红霉素C-14羟化酶基因的克隆、表达和应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柔红霉素和阿霉素是临床上重要的蒽环类抗生素,主要用于多种实体瘤和急性白血病的治疗,在临床上作为一线抗肿瘤药物使用。阿霉素是柔红霉素C-14位羟化的衍生产物,具有比柔红霉素更广的抗肿瘤谱和更小的毒副作用。目前工业上采用化学半合成法从柔红霉素转化生产阿霉素,不仅工艺复杂、转化率低,而且污染环境严重。本研究对微生物转化法替代现有工艺生产阿霉素进行了探索,从柔红霉素产生菌天蓝淡红链霉菌SIPI 1482中克隆了柔红霉素C-14羟化酶基因(doxA),构建了doxA基因的链霉菌表达质粒,导入变铅青链霉菌TK24中获得了柔红霉素转化基因工程菌,并研究了doxA基因在工程菌中的表达,最后还对工程菌转化柔红霉素生成阿霉素的发酵工艺进行了初步研究。研究结果如下:
     通过PCR方法,首次从天蓝淡红链霉菌SIPI 1482菌株基因组DNA中扩增出约1.4 kb大小的doxA基因片段,这在国内外还是首次报道;但是从波赛链霉菌SIPI 40141菌株中却没有扩增出任何片段。经过测序和序列比对分析,PCR扩增获得的doxA基因序列和链霉菌C5菌株来源doxA基因序列完全相同,而和公开发表的波赛链霉菌ATCC 29050来源doxA基因同源性为93.4%。
     构建了一个新颖的链霉菌高拷贝表达载体质粒pYG504,以用于异源基因在链霉菌中的克隆和表达。该载体质粒采用了黑色素基因(编码酪氨酸酶)启动子(Pmel)和fd终止子,启动子下游的SphⅠ、BglⅡ、SacⅠ、XbaⅠ和HindⅢ单一酶切位点可以用于插入异源目的基因,并且在SphⅠ位点上游存在SD序列。
     构建了五个doxA基因链霉菌表达质粒pYG57、pYG502、pYG503、pYG505和pYG506,使得doxA基因在上游的Pmel启动子、红霉素抗性基因启动子(PermE)或者两者的串联启动子,以及下游的fd终止子(fd terminator)控制之下。相应地将构建的表达质粒导入变铅青链霉菌TK24中获得五株基因工程菌株。
     SDS-PAGE蛋白电泳实验证明,上述五个菌株都能够表达大小约45 kD的柔红霉素C-14羟化酶蛋白,并发现以在PermE启动子控制下的doxA基因表达量相对较高,而终止子对
    
    @中英文摘要
     dd基因表达似乎没有影响。而对Tm4(pYG57)菌株中doxA基因表达方式的研究表明,
     dd基因在 PermE启动子控制下可能是一种组成型控制表达,其表达量在接种后培养到
     48-60 h左右最高并且维持相对稳定,并且表达的柔红霉素 Cl4羟化酶主要存在于菌丝体
     细胞内,很少分泌到细胞外。
     对所构建的doxA基因工程菌发酵转化柔红霉素的实验结果表明,它们都能将桑红霉素
     转化为阿霉素和某一副产物组分,并且以 TK24(pYG505)菌株转化桑红霉素生成阿霉素
     的能力相对较强。通过桑红霉素转化产物的紫外可见吸收光谱分析、LC/MS分析和‘H-NMR
    @分析,最终确定工程菌的柔红霉素转化产物中主要由阿霉素和13-M氢柔红霉素组成.其中
     前者由工程菌细胞内的羟化酶转化细胞中的柔红霉素形成。后者由宿主菌本身C1 酮还原
     酶转化桑红霉素形成。
     对TK24(pYG57)工程菌株转化柔红霉素条件进行了初步优化,在优化树下工程菌
     TK24巾YG57)对桑红霉素的转化率为 74.4%,是优化前的 3.l倍;而阿霉素和 13-一氢桑
     红霉素之比从0.N提高到o.叩。
Daunorubicin and doxorubicin are clinically important anthracyclines and are primarily used as first line chemotherapeutic agents in treatment of a variety of neoplasias and adult myelogenous leukemia. Doxorubicin, as the C-14 hydroxylated derivative of daunorubicin, has a broader spectrum of anti-tumor activity, a lower toxicity and fewer side-effects compared with daunorubicin. Nowadays doxorubicin is produced through chemical semi-synthesis initiated from daunorubicin, which is complicated and has low conversion efficiency with bad environment pollution. In this research work, the technology of microbial conversion was studied in order to establish an environment friendly method for the production of doxorubicin. A doxA gene encoding Daunorubicin C-14 hydroxylase was cloned from a daunorubicin-producing strain Streptomyces coeruleorubidus SIPI 1482. Some plasmids for the expression of doxA gene were constructed and transformed into S. lividans TK24 to get engineered strains for daunorubicin conversion. Co
    nditions for the expression of doxA gene and the conversion of daunorubicin into doxorubicin in these strains were investigated. All results are described as follows:
