵黄发生期是动物卵母细胞发育过程中的主要生长期,为卵母细胞及胚胎的正常发育储存必需的氨基酸、脂类、钙离子等营养功能性物质以及能量,卵黄发生对动物的生殖发育至关重要。因此,对卵黄发生过程的生理调节机制进行研究,不但能进一步帮助了解鲟鱼生长、繁殖和性别分化等方面的生理机制,同时可为鲟鱼的保护和养殖提供理论依据。
     生物信息学的发展日新月异,已经成为获取更多与生物生长、发育、繁殖等相关分子信息的重要研究工具。对鲟鱼现有的表达序列标签(EST)数据库进行生物信息学分析能够得到很多有用的信息用于筛选和鉴定新基因,用于研究鲟鱼生长发育过程中的分子机制。
     本研究主要包括以下三个部分:1、西伯利亚鲟卵黄发生、激素调控及脂类代谢的研究
     本部分以西伯利亚鲟为研究对象,对卵黄发生过程中卵巢发育、血液类固醇含量、血脂水平、血液脂酶活性、卵内脂蛋白酯酶活性和血液中Ca2+及Pi水平进行了研究分析。
     血液中的雌二醇(E2)、睾酮(T)、总蛋白(TP)、极低密度脂蛋白(VLDL)、甘油三脂(TG)、Pi和Ca2+的含量从卵巢Ⅱ期(卵黄发生早期)开始逐渐上升,至Ⅳ期(卵黄发生晚期)达到最高,随后开始下降。总胆固醇(TC)和低密度脂蛋白(LDL)的含量在整个卵巢发育过程中逐渐上升。卵中的脂蛋白脂酶(LPL)活性亦在Ⅳ期达到最高。研究结果提示E:在卵巢发育过程中起到启动卵黄发生的作用,并且其水平从ⅡI期开始上升,调控卵黄蛋白原及脂类(VLDL、TG)的合成和分泌、调节卵巢中LPL的表达和酶活性。血液中Pi和Ca2+的含量间接的反映血液Vtg的变化。在卵巢Ⅳ期,血液中E2达到最高,促使血液中蛋白和脂类含量也增加到最高,保证卵母细胞中的卵黄蛋白的大量积累;卵巢内的LPL活性在此时亦达到最高,说明脂类的积累在此时期增多。成熟后的卵母细胞停止积累营养,E2的合成迅速降低,亦致使血液中蛋白、脂类以及卵巢LPL含量降低。
     血液中脂类含量的变化,也受到血液LPL和肝脂酶(HL)的调控。血清中LPL和HL的活性在卵巢发育过程中逐渐升高,至V期(成熟的卵母细胞)时达到最高,随后降低。根据血液脂酶和血脂相关性的研究发现,血清LPL、HL与TG、VLDL、TC呈正相关关系,与高密度脂蛋白(HDL)呈弱负相关关系,说明西伯利亚鲟血清LPL和HL在卵巢发育过程中的血脂代谢途径中起到了重要作用。同时血液LDL和HDL的代谢亦在卵巢发育过程中受到了两种脂酶的影响。
     2、西伯利亚鲟卵黄蛋白原基因的克隆及卵黄发生过程中血清卵黄蛋白原的检测
     本部分用三对引物从西伯利业鲟肝脏中克隆得到了卵黄蛋白原(vitellogenin, Vtg)成熟肽部分的cDNA。Vtg蛋白由脂磷蛋白I(LvⅠ)、高磷蛋白(Pv)和脂磷蛋白Ⅱ(LvⅡ)三个片段组成,分别包含了Vitellogenin、多聚丝氨酸和VWFD三个结构域。将西伯利亚鲟Vtg的蛋白序列与多个物种的Vtg序列进行多重比较,发现其与高首鲟Vtg的相似性最高为97.6%,与硬骨鱼Vtg(分化为VtgAa、VtgAb和VtgC三个分支)的同源性较低。基于Vtg蛋白序列建立的系统进化树,发现硬骨鱼中分化为VtgAa和VtgAb两支聚类到一起,先后与Vtg未分型的硬骨鱼(包括鲟鱼)、非洲爪蟾、原鸡、七鳃鳗、硬骨鱼VtgC相聚类,上述物种同属于脊椎卵生动物,其Vtg进一步与非脊椎动物的Vtg相聚。该进化结果反映了物种间Vtg的进化关系,符合生物之间的亲缘关系。
     通过E2诱导5月龄的西伯利亚鲟,发现肝脏Vtg基因可被诱导表达,且与E2剂量呈正相关,证明Vtg基因可受E2直接调控表达,同时提示检测不同发育时期Vtg基因的表达水平可以反映卵子发育的情况。但这种方法需要通过杀鱼取肝,限制了应用范围,制备高效的Vtg抗体无疑能更好的解决这一问题。
     因此,我们构建了用于表达Lv I、Pv和LvⅡ的原核表达重组质粒,并对异源表达条件进行了初步优化。最后以纯化的LvⅠ重组表达蛋白(Lv I E)为抗原制备了抗Vtg的特异性多克隆抗体。纯化得到的抗Vtg抗体可高特异性地识别鲟鱼血液中的Vtg。采用该抗体对西伯利亚鲟卵黄发生过程中不同发育时期血清Vtg的含量及其变化情况进行了研究分析,得到的结果与西伯利亚鲟不同发育时期的血清Ca2+和Pi含量的变化趋势相同,均呈“先上升,后下降”趋势,在Ⅳ期达到最高。血液Vtg在卵巢发育过程中的变化趋势说明在E2不断的刺激下,肝脏不断增加Vtg的合成,源源不断为卵母细胞积累卵黄蛋白提供原料,直到卵母细胞成熟。利用Vtg抗体来检测西伯利亚鲟血清中Vtg含量的变化,方法更加直接、灵敏、具有更好的区分度,能够快捷、有效的判断和掌握西伯利亚鲟卵巢发育的情况,在今后的研究、应用中具有更广阔的前景。
     3、中华鲟EST文库的生物信息学分析
     为了更深入的研究鲟鱼的生殖、发育和性别分化等分子机制,以"Acipenser sinensis"为关键词对NCBI的EST数据库进行搜索,共得到了3384条来源于中华鲟脑垂体EST文库的核酸序列。对所得到的ESTs序列进行聚类拼接,共获得861条独立基因。将聚类拼接后的ESTs序列使用NCBI中的BLASTx程序进行搜索,301条独立基因与GenBank上公布的序列有较高同源性。其中202条基因是有功能注释的基因;81条基因为推测功能基因;8条基因注释为未知功能基因。其余560条独立基因为新基因。进一步进行GO注释,发现共有255个注释基因和333个新基因可被功能分类。根据功能注释结果,在数据源库中发现了五种激素的核酸序列,分别为阿黑皮素原POMCA和POMC B、促性腺激素GtH-αI亚基和Ⅱ亚基以及生长激素GH,并且在ESTs文库中具有较高丰度。GH、GtH-α、POMC在鲟鱼各种类之间高度保守。为了研究基因的潜在功能,本研究检测了CPH、PPIB、STMN3、7B2同4个丰度较高的新基因在中华鲟不同组织内的转录水平。通过对现有中华鲟EST文库的注释和分析,为进一步研究提供了有用的基因组信息。
There are 27 existent species of sturgeons in the world. Sturgeon is one of the most ancient groups of actinopterygian fishes, which belongs to the order of Acipenseriformes, and the family of Acipenseridae, Acipenser. Chinese sturgeon, Acipenser sinensis, is an anadromous species that only spawns in the Yangtze River of China. Siberian sturgeon, Acipenser baerii, mostly presents in all of the major Siberian river basin from Ob River in the west to Kolyma River in the east. It becomes one of the most popular aquaculture fishes in china currently. The sturgeon eggs are the main ingredient for caviar. The development situation of sturgeon eggs are directly influence the caviar quality and the rate of return on investment and create higher profit of sturgeon breeding enterprise.
