大孔树脂制备层析分离红霉素A和红梅素C的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于多种红霉素衍生药物在临床上应用十分广泛,红霉素A硫氰酸盐(硫氰酸红霉素A)作为合成红霉素衍生药物的基础原料,其需求量日益增加。硫氰酸红霉素A的纯度直接影响着后续合成反应的收率及红霉素衍生药物的质量,所以,对硫氰酸红霉素A的纯度要求较高。随着高产基因工程菌的使用,红霉素发酵液的效价得到显著提高,大大提高了硫氰酸红霉素A的生产效率并降低了能耗,但与此同时,抗菌活性低且毒性较大的红霉素C的含量也大大增加。因此,对硫氰酸红霉素A的分离纯化工艺提出的新的要求,即需要有效地分离红霉素C。然而,现有的工业化分离纯化工艺主要采用溶剂萃取法,由于其对红霉素组分的分离无特异性,难以高效地分离红霉素C。
     本文围绕红霉素A与红霉素C分离的基础数据研究和分离工艺研究两方面展开工作。本文先使用大孔吸附树脂SP825作为吸附剂,通过调整溶液极性以提高红霉素A的吸附选择性,并系统研究了红霉素A与红霉素C的间歇竞争吸附相平衡行为,以及在固定床上的吸附传质动力学过程。在此研究基础上,以绿色、经济、可规模化生产为理念,提出了一条以迎头色谱法为主,磷酸盐缓冲溶液洗涤洗脱液为辅的适宜于从红霉素C杂质含量较高的红霉素发酵液中分离纯化红霉素A并得到硫氰酸红霉素A的工艺路线。
     本文的主要研究内容和结论如下:
     (1)以提高红霉素A与红霉素C在大孔吸附树脂上的分离效果为目标,通过调节溶液极性,优选出较佳溶剂为含3%(v/v)乙酸乙酯的磷酸盐缓冲溶液。分别采用洗涤层析法和迎头色谱法研究了分离红霉素A与红霉素C的过程,结果表明迎头色谱法比洗涤层析法更适合应用于工业生产。
     (2)通过间歇吸附平衡实验,研究了不同温度和不同溶液极性下,红霉素A与红霉素C在大孔树脂SP825上吸附等温线。采用竞争Langmuir吸附等温线模型拟合平衡数据,结果表明该模型能较好地描述红霉素A与红霉素C在SP825上的竞争吸附相平衡关系。用所得的模型参数计算了红霉素A的吸附选择系数及红霉素A与红霉素C的部分吸附热力学参数。
     (3)通过固定床吸附实验,分别考察了进料浓度和流速对红霉素A与红霉素C在SP825固定床内穿透行为的影响,并建立综合考虑了轴向扩散、液膜扩散及孔内扩散影响的通用速率模型。该模型能较好地模拟实验穿透曲线。利用该模型模拟计算了轴向扩散系数及红霉素A与红霉素C各自的液膜扩散系数和孔内扩散系数对红霉素A与红霉素C在SP825固定床内穿透行为的影响,结果表明轴向扩散和孔内扩散对红霉素A与红霉素C在SP825固定床内的吸附影响较大,而液膜扩散影响则较小。
     (4)提出了由大孔树脂迎头色谱法分离红霉素A和红霉素C-洗涤杂质-洗脱红霉素A、洗涤洗脱液中的红霉素C、反应结晶成盐等步骤组成的从红霉素发酵液中分离纯化红霉素A并得到硫氰酸红霉素A的新工艺方法。此工艺的特点为:采用迎头色谱法及用磷酸盐缓冲溶液洗涤洗脱液共同强化对红霉素C的分离。将此工艺得到的硫氰酸红霉素A中红霉素A与红霉素C的含量与溶剂萃取结合盐沉淀法对比可知,此工艺更能有效分离红霉素C。
With the continuous development of semi-synthetic erythromycin drugs and a widely uses in clinical medicine, erythromycin thiocyanate A, as an antibiotic API, has been increasingly important. Since the purity of erythromycin thiocyanate A has a great impact on the yield and quality of the semi-synthetic erythromycin drugs, it has a strict requirement. With high-yield genetically engineered bacterium applied extensively, the concentration of erythromycin in fermentation broth had been increased a lot and energy consumption was cut down, but, at the same time, erythromycin C which has low antimicrobial activity and high toxicity were accumulated. So separating erythromycin C effectively is a new challenge. However, solvent extraction as the common way for purification of erythromycin A is ineffective to separate erythromycin A and erythromycin C, and the impurity of erythromycin C can't be removed effectively.