    A DNA fragment containing doxA gene of approximate 1.4 kb was amplified for the fist time from SIPI 1482 strain by PCR method, but not from S. peucetius SIPI 40141. Sequence alignment indicated that the cloned doxA gene from SIPI 1482 strain was identical with that from S. sp. C5 strain, and had a 93.4 % homology with the published doxA gene from S. peucetius ATCC 29050.
    A novel high-copied expression vector, plasmid pYG504 was constructed for the cloning and expression of heterologous gene in Streptomyces, in which some unique restriction enzyme sites for the insertion of heterlogous genes are flanked by a promoter of melanin gene (encoding tyrosinase gene) and a fd terminator and a Shine-Dalgarno sequence is also located in the upstream of SphI site.
    Five plasmids for the expression of doxA gene, which were designated as pYG57, pYG502, pYG503, pYG505 and pYG506 were constructed so that the cloned doxA gene were under the control of either promoter of melanin gene or erythromycin resistant gene or their tandem promoters, and a fd terminator downstream. These plasmids were introduced into S. lividans TK24, respectively and five genetic engineering strains were constructed.
    
    
    The SDS-PAGE electrophoresis indicated that all engineered strains containing different expression plasmid could apparently express a 45 kD band specific for daunorubicin C-14 hydroxylase. The expression level of doxA gene was much higher when the doxA gene was under the control of promoter PermE. However, it was found that fd terminator had few effect on the expression of doxA gene. The research work involving the expression manner of doxA gene in S. lividans TK24 with plasmid pYG57 implied that the promoter PermE may control its expression constitutively, the time for maximum expression emerged from 48 to 60 h after inoculation and cultivation and the expression level was kept relatively stable, furthermore, the recombinant hydroxylase existed mostly in mycelium cell but little in broth.
    The bioconversion experiments of the engineered strains concluded they can convert daunorubicin into doxorubicin and an unknown product and the S. lividans TK24 bearing plasmid pYG505 strain has a relatively stronger ability to convert daunorubicin into doxorubicin among five strains. Identified by means of ultraviolet and visible spectra analysis, LC/MS analysis and 'H-NMR analysis, the converted products of daunorubicin by the engineered strain consisted of doxorubicin and 13-dihydrodaunorubicin. The former was produced by the intracellular recombinant hydroxylase and the latter by the host C-13 ketoreductase.
    The bioconversion conditions of daunorubicin by S. lividans TK24 with plasmid pYG57 were optimized. According to these optimized conditions, the conversion efficiency of daunorubicin is as high as 74.4 %, which is 3.1 times of that of the control before optimization, a
引文
1.陈代杰,许文思.1991.柔红霉素的发酵研究[J].中国抗生素杂志,16(6):413-18.
    2.陈钧鸿,徐玲娣编著,1991年.抗生素工业分析手册(增定版)[M].北京:中国医药科技出版社.
    3.洪斌,李元,李嗣英 等.1998.鲑鱼降钙素在链霉菌中的分泌表达[J].遗传学报,25(4):287-93.