     Vitellogenesis is the process of yolk formation via nutrients being deposited into the oocyte. The yolk constitutes the main storage compartment in egg including amino acid, lipid, Ca2+, etc. And yolk also is the major internal food supply on which most embryos rely. Therefore, the vitellogenesis is crucial importance for animal reproductive development. Therefore, the study on physiological regulation of vitellogenesis will increase the understanding of sturgeon growth, sexual development, reproduction etc, and will also provide the theoretical foundation for sturgeon protection and cultivation.
     Over the past few decades, bioinformatics technology developed rapidly, which produced a tremendous amount of information related to molecular biology, and have became an useful tool to refine the important molecular information about biological growth, development and reproduction etc. Therefore, we analysis the sturgeon EST library to obtain more useful genomic information and provide insight into the molecular mechanisms of the biological process behind Chinese sturgeon.
     This study includes three parts as follow:
     1. Study of Siberian sturgeon Acipenser baerii vitellogenesis, hormone regulation and lipid metabolism
     This section with Siberian sturgeon as the research object, we observed the morphology during development, determined the blood steroid, lipid, lipase, total protein, Ca2+ and Pi level in different ovary developmental stage.
     Our results shown that serum E2, T, total protein (TP), very low density lipoprotein (VLDL), triglycerides (TG), Ca2+ and Pi concentrations were increased since stageⅡ(early vitellogenesis) to IV (late vitellogenesis), and then decreased till stageⅥ. Serum cholesterol (TC) and low-density lipoprotein (LDL) amounts were gradually increasing during ovary development. LPL activity in ovary increased during vitellogenesis with a higher level in stageⅣ. The result indicated that, in response to circulating E2, Vtg (Ca2+ and Pi concentrations can represent the serum Vtg and phospholipid level) and lipid (e.g. VLDL and TG) were induced synthesis, and relevant enzymes expression and activity were regulated (e.g. ovary LPL activity). E2 have reached the peak till stageⅣ, which induced the protein and lipid in a large amounts synthesis and with a highest concentration in blood stream. In this stage, oocytes greatly increase in size, most oocyte proteins and lipids are derived from blood Vtg and VLDL. During late vitellogenesis to spawning stage, the oocyte undergoing the final mature and almost having finished accumulating nutrition. The E2 synthesis greatly decreased, and so did the blood protein, lipid and ovary LPL activity.
     The variations of blood lipid concentration were also regulated by blood lipase. Serum LPL and HL activity were gradually increasing and insignificantly higher in stageⅤ, and then decreased. We also found that two serum lipases activity positively correlated with serum VLDL, TG and TC, and negatively correlated with high-density lipoprotein (HDL). The variation tendency of serum LPL, HL activity and lipids concentration, and the close correlationship between the two lipases and lipids during ovarian development suggested that LPL and HL participate in the regulation of blood lipid metabolism. The LPL and HL also play important role in TC, LDL and HDL metabolism during ovary development.
     2. Vitellogenin gene cloning and serum Vtg protein detection during vitellogenesis in Siberian sturgeon
     In this study, we cloned vitellogenin (Vtg) cDNA from Siberian sturgeon liver using three pair primers. The cDNA encodes the mature Vtg protein are include three fragments, LvⅠ, Pv and LvⅡ, and with Vitellogenin domain, VWFD domain and serine-rich domain domain. Siberian sturgeon The cDNA encodes the mature Vtg (AbVtg) protein which has share the highest similarity 97.6% with White sturgeon Vtg, and low similarity with other teleost fish. Results of the alignment of the deduced amino acids and validation of the tree topology according with the consanguinity relationships between different species, showing that teleost fish Aa-type Vtg and Ab-type Vtg clustered together, and then cluster with the teleost untyped-Vtg (these teleost havn't developed to Aa, Ab or C type, which include sturgeon), amphibians, avians, cyclostome fish, and teleost C-type Vtg. The species mentioned above are all oviparous vertebrates, were cluster with all the invertebrate Vtg. The phylogenetic result reflects the evolutionary relationship of taxa to a certain extent.
     We found Vtg mRNA expression was induced in Siberian sturgeon liver under E2-treatment. The Vtg mRNA expression levels enhanced with increasing E2 dose. The result proved E2 inductive influence on Vtg, and also suggest Vtg mRNA expression levels can reflect the ovary development situation. But this method needs killing the fish for their livers, which were limited in application. Using the Vtg antibody to detect the Vtg expression levels in blood is the better way to solve this problem.
     Therefore, according to the sequence of Vtg gene, we constructed three prokaryotic expression plasmids (partial LvⅠ, Pv and partial LvⅡ) based on pET23 vector. The recombinant vector was transformed into BL21 (DE3). We optimized the expression condition. The LvⅠexpression recombinant protein (LvIE) has been purified and concentrated, then used to immunize the New Zealand rabbit for antiserum produce. The purified LvIE antibody can specifically recognize the vitellogenin of Siberian sturgeon. We analyzed the Vtg content in different ovary stage, the result shown that the serum Vtg content increased since stageⅡtoⅣ, and then decreased in stage V. This variation is similar with serum Ca2+ and Pi, suggesting that Vtg synthesized in response to circulating E2, provide continuous protein to accumulate into oocytes untill final maturation. Our study provides a basis to establish a more sensitive quantitative detection method of Vtg. Therefore, using the Vtg antibody to directly detect Vtg protein in serum of Siberian sturgeon can more convenient and efficient to estimate the ovary status during development.
     3. Annotation and analysis of expressed sequence tags (EST) from Chinese sturgeon Acipenser sinensis
     In order to advance the molecular research on Chinese sturgeon reproduction, ontogenetic development, we were seeking the keywords 'Acipenser sinensis' for genomic information in the NCBI expressed sequence tag (EST database). There are 3,384 identified cDNA sequences have been found as Chinese sturgeon pituitary ESTs, and have been assembled into 861 unigenes. Blast analysis revealed 301 unigenes shared high similarity with genes in the public databases, and these were classified into three groups:202 known genes,81 putative genes and 8 unknown genes. The remainder (560 genes) had no significant match to any protein sequence. Further,255 unigenes and 333 unmatched unigenes were annotated with Gene Ontology (GO), which could be classified into cellular component, molecular function, and biological process. Among the known genes, the hormone genes (POMC A, POMC B, GtH alphaⅠsubunit, GtH alphaⅡsubunit and GH) were present in this library. Comparison of the Chinese sturgeon proteins (GH, GtH alpha subunit and POMC) to other species showed higher levels of homology among sturgeon species. To investigate the potential function of genes, we performed semi-quantitative RT-PCR of four hormone related genes (CPH, PPIB, STMN3 and 7B2) and four novel genes (contig 192,177,170 and 168) using different tissues from Chinese sturgeon. These results represent an advance in the rapidly growing collection of genomic resources available on A. sinensis, which can be used for future investigation in a number of different fundamental and applied areas.