     The basic data and process of the separation of erythromycin A and erythromycin C were studied in this paper. Solution polarity were adjusted in order to increase the adsorptive selectivity of erythromycin A. Competitive adsorption equilibrium behavior in batch mode and adsorption mass transfer process on fixed-bed of erythromycin A and erythromycin C in the binary system using macro-porous resin SP825were investigated systematically. Then, an innovative process based on frontal chromatography and special eluent washing was proposed to purify and obtain erythromycin thiocyanate A from erythromycin fermentation broth with high content of impurity erythromycin C. This process is environmental friendly, economic and suitable for large-scale production.
     The main contents and results of this research are included below:
     (1) The influence of the polarity of erythromycin solution on adsorptive selectivity of erythromycin A over erythromycin C was studied in detail. The suitable solvent was phosphate buffer with3%(v/v) ethyl acetate. Washing chromatography and frontal chromatography were investigated comparatively. It showed that frontal chromatography was more suitable for the separation of erythromycin A and erythromycin C than washing chromatography in industrial application.
     (2) The effects of the polarity of erythromycin solution on adsorption behavior of erythromycin A and erythromycin C on SP825at different temperatures were discussed by batch adsorption equilibrium experiments. By using competitive Langmuir adsorption isotherms to fit the equilibrium data, it showed that this model could describe the competitive adsorption equilibrium of erythromycin A and erythromycin C on SP825well. Selective coefficient of erythromycin A and some thermodynamic parameters of both erythromycin A and erythromycin C were calculated.
     (3) The influences of feed concentration and flow rate on breakthrough behavior of erythromycin A and erythromycin C were studied on SP825in fixed bed. A general rate model was established with the consideration of all the effects including axial dispersion, film diffusion and pore diffusion. The model fitted well with the experimental breakthrough curve. The effects of axial diffusion coefficient, film diffusion and pore diffusion of both erythromycin A and erythromycin C on the penetration behavior of erythromycin A and erythromycin C were also investigated in details. It was found that axial dispersion and pore diffusion affected the adsorption behavior of both erythromycin A and erythromycin C greatly, while film diffusion did slightly.
     (4) An innovative purification process was proposed to separate and purify erythromycin thiocyanate A from its fermentation broth based on adsorption chromatography with macro-porous resin. It mainly includes the following steps:separating erythromycin A and erythromycin C by frontal chromatography、washing impurities in the bed、eluting erythromycin A, washing erythromycin C in the eluent and obtaining the product by reactive crystallization. In the process, two original steps could separate erythromycin C effectively, which are adsorbing erythromycin A by frontal chromatography and using phosphate buffer to wash the eluent. Content of erythromycin A and erythromycin C in erythromycin thiocyanate A obtained by this process and solvent extraction accompanied with salt precipitation method were compared, and the former could separate erythromycin C more effectively.
引文
[1]J.M. Mcguire, R.L. Bunch, R.C. Andersen et al. Erythromycin a new antibiotic[J]. Antibiotics and Chemotherapy.1952,2(2):281-283.
    [2]杨根生,欧志敏,郭钫元.生物药物合成学[M].浙江:浙江大学出版社.2012:161-164.
    [3]袁华,黄训端,张部昌等.产红霉素C的糖多孢红霉菌A226G-突变体的构建[J].遗传育种与生物合成.中国抗生素杂志.2008,33(11):653-658.
    [4]H. Zhang, Y. Wang, J. Wu, et al. Complete biosynthesis of erythromycin a and designed analogs using e. coli as a heterologous host[J]. Chemistry & biology.2010:17, 1232-1240.
    [5]李啸,陈长华,朱凤.红霉素生产及其有效组分转化的优化[J].中国抗生素杂志.2005,30(2):65-69.
    [6]李啸,陈长华,李友元.红霉素A发酵条件的优化[J].中国医药工业杂志.2006,37(6):381-383.
    [7]丁盼盼,高淑红,陈长华.添加Triton-X100及氯化胆碱对红霉素组分的影响[J].中国抗生素杂志.2010,35(5):399-403.