    4.李继安,陈代杰,许文思.1997.柔红霉素产生菌突变株SIPI 1482-NS-4代谢调节的研究.第八次全国抗生素学术会议论文汇编,中国药学会抗生素专业委员会编,82.
    5.李莉,许文思.1993.柔红霉素产生菌SIPI 89068的选育及发酵[J].中国抗生素杂志,18(4):306-307.
    6.卢圣栋主编.1999.现代分子生物学实验技术[M].北京:中国协和医科大学出版社.458-65.
    7.萨姆布鲁克 J,弗里奇 EF,曼尼阿蒂斯 T 著.金冬雁,黎孟枫等译.1992.分子克隆实验指南[M].第二版.北京:科学出版社.16-60.
    8.杨润英,邓子新.1998.大肠杆菌-链霉菌穿梭载体的构建和应用[J],生物工程学报,14(1):6-12.
    9.张应录,朱昌雄,白兰芳,等.1999.转座子Tn5096对刺孢吸水链霉菌北京变种RF220转座的诱变[J].微生物学报,39(6):510-14.
    10. Altenbuchner J and Cullum J. 1985. Structure of an amplifiable DNA sequence in Streptomyces lividans 66[J]. Mol Gen Genet, 201 (2): 192-7.
    11. Arcamone F, Animati F, Capranico G, et al. 1998. New developments in antitumor anthracyclines [J]. Pharmacol Ther, 76 (1-3): 117-24.
    12. Arcamone F, Cassinelli G, Dimatteo F, et al. 1980. Structures of novel anthracycline antitumor antibiotics from Micromonospora peucetica [J]. J Am Chem Soc, 102: 1462-63.
    13. Arcamone F, Cassinelli G, Fantini G, et al. 1969. Adriamycin, 14-hydroxydaunomycin, a new antitumor antibiotic from Streptomyces peucetius var caesius [J]. Biotechnol Bioeng, 11(6): 1101-1110.
    14. Armstrong, DW, Gasper MP, Lee SH, et al. 1993. Factors controlling the level and determination of D-amino acids in the urine and plasma of laboratory rodents [J]. Amino Acids, 5(3): 299-315.
    15. Baltz RH. 1998. Genetic manipulation of antibiotic-producing Streptomyces [J]. Trends Microbiol, 6(2): 76-83.
    16. Bao W, Sheldon PJ, Hutchinson CR. 1999b. Purification and properties of the Streptomyces peucetius DpsC beta-ketoacyl: acyl carrier protein synthase Ⅲ that specifies the propionate-starter unit for type Ⅱ polyketide biosynthesis [J]. Biochemistry, 38 (30): 9752-57.
    17. Bao W, Sheldon PJ, Wendt-Pienkowski E, et al. 1999a. The Streptomyces peucetius dpsC gene determines the choice of starter unit in biosynthesis of the daunorubicin polyketide [J]. J Bacteriol, 181
    
    (15): 4690-95.
    18. Bartel PL, Connors NC and Strohl WR. 1990. Biosynthesis of anthracyclines: analysis of mutants of Streptomyces sp. strain C5 blocked in daunomycin biosynthesis [J]. J Gen Microbiol, 136(9): 1877-86.
    19. Bertrand JL, Morosoli R, Shareak F, et al. 1989. Expression of the xylanase gene of Streptomyces lividans and production of the enzyme on natural substrates [J]. Biotechnol Bioeng, 33 (6): 791-94.
    20. Bibb MJ, Janssen GR, Ward JM. 1985. Cloning and analysis of the promoter region of the erythromycin-resistance gene (ermE) of Streptomyces erythraeus[J]. Gene, 38(1-3): 215-26.
    21. Birch A, Hausler A, Hutter R. 1990. Genome rearrangement and genetic instability in Streptomyces spp [J]. J Bacteriol, 172 (8): 4138-42.