引文
曹光复.2007.血脂代谢的进展.中华医护杂志,4(2),183-187.
    成永旭,李少菁,王桂忠,陈学雷,林琼武.2002.锯缘青蟹卵黄发生期卵母细胞和卵泡细胞之间的结构变化.动物学报.48(1),80-92.
    冯广朋,庄平,章龙珍,张涛,黄晓荣,赵峰.2004.我国鲟鱼类养殖现状及发展前景.海洋渔业.26(4),317-320.
    韩英,王琨,张颖,霍堂斌,张澜澜,刘蔓,张贵学.2008.不同倍性虹鳟卵黄蛋白原的组织定位.32.4,566-571.
    霍堂斌,张颖,孙大江,曲秋芝.2009.小体鲟卵黄蛋白生化特性及合成途径的研究.水生生物学报.33(1)
    李嘉尧,赵云龙,秦芬,徐晓倩.2007.红螯光壳螯虾卵黄发生的超微结构研究复旦学报:自然科学版.46(6),987-991.
    李璐.2006.施氏鲟早期性腺发育研究.东北林业大学.
    李颖莉,赵炳让,秦勤.2002.脂蛋白脂酶与冠心病.中国分子心脏病学杂志.2(6),42-47.
    李云,朱志强,叶勤.2009.17-β雌二醇对雄性瓦氏黄颡鱼(Pelteobagrus vachelli)的雌激素效应.海洋与湖沼.40(2),195-200.
    刘春,李凯彬,王芳,聂湘平,吴淑勤.2007.剑尾鱼卵黄蛋白原基因片段克隆、表达及蛋白检测方法的建立.中国水产科学6,883-888.
    田美平.2010.西伯利亚鲟早期性腺发生、分化、发育以及性别人工控制.上海海洋大学.
    温茹淑,方展强,江世贵,徐杰,马广智.2007.剑尾鱼卵黄蛋白原的ELISA检测.环境科学研究.20(4),144-149.
    杨筱珍,吴旭干,姚桂桂,成永旭,王春琳.2007.三疣梭子蟹第一次卵巢发育过程中卵母细胞和卵泡细胞超微结构的观察.复旦学报:自然科学版46(6),963-967.
    姚静,方展强.2010.唐鱼卵黄蛋白原的ELISA检测方法的建立.中国实验动物学报.18(3),242-246.
    叶海燕,黄原.2005.卵黄蛋白原在系统进化中的应用.陕西农业科学.5,67-70.
    张海发,王云新,林蠡,刘付永忠,王宏东,黄国光.2004.斜带石斑鱼血液性状及 生化指标的研究.华南师范大学学报:自然科学版.1,102-107.
    张年国,张颖,孙大江,曲秋芝.2007.卵黄蛋白原的发生、结构及功能研究现状.水产学杂志.20(1),97-106.
    张晓刚,陈运贞.2002.肝脂酶与脂蛋白代谢.国外医学:临床生物化学与检验分册.23(1),48-49.
    张艳珍,陈细华,危奇伟,邱实,刘志刚.2008.中华鲟血清卵黄蛋白原水平的初步观察.淡水渔业.38(5),10-14.
    张颖,曲秋芝,霍堂斌,孙大江.2008.施氏鲟卵黄蛋白原及其相关蛋白的研究.水生生物学报.32(5),750-759.
    张照斌,牛翠娟,朱华,胡红霞.2003.室内室内饲育西伯利亚鲟的血清性类固醇激素的周年变化.北京师范大学学报.39(4),307-312.
    赵维信.1987.虹鳟排卵前后血清中性类固醇激素浓度变化的研究.水产学报.11(3),205-213.
    周莉,汪洋,桂建芳.2006.鱼类特异的基因组复制.动物学研究.27(5),525-532.
    周玉,郭广场,杨振国,张凯.2001.鱼类血液学指标研究的进展.上海水产大学学报.10(2),163-165.
    Akihiro T, Byung H K.2001. Effects of estradiol-17β treatment on in vitro and vivo synthesis of two distinct vitellogenin in tilapia. Com.Biochem.Physiol.129A, 641-651.
    Alam J B, Dikshit a K.2000. Efficacy of adsorbents for 2,42D and atrazine removal from water environment. Global Nestthe. Int.2(2),139-148.
    Alrubaian J, Danielson P, Fitzpatrick M, Schreck C, Dores R M.1999. Cloning of a second proopiomelanocortin cDNA from the pituitary of the sturgeon, Acipenser transmontanus. Peptides.20(4),431-436.
    Altschul S F, Gish W, Miller W, Myers E W, Lipman D J.1990. Basic local alignment search tool. J. Mol. Biol.215(3),403-410.
    Amancha P K, Nadimpalli S K.2008. Molecular cloning, expression and functional characterization of the chicken cation dependent mannose 6-phosphate receptor protein. Int. J. Biol. Macromol.43(3),300-306.
    Ando S, Matsuzaki M.1996. A unique lipoprotein profile found in the plasma of cultured Japanese eel Anguilla japonica:very low density lipoprotein, but not high density lipoprotein, is the main component in plasma. Fish Physiol. Biochem.15,469-479.
    Babin P J.2008. Conservation of a vitellogenin gene cluster in oviparous vertebrates and identification of its traces in the platypus genome. Gene.413(1-2),76-82.
    Babin P J, Bogerd J, Kooiman F P, Van Marrewijk W J, Van Der Horst D J.1999. Apolipophorin Ⅱ/Ⅰ, apolipoprotein B, vitellogenin, and microsomal triglyceride transfer protein genes are derived from a common ancestor. J. Mol. Evol.49(1), 150-160.
    Babin P J, Vernier J M.1989. Plasma lipoproteins in fish. J. Lipid Res.30467-489.
    Baert J L, Britel M.1991. Yolk protein in leech identification and characterization of vitellin and vitellogenin. Biochem.201,191-198.
    Baker R H, Morgan J, Wang X, Boore J L, Wilkinson G S.2009. Genomic analysis of a sexually-selected character:EST sequencing and microarray analysis of eye-antennal imaginal discs in the stalk-eyed fly Teleopsis dalmanni (Diopsidae). BMC Genomics.10,361.
    Banaszak L, Sharrock W, Timmins P.1991. Structure and function of a lipoprotein: lipovitellin. Annu. Rev. Biophys Chem.20,221-246.
    Barannkova L A, Bayunova L V, Semenkova T B.2004. Serum levels of testosterone, 11-ketotestosterone and oestradiol-17β in three species of sturgeon during gonadal development and final maturation induced by hormonal treatment. J. Fish Biol.64, 1330-1338.