    [8]刘昌胜.红霉素在几种缓冲溶液中的溶解度[J].中国抗生素杂志.1995,20(1):17-19.
    [9]N.L. Egutkin, V.V. Maidanov. Solvation of erythromycin by organic solvents under extraction condition[J]. Methods of Synthesis and Technology of Drug Production. 1984,18(7):858-861.
    [10]黄阿根,乌行彦.红霉素在丙酮—水系统中的溶解度[J].中国抗生素杂志.1999,24(6):41 5-416.
    [11]Y.H. Kim, T.M. Heinze, R. Beger, et al. A kinetic study on the degradation of erythromycin a in aqueous solution[J]. International Journal of PH值 armaceutics.2004, 271(1-2):63-76.
    [12]傅燕芳.红霉素C的理化特性[J].中国抗生素杂志.1983(5):327-329.
    [13]郑妍,杜健.红霉素C杂质限量的薄层色谱检测方法的改进[J].西北药学杂志.2003,18(2):56.
    [14]M. Pendela, L.V. Bossche, J. Hoogmartens, et al. Combination of a liquid chromatography-ultraviolet method with a non-volatile eluent, peak trapping and a liquid chromatography-mass spectrometry method with a volatile eluent to characterise erythromycin related substances [J]. Journal of Chromatography A.2008,1180: 108-121.
    [15]A. Brisson-Noel, P. Trieu-Cuot, P. Courvalin. Mechanism of action of spiramycin and other macrolides[J]. J Antimicrob Chemother,1988,22(suppl. B):13-23
    [16]杨玉,敖忠芳,陈家伟.新药临床应用指南[M].南京:东南大学出版社,1997:65.
    [17]孙勇,尹先清.红霉素的化学结构修饰[J].化学与生物工程.2004,6:10-12.
    [18]张召真,冯润良,张国库.红霉素衍生物的研究进展.齐鲁药事.2005,24(7):419-421.
    [19]智会静,尤启冬.第三代大环内酯类抗生素的结构改造及合成方法[J].中国抗生素杂志.2011,36(7):492-501.
    [20]冯长根,陈涛,曾庆轩.现代分离技术在红霉素提取中的应用[J].化工时刊.2007,21(1):59-62.
    [21]宋应华,朱家文,陈葵.红霉素发酵液大孔树脂法脱色过程研究[J].中国抗生素杂志.2006,31(7):408-411.
    [22]牟善良,宋应华.红霉素发酵液大孔树脂法脱色研究[J].山东教育学院学报.2007(2):84-86.
    [23]张兆斌,王慧辰,杜毅等.乙偶姻发酵液过滤的研究[J].香料香精化妆品.2013(04):1-4.
    [24]王龙耀,杨刚,邢卫红等.头孢菌素C发酵液陶瓷膜过滤过程中的影响因素研究[J].高效化学工程学报.2007,21(4):604-607.
    [25]李俭,李世勇,张传惠等.陶瓷膜过滤在柠檬酸净化中的应用研究[J].山东食品发酵.2013,168(01):18-21.
    [26]王永斌,王允祥.翘鳞伞胞外多糖无机陶瓷膜分离工艺研究[J].中国酿造.2009,(2):103-105.
    [27]余作龙,姜岷,吴昊等.陶瓷膜超滤在丁二酸发酵液纯化中的应用[J].膜科学与技术.2010,30(2):93-96.
    [28]刘杰,秦苏东,于广瑛等.利用陶瓷膜过滤古龙酸发酵液的研究[J].苏州科技学院学报(自然科学版).2008,25(1):30-34.
    [29]毕生雷,.杜平,王珂.对1,3-丙二醇发酵液用金属纳滤膜过滤的研究[J].河南化工.2010,27(7):39-41.
    [30]齐笑飞,乔建援,毕生雷等.金属膜在1,3-丙二醇发酵液预处理中的应用[J].膜科学与技术.2010,30(1):96-98.
    [31]徐庆阳,陈宁,方正星.金属膜对L-缬氨酸发酵液过滤的研究[J].天津科技大学学报.2006,21(1):4-6.
    [32]王琴,宋如,任卓等.膜技术在万古霉素生产工艺中的应用[J].河北化工.2007,30(11):50-51.
    [33]凌雪萍,冯杰.膜过滤技术在维生素B12生产中的应用[J].膜科学与技术.2008,28(2):92-94.