    22. Blumauerova M, Stajner K, Pokorny V, et al. 1978. Mutants of Streptomyces coeruleorubidus impaired in the biosynthesis of daunomycinone glycosides and related metabolites [J]. Folia Microbioi, 23 (4): 255-60.
    23. Boyle JA and Lew AM. 1995. An inexpensive alternative to glassmilk for DNA purification [J]. Trends Genet, 11(1): 8.
    24. Brian P, Riggle PJ, Santos RA, et al. 1996. Global negative regulation of Streptomyces coelicolor antibiotic synthesis mediated by an absA-encoded putative signal transduction system [J]. J Bacteriol, 178 (11): 3221-31.
    25. Casey ML, Paulick RC and Whitlock HW. 1978. Carbon-13 nuclear magnetic resonance study of the biosynthesis of daunomycin and islandicin. J Org Chem, 43: 1627-1634.
    26. Chien A, Edgar DB, Trela JM. 1976. Dexyribonuleic acid polymerase from the extreme thermophile thermus aquaticus [J]. J Bacteriol, 127 (3): 1550-57.
    27. Connors NC, Bartel PL and Strohl WR. 1990. Biosynthesis of anthracyclines: enzymic conversion of aklanonic acid to aklavinone and ε-rhodomycinone by anthracycline-producing Streptomycetes [J]. J Gen Microbiol, 136 (9): 1887-94.
    28. Coon MJ, Ding XX, Pernecky SJ, et al. 1992. Cytochrome P450: progress and predictions [J]. FASEB J, 6(2): 669-73.
    29. Crameri A, Raillard SA, Bermudez E, et al. 1998. DNA shuffling of a family of gene from diverse species accelerates directed evolution [J]. Nature, 391 (6664): 288-91.
    30. Dastoli FR, Musto NA, Price S. 1996. Reactivity of active sites of chymotrypsin suspended in an organic medium [J]. Arch Biochem Biophys, 115 (1): 44-47.
    31. Daza A, Gil JA, Vigal T, et al. 1990. Cloning and characterization of a gene of Streptomyces griseus that increases production of extracellular enzyme in several species of Streptomyces [J]. Mol Gen Genet, 222(2-3): 384-92.
    32. Delic I, Robbins P, Westpheling J. 1992. Direct repeat sequences are implicated in the regulation of two Streptomyces chitinase promoters that are subject to carbon catabolite control [J]. Proc Natl Acad Sci USA,
    
    89 (5): 1885-89.
    33. DeSanti CL and Strohl WR. 2003. Characterization of the Streptomyces sp. strain C5 snp locus and development of snp-derived expression vectors [J]. Appl Environ Microbiol, 69 (3): 1647-54.
    34. Dickens ML and Strohl WR. 1996. Isolation and Characterization of a Gene from Streptomyces sp. Strain C5 that Confers the Ability to Convert Daunomycin to Doxorubicin on Streptomyces lividans TK24 [J]. J Bacteriol, 178 (11): 3389-3395.
    35. Dickens ML, Priestley ND and Strohl WR. 1997. In vivo and in vitro bioconversion of ε-rhodomycinone glycoside to doxorubicin: Functions of DauP, DauK, and DauA [J]. J Bacteriol, 179 (8): 2641-50.
    36. Dimarco A, Gaetani M, Orezzi P, et al. 1964. Daunomycin, a new antibiotic of the rhodomycin group [J]. Nature, 201: 706-7.
    37. Dordick JS. 1989. Selective biotransformations: Patents and literature [J]. Appl Biochem Biotechnol, 22(3): 361-73.
    38. Draeger G, Park S-H and Floss HG. 1999. Mechanism of the 2-deoxygenation step in the biosynthesis of the deoxyhexose moieties of the antibiotics granaticin and oleandomycin [J]. J Am Chem Soc, 121: 2611-12.
    39. Eckardt K and Wagner C. 1988. Biosynthesis of anthracyclinones [J]. J Basic Microbiol, 28 (1-2): 137-44.
    40. Eckardt K, Schumann G, Grafe U, et al. 1985. Preparation of labeled aklanonic acid and its bioconversion to anthracyclinones by mutants of Streptomyces griseus [J]. J Antibiot, 38 (8): 1096-97.