    Bendtsen J D, Nielsen H, Von Heijne G, Brunak S.2004. Improved prediction of signal peptides:SignalP 3.0. J. Mol. Biol.340(4),783-795.
    Berkeley S A, Chapman C, Sogard S M.2004. Maternal age as a determinant of larval growth and survival in a marine fish, Sebastes melanops,. Ecology.85,1258-1264.
    Bidwell C A, Carlson D M.1995. Characterization of vitellogenin from white sturgeon, Acipenser transmontanus. J. Mol. Evol.41(1),104-112.
    Bidwell C A, Kroll K J, Severud E, Doroshov S I, Carlson D M.1991. Identification and preliminary characterization of white sturgeon (Acipenser transmontanus) vitellogenin mRNA. Gen. Comp. Endocrinol.83(3),415-424.
    Billard R, Lecointre G.2001. Biology and conservation of sturgeon and paddlefish. Rev. Fish Biol. Fish.10,355-392.
    Black D, Skinner R E.1987. Changes in plasma lipoproteins and tissue lipoprotein lipase and salt-resistant lipase activities during spawning in the rainbow trout (Salmo gairdnerii R.). Comp. Biochem. Physiol.88B,261-267.
    Blumenthal T, Squire M, Kirtland S, Cane J, Donegan M, Spieth J, Sharrock W.1984. Cloning of a yolk protein gene family from Caenorhabditis elegans. J. Mol. Biol. 174(1),1-18.
    Brault D, Noe L, Etienne J, Hamelin J, Raisonnier A, Souli A, Chuat J C, Dugail I, Quignard-Boulange A, Lavau M, Galibert F.1992. Sequence of rat lipoprotein lipase encoding cDNA. Gene.121,237-246.
    Brawand D, Wahli W, Kaessmann H.2008. Loss of egg yolk genes in mammals and the origin of lactation and placentation. PLoS Biol.6(3), e63.
    Brooks S, Tyler C R, Carnevali O, Coward K, Sumpter J P.1997. Molecular characterisation of ovarian cathepsin D in the rainbow trout, Oncorhynchus mykiss. Gene.201(1-2),45-54.
    Bruch R M, Dick T A.2001. A practical field guide for the identification of stages of lake sturgeon goand development, with notes on lake sturgeon reproductive biology and management implications. USA:sturgeon for tomorrow press.
    Byrne B M, Gruber M, Ab G.1989. The evolution of egg yolk proteins. Prog. Biophys. Mol. Biol.53(1),33-69.
    Campbell C M, Idler D R.1980. Characterization of an estradio-induced protein from rainbow rout as vitellogenin by the cross reactivity to ovarian yolk fractions. Biol. Reprod.22,605-617.
    Camps L, Gafvels M, Reina M, Wallin C, Vilaro S, Olivecrona T.1990. Expression of lipoprotein lipase in ovaries of the guinea pig. Biol Reprod.42(5-6),917-927.
    Cao H, Zhou L, Zhang Y Z, Wei Q W, Chen X H, Gui J F.2009. Molecular characterization of Chinese sturgeon gonadotropins and cellular distribution in pituitaries of mature and immature individuals. Mol. Cell Endocrinol.303(1-2), 34-42.
    Carnevali O, Carletta R, Cambi A, Vita A, Bromage N.1999. Yolk formation and degradation during oocyte maturation in seabream Sparus aurata:involvement of two lysosomal proteinases. Biol. Reprod.60(1),140-146.
    Carnevali O, Centonze F, Brooks S, Marota I, Sumpter J P.1999. Molecular cloning and expression of ovarian cathepsin D in seabream, Sparus aurata. Biol. Reprod.61(3), 785-791.
    Carnevali O, Cionna C, Tosti L, Lubzens E, Maradonna F.2006. Role of cathepsins in ovarian follicle growth and maturation. Gen. Comp. Endocrinol.146,195-203.
    Carnevali O, Mosconi G, Cambi A, Ridolfi S, Zanuy S, Polzonetti-Magni a M.2001. Changes of lysosomal enzyme activities in sea bass (Dicentrarchus labrax) eggs and developing embryos. Aquaculture.202,249-256.
    Carnevali O, Sabbieti M G, Mosconi G, Polzonetti-Magni A M.1995. Multihormonal control of vitellogenin mRNA expression in the liver of frog, Rana esculenta. Mol. Cell Endocrinol.114(1-2),19-25.
    Carpenter C C, Cooper D A, Fischl M A, Gatell J M, Gazzard B G, Hammer S M, Hirsch M S, Jacobsen D M, Katzenstein D A, Montaner J S, Richman D D, Saag M S, Schechter M, Schooley R T, Thompson M A, Vella S, Yeni P G, Volberding P A. 2000. Antiretroviral therapy in adults:updated recommendations of the International AIDS Society-USA Panel. JAMA.283(3),381-390.
    Chen J S, Sappington T W, Raikhel a S.1997. Extensive sequence conservation among insect, nematode, and vertebrate vitellogenins reveals ancient common ancestry. J Mol Evol.44(4),440-451.
    Cho E M, Boucias D, Keyhani N O.2006. EST analysis of cDNA libraries from the entomopathogenic fungus Beauveria (Cordyceps) bassiana. Ⅱ. Fungal cells sporulating on chitin and producing oosporein. Microbiology.152(Pt 9),2855-2864.
    Cimini V.2003. Neuropeptides in anterior pituitary development. Int. J. Dev. Neurosci. 21(6),291-301.
    Cogburn L A, Wang X, Carre W, Rejto L, Porter T E, Aggrey S E, Simon J.2003. Systems-wide chicken DNA microarrays, gene expression profiling, and discovery of functional genes. Poult. Sci.82(6),939-951.
    Cole S A, Hixson J E.1995. Baboon lipoprotein lipase:cDNA sequence and variable tissue-specific expression of two transcripts. Gene.161,265-269.
    Conte F S, Doroshov S L, Lutes P B, A1 E.1988. Hatchery manual for the white sturgeon, A. transmontanus with application to other north American Acipenseridae. University of California, Division of Agriculture and Natural Resources, Oakland. California.85.
    Cooper D A, Stein J C, Strieleman P J, Bensadoun A.1989. Avian adipose lipoprotein lipase:cDNA sequence and reciprocal regulation of mRNA levels in adipose and heart. Biochim. Biophys. Acta 1008,92-101.
    Craik J C A, Harvey S M.1984. A biochemical method for distinguishing between the sexes of fishes by the presence of yolk protein in the blood. Fish Biol.25,293-303.
    Czesny S, Dabrowski K, Christensen J E, Eenennaam J V, Doroshov S.2000. Discrimination of wild and domestic origin of sturgeon ova based on lipids and fatty acid analysis. Aquaculture 189(145-153)
    Dalle Ore F, Ajandouz E H, Giardina T, Puigserver A.1999. The membrane-bound basic carboxypeptidase from hog intestinal mucosa(1). Biochim Biophys Acta.1421(2), 234-248.