    [34]黄金,陈宁,温廷益.L苏氨酸发酵液有机膜过滤工艺研究[J].食品与发酵工业.2009,35(2):87-90.
    [35]赵南,刘义雄,阙好新等.发酵法生产丙酮酸钠提取工艺的研究[J].江西农业学报.2010,22(3):161-162.
    [36]冯建立,许振良,王学军等.超滤去除红霉素发酵液乳化现象的研究[J].中国抗生素杂志.2007,32(3):150-153.
    [37]柳小强.红霉素发酵液过滤工艺的研究与改进[D].西北大学,2008.
    [38]Y. He, G. Chen, Z. Ji, et al. Combined UF-NF membrane system for filtering erythromycin fermentation broth and concentrating the filtrate to improve the downstream efficiency[J]. Separation and Purification Technology.2009,66:390-396.
    [39]崔亚放.陶瓷膜集成技术处理红霉素发酵液实验研究[J].科技传播.2010,13:87-88.
    [40]K. Schugerl. Extraction of primary and secondary metabolites[J]. Advances in Biochemical Engineering/Biotechnology.2005,92:1-48.
    [41]俞文和,杨纪根.抗生素工艺学[M].辽宁:辽宁科学技术出版社,1988.
    [42]C. Oniscu, D. Cascaval, A.I. Galaction, et al. Study on reactive extraction of erythromycin[J]. Roumanian Biotechnological Letters.2000,5(6):439-447.
    [43]G. J. Lye, D. C. Stuckey. Extraction of erythromycin-A using colloidal liquid aphrons: Part I. Equilibrium partitioning[J]. Journal of Chemical Technology and Biotechnology. 2000,75(5):339-347.
    [44]G. J. Lye, D. C. Stuckey. Extraction of erythromycin-A using colloidal liquid aphrons: Part Ⅱ. Mass tansfer kinetics[J]. Chemical Engineering Science.2001,56:97-108.
    [45]K.F. Loh, S.E. Lau, S.W. Lau, et al. Reverse micelle extraction of erythromycin[R]. Proceedings of the 18th Symposium of Malaysian Chemical Engineerers.2004,1: 340-345.
    [46]曹正芳,乐清华.红霉素固定床溶剂萃取法提取的研究[J].中国医药工业杂志.2001,32(8):349-351.
    [47]G.V. Samsonov, L.P. Fleer. Study of erythromycin adsorption by cation-exchange resins[J]. Tr. Leningr. Khim-Farmalt. Inst.1962,15:225-232.
    [48]S. Fujita, A. Takatsu, K. Shibuya, et al. Process for purifying erythromycin[P]. US3629233,1971.
    [49]胡秀峰.聚丙烯纤维接枝丙烯酸制备离子交换纤维及其应用研究[M].北京理工大学(学位论文),2004.
    [50]陈涛,曾庆轩,冯长根等.离子交换纤维对红霉素吸附特性的研究[J].功能材料.2009,40(11):1895-1 899.
    [51]刘昌盛,邬行彦.反渗透浓缩红霉素发酵滤液.中国抗生素杂志.1994,19(5):336-339.
    [52]H. Habaki, R. Egashira, G.W. Stevens, J. Kawasaki. A novel method improving low separation performance for W/O/W ELM permeation of erythromycin. Journal of Membrane Science.2002,208(1-2):89-103.
    [53]严希康,庞国强,王雩等.用大网格吸附剂提取红霉素[J].中国抗生素杂志.1991,16(4):1266-1270.
    [54]陈骏,宁方红,张志丕等.一种大孔吸附树脂的合成及在红霉素提取中的应用[J].中国抗生素杂志.2002,27(5):270-272.
    [55]H.L.M. Ribeiro, A.C. I. Ribeiro. Modelling the adsorption kinetics of erythromycin onto neutral and anionic resins[J]. Bioprocess Biosyst Eng.2003,26:49-55.
    [56]H.L.M. Ribeiro, A.C. I. Ribeiro. Recovery of erythromycin from fermentation broth by adsorption onto neutral and ion-exchange resins[J]. Separation and Purification Technology.2005,45:232-239.
    [57]鲁力,王亚宁,熊春华,余蓉,王槐三.用新型分子模版吸附树脂从发酵液中分离红霉素的研究.四川农业大学学报.2007,25(3):328-331.