    41. Eckhardt T, Strickler J, Gorniak L, et al. 1987. Characterization of the promoter, signal sequence and amino acid terminus of a secreted β-galactodidase from Streptomyces lividans [J]. J Bacteriol, 169 (9): 4249-56.
    42. Estabrook RW. 1996. The remarkable P450s: a historical overview of these versatile hemeprotein catalysts [J]. FASEB J, 10 (2): 202-4.
    43. Faber K, Franssen MC. 1993. Prospects for the increased application of biocatalysts in organic transformations [J]. Trends Biotechnol, 11(11): 461-70.
    44. Fitzpatrick PA, Klibanov AM. 1991. How can the solvent affect enzyme enantioselectivity? [J] J Am Chem Soe, 113: 3166-71.
    45. Fornwald JA, Donovan MJ, Gerber R, et al. 1993. Soluble forms of the human T cell receptor CD4 are efficiently expressed by Streptorayces lividans [J]. Bio/technology, 11 (9): 1031-36.
    46. Fornwald JA, Schmidt FJ, Adams CW, et al. 1987. Two promoters, one inducible and one constitutive, control transcription of Streptomyces lividans galactose operon [J]. Proc Natl Acad Sci USA, 84 (8): 2130-34.
    47. Furuya K and Hutchinson CR. 1998. The DrrC protein of Streptomyces peucetius, a UvrA-like protein, is a DNA-binding protein whose gene is induced by daunorubicin [J]. FEMS Microbiol Lett, 168 (2):
    
    243-49.
    48. Gardner AR and Cadman TW. 1990. Product deactivation in recombinant Streptomyces [J]. Biotech Bioeng, 36 (3): 243-51.
    49. Grimm A, Madduri K, Ali A, et al. 1994. Characterization of the Streptomyces peucetius ATCC 29050 genes encoding doxorubicin polyketide synthase [J]. Gene, 151 (1-2): 1-10.
    50. Guilfoile PG and Hutchinson CR. 1991. A bacterial analog of the mdr gene of mammalian tumor cells is present in Streptomyces peucetius, the producer of daunorubicin and doxorubicin [J]. Proc Natl Acad Sci USA, 88 (19): 8553-8557.
    51. Holmes DJ, Caso JL, Thompson CJ. 1993. Autogenous transcriptional activation of a thiostrepton-induced gene in Streptomyces lividans [J]. EMBO J, 12 (8): 3183-91.
    52. Hopwood DA, Bibb MJ, Chater KF, et al. 1985. Genetic Manipulation of Streptomyces: A Laboratory Manual, 1st ed [M]. Norwich: R Crowe, John Innes Foundation.
    53. Hopwood DA, Bibb MJ, Chater KF, et al. 1987. Plasmid and phage vectors for gene cloning and analysis in Streptomyces [J]. Methods Enzymol, 153:116-66.
    54. Hu P, Chase Jr and Eveleigh DE. 1993. Cloning of a Microbispora bispora cellobiohydrolase gene in Streptomyces lividans [J]. Appl Microbiol Biotech, 38 (5): 631-37.
    55. Husain I, Van Houten B, Thomas DC, et al. 1986. Sequences of Escherichia coli uvrA gene and protein reveal two potential ATP binding sites [J]. J Biol Chem, 261(11): 4895-4901.
    56. Inagaki M and Hiratake J. 1991. Enantiopreference of lipase from Pseudomonas cepacia toward primary alcohols [J]. J Am Chem Soc, 113, 9345-59.
    57. Isogai T, Fukagawa M, Aramori I, et al. 1991. Construction of a 7-aminocephalosporanic acid (7ACA) biosynthetic operon and direct production of 7ACA in Acremonium chrysogenum [J]. Biotechnology, 9 (2): 188-91.