    Danilo W F, Gunther J E, Gilson K.1992. Comparative hematology in marine fish. Comp. Biochem. Physiol.102A,311-321.
    De La Bastide M, Mccombie W R.2007. Assembling genomic DNA sequences with PHRAP. Curr. Protoc. Bioinformatics. Chapter 11, Unit 11 14.
    De Stasio R, Borrelli L, Kille P, Parisi E, Filosa S.1999. Isolation, characterization and molecular cloning of cathepsin D from lizard ovary:changes in enzyme activity and mRNA expression throughout ovarian cycle. Mol. Reprod. Dev.52(2),126-134.
    De Vlaming V L, Fitzgerald R, Delahunty G, Al E.1984. Dynamics of oocyte development and related changes in serum estrodiol-17β,yolk precursor and lipid levels in the teleostean fish, Leptocotus annatus. Com. Biochem. Physiol.77, 599-610.
    Doroshov S I, Moberg G P, Van Eenennaam J P.1997. Observations on the reproductive cycle of cultured white sturgeon (Acipenser transmontanus). Environ. Biol. fishes. 48,265-278.
    Droller M J, Roth T F.1966. An electron microscope study of yolk formation during oogenesis in Lebistes reticulatus guppyi. J. Cell Biol.28(2),209-232.
    Drouva S V, Poulin B, Manceau V, Sobel A.1998. Luteinizing hormone-releasing hormone-signal transduction and stathmin phosphorylation in the gonadotrope alphaT3-1 cell line. Endocrinology.139(5),2235-2239.
    Edwards W D, Daniels S E, Page R A, Volpe C P, Kille P, Sweeney G E, Cryer A.1993. Cloning and sequencing of a full length cDNA encoding ovine lipoprotein lipase. Biochim. Biophys. Acta.1172,167-170.
    Feder M E, Mitchell-Olds T.2003. Evolutionary and ecological functional genomics. Nat. Rev. Genet.4(8),651-657.
    Fenske M, Van Aerle R, Brack S, Tyler C R, Segner H.2001. Development and validation of a homologous zebrafish (Danio rerio Hamilton-Buchanan) vitellogenin enzyme-linked immunosorbent assay (ELISA) and its application for studies on estrogenic chemicals. Comp. Biochem. Physiol. C Toxicol Pharmacol.129(3), 217-232.
    Finn R N, Kolarevic J, Kongshaug H, Nilsen F.2009. Evolution and differential expression of a vertebrate vitellogenin gene cluster. BMC Evol. Biol.9,2.
    Folmar L C, Moody T, Bonomelli S, Al. E.1992. Annual cycle of blood chemistry parameters in striped mullet (Mugil cephalus L.) and pinfish (Lagodon rhomboides L.) from the Gulf of Mexico. J. Fish Biol.41,999-1011.
    Friedewald W T, Levy R I, Fredrickson D S.1972. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem.18(6),499-502.
    Gardiner B G.1984. Sturgeons as living fossils, pp 148-152 in Eldredge, N.& Stanley, S.M. eds. Living fossils. Springer-Verlag, New York.
    Goldberg I J.1996. Lipoprotein lipase, lipolysis:central roles in lipoprotein metabolism and atherogenesis. J. Lipid Res.37,693-707.
    Hiramatsu N, Cheek a O, Sullivan C V, A1. E.2005. Vitellogenesis and endocrine disruption. Biochem. Mol. Biol. Fish.6,431-471.
    Hiramatsu N, Hara A.1996. Relationship between vitellogenin and its related egg yolk proteins in Sakhalin taimen (Hucho perryi). Comp. Biochem. Physiol.115A, 243-251.
    Hiramatsu N, Hara A.1997. Specific proteolysis of vitellogenin to egg yolk proteins in white spotted-charr Salvelinus leucomaenis. Nipp. Suisan Gakkaishi.63,701-708 (in Japanese).
    Hiramatsu N, Hara A, Matsubara T, Hiramatsu K, Sullivan C V.2003. Oocyte growth in temperate basses:multiple forms of vitellogenin and their receptor. Fish Physiol. Biochem.28,301-303.
    Hiramatsu N, Hiramatsu K, Hirano K, Hara A.2002. Vitellogenin-derived yolk proteins in a hybrid sturgeon, bester (Huso huso × Acipencer ruthenus):identification, characterization and course of proteolysis during embryogenesis. Comp. Biochem. Physiol. A Mol. Integr. Physiol.131(2),429-441.
    Hiramatsu N, Ichikawa N, Fukada H, Fujita T, Sullivan C V, Hara A.2002. Identification and characterization of proteases involved in specific proteolysis of vitellogenin and yolk proteins in salmonids. J. Exp. Zool.292(1),11-25.
    Hirano T, Nishioka F, Murakami T.2004. Measurement of the serum lipoprotein lipase concentration is useful for studying triglyceride metabolism:Comparison with postheparin plasma. Metabolism.53(4),526-531.
    Hochleithner M, Gessner J.1999. The sturgeons and paddlefishes of the world:Biology and aquaculture. Austrilia:Aqua Tech Publications,81-82.
    Hokfelt T, Broberger C, Xu Z Q, Sergeyev V, Ubink R, Diez M.2000. Neuropeptides--an overview. Neuropharmacology.39(8),1337-1356.
    Holbech H, Andersen L, Petersen G I, Korsgaard B, Pedersen K L, Bjerregaard P.2001. Development of an ELISA for vitellogenin in whole body homogenate of zebrafish (Danio rerio). Comp. Biochem. Physiol. C Toxicol Pharmacol.130(1),119-131.
    Hosono M, Ishikawa K, Mineki R, Al. E.1999. Tandem repeat structure of rhamnose-binding lectin from catfish (Silurus asotus) eggs. Bichem. Biophys Acta. 1472,668-675.
    Houben H, Denef C.1994. Bioactive peptides in anterior pituitary cells. Peptides.15(3), 547-582.
    Hylland K, Haux C.1997. Efects of environmental oestrogens on marine fish species. Trends, in A nalytical. Chemistry.16,606-612.
    Ibanez a J, Peinado-Onsurbe J, Sanchez E, Cerda-Reverter J M, Prat F.2008. Lipoprotein lipase (LPL) is highly expressed and active in the ovary of European sea bass (Dicentrarchus labrax L.), during gonadal development. Comp. Biochem. Physiol. A Mol. Integr. Physiol.150,347-354.
    Ibanez a J, Peinado-Onsurbe J, Sanchez E, Prat F.2003. The role of lipoprotein lipase (LPL) in the incorporation of neutral lipids into the oocytes of the European sea bass (Dicentrarchus labrax L.) during gonadal development. Fish Physiology and Biochemistry.28,291-293.
    Idler D R, Campbell C M.1980. Characterization of an estradio-induced protein from rainbow rout as vitellogenin by the cross reactivity to ovarian yolk fractions. Biol.Reprod.22,605-617.
    Iwasaki T, Miyazaki W, Takeshita A, Al. E.2002. Polychlorinated biphenyls suppress thyroid hormone-induced transactivation. Biochem. Biophys. Res. Commun.299(3), 384-388.