    [58]洪诗群,洪昱斌,何旭敏等Carrousel型模拟移动床在红霉素提取中的应用[J].化学工程.2009,37(11):62-65.
    [59]宋应华,朱家文,陈葵等.大孔树脂提纯红霉素的研究[J].中国抗生素杂志.2007,32(5):284-286.
    [60]宋应华,朱家文,陈葵等.大孔吸附树脂对红霉素的平衡吸附行为及其热力学性质[J].化工学报.2006,57(4):715—718.
    [61]宋应华,朱家文,陈葵等.大孔树脂对红霉素的吸附动力学研究[J].离子交换与吸附.2007,23(4):349-359.
    [62]宋应华,朱家文,陈葵.大孔吸附树脂HZ816对红霉素的固定床吸附过程研究[J].化学工程.2007,35(11):9-12.
    [63]宋应华,朱家文,陈葵等.红霉素在大孔树脂上的吸附动力学研究[J].高校化学工程学报.2008,22(1):23-27.
    [64]宋应华,朱家文.红霉素固定床吸附过程研究[J].中国医药工业杂志.2010,41(3):194-196.
    [65]Y. Sun, J.W. Zhu, K. Chen, et al. Mass transfer mechanisms in fixed-bed adsorption of erythromycin[J]. Frontiers of Chemical Engineering in China.2008,2(4):353-360.
    [66]孙瑛,朱家文,陈葵等.离子强度与温度对大孔树脂吸附红霉素A的影响[J].华东理工大学学报(自然科学版).2009,35(1):15-20.
    [67]Y. Sun, J.W. Zhu, K. Chen, et al. Modeling erythromycin adsorption to the macroporous resin Sepabead SP825[J]. Chemical Engineering Communications.2009,196(8): 906-916.
    [68]朱晟,朱家文,陈葵等.阶跃洗脱吸附层析法分离纯化红霉素A[J].中国抗生素杂志.201 1,36(8):593-598.
    [69]S. Zhu, J.W. Zhu, K. Chen. Effect of pH and ionic strength on competitive adsorption of erythromycin A and C onto macro-porous resin Sepabead SP825 at different temperatures[J]. Chemical Engineering Communications.2011,198:1206-1217.
    [70]朱晟,朱家文,陈葵等.红霉素在大孔树脂SP825上的固定床吸附动力学研究[J].离子交换与吸附.2012,28(3):257-266.
    [71]A.J. Booth, I.A. Sutherland, G.J. Lye. Modeling the performance of pilot-scale countercurrent chromatography:Scale-up predictions and experimental verification of erythromycin separation. Biotechnology and Bioengineering.2003,81(6):640-649.
    [72]A.J. Booth, S.H. Ngiam, G.J. Lye. Antibiotic purification from fermentation broths by counter-current chromatography:analysis of product purity and yield trade-offs. Bioprocess and Biosystems Engineering.2004,27:51-61.
    [73]陈琪,朱家文,陈葵.高速逆流色谱分离制备红霉素A的溶剂系统的选择及优化[J].华东理工大学(自然科学版).2008,34(5):622-626.
    [74]刘志国.生物化学实验[M].武汉:华中科技大学出版社,2007.
    [75]国家药典委员会.中国人民共和国药典[M].北京:化学工业出版社,2010.
    [76]A. Seidel-Morgenstern. Experimental determination of single solute and competitive adsorption isotherms[J]. Journal of Chromatography A,2004,1037:255-272.
    [77]J. Zhu, A.M. Katti, G. Guiochon. Comparison of various isotherm models for predicting competitive adsorption data[J]. Journal of Chromatography,1991,552:71-89.
    [78]X.H. Wu, B.C. Lin. Model modification of binary competitive isotherm[J]. Journal of Liquid Chromatography & Related Technologies.2009,32:2465-2483.
    [79]Y. Zhang, S. Rohani, A.K. Ray. Numerical determination of competitive adsorption isotherm of mandelic acid enantiomers on cellulose-based chiral stationary phase[J]. Journal of Chromatography A,2008,1202:34-39.
    [80]A. Leitao, R. Serrao. Adsorption of phenolic compounds from water on activated carbon: prediction of multicomponent equilibrium isotherms using single-component data[J]. Adsorption.2005,11:167-179.