    58. Jacobsson K and Frykberg L. 1996. Phage display shot-gun cloning of ligand-binding domains of prokaryotic receptors approaches 100% correct clones [J]. Biotechniques, 20 (6): 1070~81.
    59. Kato S, Ideguchi H, Muta K, et al. 1990. Mechanisms involved in the development of adriamycin resistance in human leukemic cells [J]. Leuk Res, 14 (6): 567-73.
    60. Katz E, Thompson CJ and Hopwood DA. 1983. Cloning and expression of the tyrosinase gene from Streptomyces antibioticus in Streptomyces lividans [J]. J Gen Microbiol, 129 (9): 2703-14.
    61. Kaur, P and Russell, J. 1998. Biochemical coupling between the DrrA and DrrB protein of the doxorubicin efflux pump of Streptomyces peucetius [J]. J Biol Chem, 273 (28): 17933-39.
    62. Kendall K, Cullum J. 1984. Cloning and expression of an extracellular-agarase from Streptomyces coelicolor A3 (2) in Streptomyces lividans 66 [J]. Gene, 29 (3): 315-21.
    63. Kitamura I, Tobe H, Yoshimoto A, et al. 1981. Biosynthesis of aklavinone and aclacinomycins [J]. J Antibiot, 34 (11): 1498-1500.
    
    
    64. Komiyama T, Matsuzawa Y, Oki T, et al. 1977. Baumycins, new antitumor antibiotics related to daunomycin [J]. J Antibiot, 30(7): 619-21.
    65. Leon R, Fernandes P, Pinheiro HM, et al. 1998. Whole-cell biocatalysis in organic media [J]. Enzyme Microbiol Technol, 23 (7-8): 483-500.
    66. Leu WM, Chen LY, Liaw LL et al. 1992. Secretion of the Streptomyces tyrosinase is mediated through its trans-activator protein, MelC1 [J]. J Biol Chem, 267 (28): 20108-13.
    67. Liu WH, Horng WC, Tsai MS. 1996. Bioconversion of cholesterol to cholest-4-en-3-one in aqueous/organic solvent two phase reactors [J]. Enzyme Microb Technol, 18(3): 184-89.
    68. Lomovskaya N, Doi-Katayama Y, Filippini S, et al. 1998. The Streptomyces peucetius dpsY and dnrX genes govern early and late steps of daunorubicin and doxorubicin biosynthesis [J]. J Bacteriol, 180 (9): 2379-86.
    69. Lomovskaya N, Hong SK, Kim SU, et al. 1996. The Streptomyces peucetius drrC gene encodes a UvrA-like protein involved in daunorubicin resistance and production [J]. J Bacteriol, 178 (11): 3238-3245.
    70. Lomovskaya N, Otten SL, Doi-katayama Y, et al. 1999. Doxorubicin Overproduction in Streptomyces peucetius: Cloning and Characterization of the dnrU Ketoreductase and dnrV Genes and the doxA Cytochrome P-450 Hydroxylase Gene [J]. J Bacteriol, 181(1): 305-18.
    71. McGuire JC, Thomas MC, Randey R, et al. 1981. Biosynthesis of daunorubicin glycosides: analysis with blocked mutants [J]. Adv Biotechnol, 3:117-22.
    72. Moore JC and Arnold FH. 1996. Directed evolution of a para-nitrobenzyl esterase for aqueous-organic solvents [J]. Nat Biotechnol, 14 (4): 458-67.
    73. Murakami T, Holt TG, Thompson CJ. 1989. Thiostrepton-induced gene expression in Streptomyces lividans [J]. J Bacteriol, 171 (3): 1459-66.
    74. Murray HC, Peterson DH. 1952. Oxygenation of steriods by mucorales fungi. US Patent, 2602769 (Upjohn Co., Kalamazoo. Michigan, USA)
    75. Oki T, Yoshimoto A, Matsuzawa Y, et al. 1980. Biosynthesis of anthracycline antibiotics by Streptomyces galilaeus. Ⅰ. Glycosidation of various anthracyclinones by an aclacinomycin-negative mutant and biosynthesis of aclacinomycins from aklavinone [J]. J Antibiot, 33(11): 1331-40.