    Kawauchi H, Sower S A.2006. The dawn and evolution of hormones in the adenohypophysis. Gen. Comp. Endocrinol.148(1),3-14.
    Kim K S, Kim H W, Chen T T, Kim Y T.2009. Molecular cloning, tissue distribution and quantitative analysis of two proopiomelanocortin mRNAs in Japanese flounder (Paralichthys olivaceus). BMB Rep.42(4),206-211.
    Komatsu M, Ando S.1992. A novel LDL with large amounts of phospholipid found in the egg yolk of crustacea sand crayfish ibacus ciliatus:its function as vitellogenin-degrading proteinase. Biochem. Biophys. Commun.186,498-502.
    Komm B S, Hinsch G W.1987. Oogenesis in the terrestrial hermit crab, Coenobita clypeatus., Coenobita clypeatus. Ⅱ:Vitellogenesis. Morphology.192,269-277.
    Korfsmeier K H.1966. Zur Genese des. Dottersystems in der Oocyte von Brachydanio rerio. Zeitschrift fur Zellforschung.77,283-296.
    Kristoffersen B A, Nerland A, Nilsen F, Kolarevic J, Finn R N.2009. Genomic and proteomic analyses reveal non-neofunctionalized vitellogenins in a basal clupeocephalan, the Atlantic herring, and point to the origin of maturational yolk proteolysis in marine teleosts. Mol. Biol. Evol.26(5),1029-1044.
    Kuenzel E A, Mulligan J A, Sommcrcorn J, Krebs E G.1987. Substrate specificity determinants for casein kinase Ⅱ as deduced from studies with synthetic peptides III. J. Biol. Chem.262,9136-9140.
    Kwon J Y, Prat F, Randall C, Tyler C R.2001. Molecular characterization of putative yolk processing enzymes and their expression during oogenesis and embryogenesis in rainbow trout (Oncorhynchus mykiss). Biol. Reprod.65(6),1701-1709.
    Kynard B, Kieffer M.2002. Use of a borescope to determine the sex and egg maturity stage of sturgeons and the effect of borescope use on reproductive structures. J. Appl. Iehthyol.18,505-508.
    Lafleur G J, Jr., Byrne B M, Kanungo J, Nelson L D, Greenberg R M, Wallace R A.1995. Fundulus heteroclitus vitellogenin:the deduced primary structure of a piscine precursor to noncrystalline, liquid-phase yolk protein. J. Mol. Evol.41(4),505-521.
    Le Menn F, Davail B, Pelissero C, Ndiaye P, Bon E, Perazzolo L, Nunez Rodriguez J. 1999. A new approach to fish oocyte vitellogenesis. In:Norberg B, Kjesbu O, Taranger G, et al. (Eds.) Reproductive Physiology of Fish. Bergen.,281-284.
    Le Menn F, Pelissero C.1991. Histological and ultrastructural studies of oogenesis of the Siberian sturgeon (Aciprnser baerii). Bordeaux:CEMAGREF Publ
    Lebail P Y, Breton B.1981. Rapid determination of the sex of puberal salmonied fish by a technique of immunoagglutination. Aquaculture.22,367-375.
    Leger C, Fremont L, Marion D, Nassour I, Desfarges M.1981. Essential fatty acids in trout serum lipoproteins, vitellogenin and egg lipids. Lipids.16,593-600.
    Lewis R M.1962. Sexual maturity as determined from ovum diameters in striped bass from North Carolina. Trans. Am. Fish. Soc.91,279-282.
    Liang X F, Oku H, Ogata Y.2002. The effects of feeding condition and dietary lipid level on lipoprotein lipase gene expression in liver and visceral adipose tissue of red sea bream Pagrus major. Comp. Bichem. Physiol.131A:,335-342.
    Linares-Casenave J, Kroll K J, Van Eenennaam J P, Doroshov S I.1994. Development and application of an enzymelinked immunosorbent assay (ELISA) for the detection of plasma vitellogenin in white sturgeon (Acipenser transmontanus) broodstock. High Performance Fish, Proceedings of an International Fish Physiology Symposium. Vancouver:Fish Physiology Association.,165-169.
    Linares-Casenave J, Kroll K J, Van Eenennaam J P, Doroshov S I.2003. Effect of ovarian stage on plasma vitellogenin and calcium in cultured white sturgeon. Aquaculture.221,297-303.
    Lund E D, Sullivan C V, Place A R.2000. Annual cycle of plasma lipids in captive reared striped bass:effects of environmental conditions and reproductive cycle. Fish Physiol. Biochem.22,263-275.
    Ma Y, Qi X, Du J, Song S, Feng D, Qi J, Zhu Z, Zhang X, Xiao H, Han Z, Hao X.2009. Identification of candidate genes for human pituitary development by EST analysis. BMC Genomics.10,109.
    Macey D J, Potter I C.1981. Measurements of various blood cell parameters during the life cycle of the southern hemisphere lamprey, Geotria australis Gray. Comparative Biochemistry and Physiology (Part A:Physiology).69(4),815-823.
    Mackay M E, Lazier C B.1993. Estrogen responsiveness of vitellogenin gene expression in rainbow trout (Oncorhynchus mykiss) kept at different temperatures. Gen. Comp. Endocrinol.89(2),255-266.
    Marins L F, Levy J A, Folch J M, Snchez A.2003. A growth hormone-based phylogenetic analysis of euteleostean fishes including a representative species of the Atheriniformes Order, Odontesthes argentinensis. Genet. Mol. Biol.26(3),295-300.
    Matsubara T, Ohkubo N, Andoh T, Sullivan C V, Hara A.1999. Two forms of vitellogenin, yielding two distinct lipovitellins, play different roles during oocyte maturation and early development of barfin flounder, Verasper moseri, a marine teleost that spawns pelagic eggs. Dev. Biol.213(1),18-32.
    Mbikay M, Seidah N G, Chretien M.2001. Neuroendocrine secretory protein 7B2: structure, expression and functions. Biochem. J.357(Pt 2),329-342.
    Meggio F, Pinna L A.1988. Phosphorylation of phosvitin by casein kinase-2 provides the evidence that phosphoserines can replace carboxylic amino acids as specificity determinants. Biochim. Biophys. Acta.971(2),227-231.
    Mekki K, Prost J, Bouchenak M, Remaoun M, Belleville J.2003. Plasma lipoprotein lipase, hepatic lipase activities, VLDL, LDL compositions at different times of hemodialysis. Atherosclerosis.169(2),269-277.
    Meusy J J.1980. Vitellogenin, the extraovarian precursor of the protein yolk in Crustacea: a review. Reprod. Nutr. Dev.20(1 A),1-21.
    Mewes K R, Latz M, Golla H, Fischer A.2002. Vitellogenin from female and estradiol-stimulated male river lampreys (Lampetra fluviatilis L.). J. Exp. Zool. 292(1),52-72.
    Miyashita Y, Shirai K, Itoh Y, Sasaki H, Totsuka M, Murano T, Watanabe H.2002. Low lipoprotein lipase mass in preheparin serum of type 2 diabetes mellitus patients and its recovery with insulin therapy. Diabetes. Res. Clin. Pract.56,181-187.