    [81]Y. Matsui, Y. Fukuda, T. Inoue, et al. Effect of natural organic matter on powdered activated carbon adsorption of trace contaminants:characteristics and mechanism of competitive adsorption[J]. Water Research.2003,37:4413-4424.
    [82]J. Song, J. Lin, Y. Ren, et al. Competitive adsorption of binary mixture of leptospirillum ferriphilum and acidithiobacillus caldus onto pyrite[J]. Biotechnology and Bioprocess Engineering 2010(15):923-930.
    [83]R. Mihalache, I. Peleanu, I. Meghea, et al. Competitive adsorption models of organic pollutants from bi-and tri-solute systems on activated carbon[J]. Journal of Radioanalytical and Nuclear Chemistry.1998,229(1-2):133-137.
    [84]D. Zhou, D.E. Cherrak, K. Kaczmarski, et al. Prediction of the band profiles of the mixtures of the 1-indanol enantiomers from data acquired with the single racemic mixture[J]. Chemical Engineering Science.2003,58 (14):3257-3272.
    [85]D.B. Broughton. Adsorption isotherms for binary gas mixtures[J]. Industry and Engineering Chemistry.1948,40(8):1506-1508.
    [86]K.A. Alkhamis, D.E. Wurster. Prediction of adsorption from multicomponent solutions by activated carbon using single-solute parameters. Part Ⅱ-Proposed Equation. AAPS PharmSciTech,2002,3(3):53-60.
    [87]A. Rudrake, K. Karan, J.H. Horton. A combined QCM and XPS investigation of asphaltene adsorption on metal surfaces[J]. Journal of Colloid and Interface Science.2009, 332:22-31.
    [88]S.Y Yoon, W.J. Choi, J.M. Park, et al. Selective adsorption of flavonoid compounds from the leaf extract of Ginkgo biloba L[J]. Biotechnol. Tech.1997,11:553-556.
    [89]N.N. Nassar. Kinetics, equilibrium and thermodynamic studies on the adsorptive removal of nickel, cadmium and cobalt from wastewater by superparamagnetic iron oxide nonoadsorbents[J]. Can. J. Chem. Eng.,2012,90:1231-1238.
    [90]J.C. Giddings, Unified Separation Science[M],Wiley, New York,1990.
    [91]程明,李爽,张凤宝等.色谱分离动力学的理论模型及其应用[J].化学工业与工程.2006,23(4):355-360.
    [92]T. Gu, Y.H. Truei, G.J. Tsai, et al. Modeling of gradient elution in multicomponent nonlinear chromatography[J]. Chemical Engineering Science,1992,47(1):253-262.
    [93]王春红,施荣富,温珍珍,史作清,何炳林.吸附质大小对吸附树脂孔内扩散行为的影响(Ⅰ)—大孔聚苯乙烯型吸附树脂粒内扩散机制的考察.高等学校化学学报.2001,22(10):240-244.
    [94]S.F. Chung, C.Y. Wen. Longitudinal dispersion of liquid flowing through fixed and fluidized beds[J].AlChE Journal.1968,14:857-866.
    [95]C.R. Wilke, P. Chang. Correlation of diffusion coefficients in dilute solutions[J]. AIChE J. 1955,1:264-270.
    [96]刘国杰,贺网兴.计算正常沸点下液体摩尔体积的基团贡献法[J].化学工程.1990,18(4):62-65.
    [97]E.J. Wilson, C.J. Geankoplis. Liquid mass-transfer at very low Reynolds number in packed beds, Industrial&Engineering Chemistry Fundamentals.1966,5(1):9-14.
    [98]刘东梅,黄晋阳.非线性多组分色谱模型数值算法研究[J].北京化工大学学报(自然科学版).2011,38(6):130-134.
    [99]黄华江.实用化工计算机模拟[M].北京:化学工业出版社,2004.
    [100]朱晟.大孔树脂吸附技术分离红霉素A及其异构体的基础研究[D].上海,华东理工大学.2011.
    [101]李平.硫氰酸红霉素合成方法研究[J].中国兽药杂志.1992,26(4):25-27.
    [102]毛培学.反应结晶制备硫氰酸红霉素过程研究[D].上海,华东理工大学,2012.
    [103]J. Paesen, E. Roets, J. Hoogmartens. Study of the stability of erythromycin in a hydrophilic creme basis by liquid chromatography[J]. Journal of Pharmaceutical and Biomedical Analysis.1998,17:53-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700