    76. Otten SL, Ferguson J and Hutchinson CR. 1995. Regulation of daunorubicin production in Streptomyces peucetius by the dnrR_2 locus [J]. J Bacteriol, 177 (5): 1216-24.
    77. Payne GF, Delacruz N, Coppella SJ. 1990. Improved production of heterologous protein from Streptomyces lividans [J]. Appl Microbiol Biotech, 33 (4): 395-400.
    78. Perucho M, Welsh J, Peinado M A, et al. 1995. Fingerprinting of DNA and RNA by arbitrarily palmed polymerase chain reaction: applications in cancer research [J]. Methods Enzymol, 254: 275-90.
    79. Porter TD, Coon MJ. 1991. Cytochrome P-450: Multiplicity of isoforms, substrates, and catalytic and
    
    regulatory mechanisms [J]. J Biol Chem, 266 (21): 13459-72.
    80. Pulido D and Jimenez A. 1987. Optimization of gene expression in Streptomyces lividans by a transcription terminator [J]. Nucleic Acid Research, 15 (10): 4227-40.
    81. Reetz M T, Zonta A, Schimossek K, et al. 1997. Creation of enantioselective biocatalysts for organic chemistry by in vitro evolution [J]. Angew Chem Int Ed Engl, 36, 2830-32.
    82. Rodriquez AM, Olano C, Méndez C, et al. 1995. A cytochrome P450-1ike gene possibly involved in oleandomycin biosynthesis by Streptomyces antibioticus [J]. FEMS Microbiol Lett, 127 (1-2): 117-20.
    83. Santaniello E, Ferraboschi P, Grisent P, et al. 1992. The biocatalytic approach to the preparation of enantiomerically pure chiral building blocks [J]. Chem Rev, 92:1071-1140.
    84. Schmitt-John T and Engels JW. 1992. Promoter construction for efficient secretion expression in Streptomyces livdans [J]. Appl Microbiol Biotechnol, 36 (4): 493-98.
    85. Scotti C and Hutchinson. 1996. Enhanced antibiotic production by manipulation of the Streptomyces peucetius dnrH and dnmT genes involved in doxorubicin (adriamycin) biosynthesis [J]. J Bacteriol, 178 (24): 7316-21.
    86. Shao Z, Zhao H, Giver L, et al. 1998. Radom-priming in vitro recombination: an effective tool for directed evolution [J]. Nucl Acids Res, 26 (2): 681-85.
    87. Skladanowski A, Konopa J. 1994. Interstrand DNA crosslinking induced by anthracyclines in tumor cells [J]. Biochem Pharmacol, 47 (12): 2269-78.
    88. Sono M, Rooch MP, Couter ED, et al. 1996. Heme-Containing Oxygenases [J]. Chem Rev, 96 (7): 2841-87.
    89. Stassi D, Donadio S, Staver MJ, et al. 1993. Identification of a Saccharopolyspora erythraea gene required for the final hydroxylation step in erythromycin biosynthesis [J]. J Bacteriol, 175 (1): 182-89.
    90. Stinson SC. 2001. Chiral drugs growth and development of these pharmaceuticals continue unabated [J]. C E News, 79 (40): 79-97.
    91. Strohl WR, Dickens ML, Desanti CL. 1999. Method of producing doxorubicin. US Patent, 5962293.
    92. Strohl WR. 1992. Compilation and analysis of DNA sequences associated with apparent Streptomycete promoter [J]. Nucleic Acids Research, 20 (5): 961-74.
    93. Stutzman-Engwall KJ, Otten SL and Hutchinson CR. 1992. Regulation of secondary metabolism in Streptomyces spp. and the overproduction of daunorubicin in Streptomyces peucetius [J]. J Bacteriol, 174 (1): 144-54.
    94. Sun Y, Hegamyer G, Colburn NH. 1993. PCR-direct sequencing of a GC-rich region by inclusion of 10% DMSO application to mouse C-jun [J]. Biotechniques, 15 (3): 372-74.