    Moghim M, Vajhi a R, Veshkini A, Al. E.2002. Determination of sex and maturity in Acipenser stellatus by using ultrasonography. Appl. Ichthyol.18,325-328.
    Montorzi M, Falchuk K H, Vallee B L.1994. Xenopus laevis vitellogenin is a zinc protein. Biochem. Biophys. Res. Commun.200,1407-1413.
    Nagler J J, Ruby S M, Idler D R, Al. E.1987. Serum phosphoprotein phosphorus and calcium levelsas reproductive indicators of vitellogenin in highly vitellogenic mature female and estradiol-injected immature rainbow Trout (Salmo gairdneri). Can.Zool.65,2421-2425.
    Nakamura M, Kobayashi T, Chang X T, Nagahama Y.1998. Gonadal sex differentiation in teleost fish. J. Exp. Zool.281,362-372.
    Nardelli D, Gerber-Huber S, Van Het Schip F D, Gruber M, Ab G, Wahli W.1987. Vertebrate and nematode genes coding for yolk proteins are derived from a common ancestor. Biochemistry.26(20),6397-6402.
    Nardelli D, Van Het Schip F D, Gerber-Huber S, Haefliger J A, Gruber M, Geert A, Wahli W.1987. Comparison of the organization and fine structure of a chicken and Xenopus laevis vitellogenin gene. J. Biol. Chem.262,15377-15385.
    Nishida Y, Yoshioka M, St-Amand J.2005. Sexually dimorphic gene expression in the hypothalamus, pituitary gland, and cortex. Genomics.85(6),679-687.
    Norberg B.1995. Atlantic halibut (Hippoglossus hippoglossus) vitellogenin:induction, isolation, and partial characterization. Fish Physiol Biochem.14(1),1-13.
    Oku H, Koizumi N, Okumura T, Kobayashi T, Umino T.2006. Molecular characterization of lipoprotein lipase, hepatic lipase and pancreatic lipase genes: effects of fasting and refeeding on their gene expression in red sea bream Pagrus major. Comp. Biochem. Physiol. B Biochem. Mol. Biol.145(2),168-178.
    Orlowski M.1983. Pituitary endopeptidases. Mol. Cell. Biochem.52(1),49-74.
    Osada N, Innan H.2008. Duplication and gene conversion in the Drosophila melanogaster genome. PloS. Genet.4(12), e1000305.
    Patino R, Sullivan C V.2002. Ovarian follicle growth, maturation, and ovulation in teleost fish. Fish Physiol. Biochem.26,57-70.
    Pelissero C, Nunez-Rodriguez J, Le Menn F, Kah O.1988. Immunohistochemical investigation of the pituitary of the sturgeon (Acipenser baeri, Chondrostei). Fish Physiology and Biochemistry.5(3),109-119.
    Peyon P, Baloche S, Burzawa-Gerard E.1997. Investigation into the possible role of androgens in the induction of hepatic vitellogenesis in the European eel:In vivo and in vitro studies. Fish Physiol. Biochem.16107-118.
    Polzonetti-Magni a M, Mosconi G, Soverchia L, Kikuyama S, Carnevali O.2004. Multihormonal control of vitellogenesis in lower vertebrates. Int. Rev. Cytol.239, 1-46.
    Ronnestad I, Koven W, Tandler A, Harel M, Fyhn H J.1998. Utilisation of yolk fuels in developing eggs and larvae of European sea bass (Dicentrarchus labrax). Aquaculture.162,157-170.
    Ronnestad I, Koven W M, Tandler A, Harel M, Fyhn H J.1994. Energy metabolism during development of eggs and larvae of gilthead sea bream (Sparus aurata). Mar. Biol.120,187-196.
    Reading B J, Hiramatsu N, Sawaguchi S, Matsubara T, Hara A, Lively M O, Sullivan C V.2009. Conserved and variant molecular and functional features of multiple egg yolk precursor proteins (vitellogenins) in white perch (Morone americana) and other teleosts. Mar Biotechnol (NY).11(2),169-187.
    Rees R A, Harrell R M.1990. Artificial spawning and fry production of striped bass and hybrids. In:Culture and propagation of striped bass and its hybrids, R M Harrell, J H Kerby, R V Minton(Eds). Am. Fish. Soc, Bethesda, MD.,43-72.
    Reith M, Munholland J, Kelly J, Finn R N, Fyhn H J.2001. Lipovitellins derived from two forms of vitellogenin are differentially processed during oocyte maturation in haddock (Melanogrammus aeglefinus). J. Exp. Zool.291(1),58-67.
    Retzek H, Steyrer E, Sanders E J, Nimpf J, Schneider W J.1992. Molecular cloning and functional characterization of chicken cathepsin D, a key enzyme for yolk formation. DNA Cell Biol.11(9),661-672.
    Roubal W T, Lomax D P, Maryjean L, Al. E.1997. Furification and partial characterization of English Sole (Pleuronectes vetulus) vitellogenin. Comp. Biochem. Physiol.118B,613-622.
    Saito K, Sakurabayashi I, Manabe M.1998. Serum lipoprotein lipase in healthy subjects: Effects of gender and age, and relationships to lipid parameters. Ann Clin Biochem. 35,733-738.
    Sawaguchi S, Ohkubo N, Koya Y, Matsubara T.2005. Incorporation and utilization of multiple forms of vitellogenin and their derivative yolk proteins during vitellogenesis and embryonic development in the mosquitofish, Gambusia affinis. Zoolog.Sci.22701-710.
    Schneider W J.1992. Lipoprotein receptors in oocyte growth. Clin. Investig.70385-390.
    Schneider W J.1996. Vitellogenin receptors:oocyte-specific members of the low-density lipoprotein receptor supergene family. Int. Rev. Cytol.166,103-137.
    Selman K, Wallace R A.1989. Cellular aspects of oocyte growth in teleost. Zoolog. Sci. 6,211-231.
    Sharrock W J.1983. Yolk proteins of Caenorhabditis elegans. Dev. Biol.96(1),182-188.
    Shimizu M, Fujiwara Y, Fukada H, A1 E.2002. Purification an identification of a second form of vitellogenin from ascites of Medaka (Oryzias latipes) treated with estrogen. Exp Zool.293,726-735.
    Sire M F, Babin P J, Vernier J M.1994. Involvement of the lysosomal system in yolk protein deposit and degradation during vitellogenesis and embryonic development in trout. J. Exp. Zool.269,69-83.
    So Y P, Idler D R, Hwang S J.1985. Plasma vitellogenin in landlocked Atlantic salmon (Salmo salar Ouaninche):isolation homologous radioimmunoassay and immunological cross-reactivity with vitellogenin from other teleosts. Com. Biochem. Physiol.81B,63-71.
    Taborsky G.1980. Iron binding by phosvitin and its conformational consequences. Biol. Chem.255,2976-2985.
    Tamura K, Dudley J, Nei M, Kumar S.2007. MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol.24(8),1596-1599.
    Tao H, Hara A, Hodson R G, A1. E.1992. Purification, characterization, and immunoassay of Striped bass (Morone saxatilis) vitellogenin. Fish. Physiol. Biochem.12,31-46.
    Tarrant a M, Atkinson S, Atkinson M J.1999. Estrone and estradiol-17 beta concentration in tissue of the scleractinian coral, Montipora verrucosa. Comp. Biochem. Physiol. A Mol. Integr. Physiol.122(1),85-92.
    Tornvall P, Olivecrona G, Karpe F, Hamsten A, Olivecrona T.1995. Lipoprotein lipase mass and activity in plasma and their increase after heparin are eparate parameters with different relations to plasma lipoproteins. Arterioscler. Thromb. Vasc. Biol.15, 1086-1093.
    Totsuka M, Miyashita Y, Ito Y, Watanabe H, Murano T, Shirai K.2000. Enhancement of preheparin serum lipoprotein lipase mass by bezafibrate administration. Atherosclerosis.153,175-179.
    Trichet V, Buisine N, Mouchel N, Moran P, Pendas a M, Le Pennec J P, Wolff J.2000. Genomic analysis of the vitellogenin locus in rainbow trout (Oncorhynchus mykiss) reveals a complex history of gene amplification and retroposon activity. Mol. Gen. Genet.263(5),828-837.
    Turner M W.1996. Mannose-binding lectin:the pluripotent molecular of the innate immune system. Immunology Today.17,532-540.
    Tyler C R, Lubberink K.1996. Identification of four ovarian receptor proteins that bind vitellogenin but not other homologous plasma lipoproteins in the rainbow trout, Oncorhynchus mykiss. J. Comp. Physiol.166,11-20.
    Ungerer J R, Thomas P.1996. Role of very low density lipoproteins in the accumulation of o,p'-DDT in fish ovaries during gonadal recrudescence. Aquat. Toxicol.35, 183-195.
    Utarabhand P, Bunlipatanon P.1996. Plasma vitellogenin of grouper (Epinephelus malabaricus):isolation and properties. Comp. Biochem. Physiol. C Pharmacol. Toxicol Endocrinol.115(2),101-110.
    Van Den Belt K, Verheyen R, Witters H.2003. Comparison of vitellogenin responses in zebrafish and ranibow trout following exposure to enviromental estrogens. Ecotoxicol Environ Saf.56,271-281.
    Van Eenennaam J P, Doroshov S I.1998. Effect of age and body size on gonadal development of Atlantics sturgeon. Fish bio.53,624-637.
    Wahli W.1988. Evolution and expression of vitellogenin genes. Trends. Genet.4(8), 227-232.
    Wahli W, Dawid I B, Wyler T, Jaggi R B, Weber R, Ryffel G U.1979. Vitellogenin in Xenopus laevis is encoded in a small family of genes. Cell.16(3),535-549.
    Wallace R A.1985. Vitellogenesis and oocyte growth in nonmammalian vertebrates. Dev. Biol. (N Y 1985).1,127-177.
    Wallace R A, Hoch K L, Carnevali O.1990. Placement of small lipovitellin subunits within the vitellogenin precursor in Xenopus laevis. Mol. Biol.213,407-409.
    Wallaert C, Babin P J.1992. Effects of 17β-estradiol and starvation on trout plasma lipoproteins. Lipids 27,1032-1041.
    Wallaert C, Babin P J.1994. Age-related, sex-related, and seasonal changes of plasma lipoprotein concentrations in trout. J. Lipid Res.35,1619-1633.
    Walters J R, Harrison R G.2008. EST analysis of male accessory glands from Heliconius butterflies with divergent mating systems. BMC Genomics.9,592.
    Wang H, Tan J T, Emelyanov A, Korzh V, Gong Z.2005. Hepatic and extrahepatic expression of vitellogenin genes in the zebrafish, Danio rerio. Gene.356,91-100.
    Wang Y H, Li Y.2004. Relationship between the serum protein-phosphorus and gondal development in darkbarbel catfish (Pelteobagrus vachelli). Fisheries Science. 23(10)
    Warnick G R, Nauck M, Rifai N.2001. Evolution of methods for measurement of HDL-cholesterol:from ultracentrifugation to homogeneous assays. Clin. Chem. 47(9),1579-1596.
    Watanabe H, Miyashita Y, Murano T, Hiroh Y, Itoh Y, Shirai K.1999. Preheparin serum lipoprotein lipase mass level:The effects of age, gender, and types of hyperlipidemias. Atherosclerosis.145,45-50.
    Wiegand M D.1996. Composition, accumulation and utilization of yolk lipids in teleost fish. Rev. Fish Biol. Fish..6,259-286.
    Wiegand M D, Idler D R.1982. Synthesis of lipids by the rainbow trout (Salmo gairdneri) ovary in vitro. Can. J. Zool.60,2683-2693.
    Wiley E O, David Johnson G, Wheaton Dimmick W.2000. The interrelationships of Acanthomorph fishes:A total evidence approach using molecular and morphological data. Biochem. Syst. Ecol.28(4),319-350.
    Wiley L, Opresko R A.1979. New methods for the purification of vertebrate vitellogenin. Anal. Biochem.97,145-152.
    Wirth M, Kirshbaum F, Gessner J, Williot P, Patriche N, Billard R.2002. Fatty acid composition in sturgeon caviar from different species:Comparing wild and farmed origins. International review of hydrobiology.87,1434-2944.
    Woods L C I, Sullivan C V.1993. Reproduction of striped bass (Morone saxatilis) broodstock:monitoring maturation and hormonal induction of spawning. Aquacult. Fish. Manage.25,211-222.
    Xia H C, Lv H G, Chen K P, Yao Q, Lv P, Li J, Chen H Q, Wang L.2009. Cloning and characterization of peptidylprolyl isomerase B in the silkworm, Bombyx mori. African Journal of Biotechnology.8(24),7116-7124.
    Xu C Q, He L L, Brone B, Martin-Eauclaire M F, Van Kerkhove E, Zhou Z, Chi C W. 2004. A novel scorpion toxin blocking small conductance Ca2+ activated K+ channel. Toxicon.43(8),961-971.
    Yano I.1988. Oocyte development in the kuruma prawn Penaeus japonicus. Mar. Biol. 99,547-553.
    Yano I, Chinzei Y.1987. Ovary is the site of vitellogenin synthesis in Kuruma prawn, Penaeus japonicus. Comp Biochem Physiol.86,213-218.
    Yoshizaki N, Yonezawa S.1994. Cathepsin D activity in the vitellogenesis of Xenopus laevis. Dev. Growth Differ.36,299-306.
    Zhang T, Zhang L Z, Zhao F, Zhuang P, Wang B, Feng G P, Huang X R.2007. Determination of different sexes and ovarian development stages in cultured Acipenser baerii based on blood biochemical indices. Journal of Fishery Sciences of Chian.14(2),236-243.
    Zhu X, Wang J, Ju B G, Rosenfeld M G.2007. Signaling and epigenetic regulation of pituitary development. Curr. Opin. Cell Biol.19(6),605-611.
    Zhuang P, Kynard B, Zhang L Z, Zhang T, Cao W.2002. Ontogenetic Behavior and Migration of Chinese Sturgeon, Acipenser sinensis. Environ Biol Fish.65,83-97.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700