    95. Taguchi S, Yoshida Y, Kumagai I, et al. 1993. Effect of downstream message secondary structure on the secretory expression of the Streptomyces subtilisin inhibitor [J]. FEMS Microbiol Lett, 107 (2-3): 185-89.
    96. Takahashi Y, Naganawa H, Takeuchi T, et al. 1977. The structure of baumycins A1, A2, B1, B2, C1 and
    
    C2. J Antibiot, 30 (7): 622-24.
    97. Takano E, White J, Thompson CJ, et al. 1995. Construction of thiostrepton-inducible, high-copy-number expression vectors for use in S. spp [J]. Gene, 166 (1): 133-37.
    98. Tang L, Grimm A, Zhang YX, et al. 1996. Purification and characterization of the Dnrl DNA-binding protein, a transcriptional activator for daunorubicin biosynthesis in Streptomyces peucetius [J]. Mol Microbiol, 22 (5): 801-13.
    99. Thompson CJ, Gray GS. 1983. Nucleotide sequence of a Streptomyces anminoglycoside phosphotransferase gene and its relationship to phosphotransferases encoded by resistance plasmids [J]. Proc Natl Acad Sci USA, 80 (17): 5190-94.
    100. Trower MK, Lenstra R, Omer C, et al. 1992. Cloning, nucleotide sequence determination and expression of the genes encoding cytochrome P-450_(soy) (soyC) and ferredoxin_(soy) (soyB) from Streptomyces griseus [J]. Mol Microbiol, 6 (15): 2125-34.
    101. Tunac JB, Graham BD, Dobson WE, et al. 1985. Fermentation by a new daunomycin-producing organism, Streptomyces insignis ATCC 31913 [J]. Appl Environ Microbiol, 49 (2): 265-68.
    102. Ueda Y, Tsumoto K, Watanabe K, et al. 1993. Synthesis and expression of a DNA encoding the Fv domain of an antilysozyme monoclonal antibody, HyHEL10, in Streptomyces lividans [J]. Gene, 129 (1): 129-34.
    103. Van Sonsbeek HM, Beeftink HH, Tramper J. 1993. Two-liquid-phase bioreactors [J]. Enzyme Microb Technol, 15 (9): 722-29.
    104. Walczak RJ, Dickens ML, Priestley ND, et al. 1999. Purification, properties, and characterization of recombinant Streptomyces sp strain C5 DoxA, a eytochrome P450 catalyzing multiple steps in doxorubicin biosynthesis [J]. J Bacteriol, 181 (1): 298-304.
    105. Walczak RJ, Hines JV, Strohl WR et al. 2001. Bioconversion of the anthracycline analogue desacetyladriamycin by recombinant DoxA, a P450-Monooxygenase from Streptomyces sp. Strain C5 [J]. Organic Letters, 3 (15): 2277-79.
    106. Wright F, Bibb MJ. 1992. Codon usage in the G+C-rich Streptomyces genome [J]. Gene, 113 (1): 55-65.
    107. Wrigley-Jones C, Richards H, Thomas CR, et al. 1993. Stability of plasmid vector pIJ303 in Streptomyces lividans TK24 during laboratory-scale fermentation [J]. Biotech Bioeng, 41 (1): 148-55.
    108. Ye J, Dickens ML, Plater R, et al. 1994. Isolation and sequence analysis of polykeitde synthase genes from the daunomycin-producing Streptomyces sp. strain C5 [J]. J Bacteriol, 176 (20): 6270-80.
    109. Yoshimoto A, Oki T, Takeuchi T, et al. 1980. Microbial conversion of anthracyclinones to daunomycin by blocked mutants of Streptomyces coeruleorubidus [J]. J Antibiot, 33 (10): 1158-66.
    110. Zhao L, Que NLS, Xue Y, et al. 1998. Mechanistic studies of desosamine biosynthesis: C-4 deoxygenation prededes C-3 transamination [J]. J Am Chem Soc, 120:12159-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700