阿霉素的微生物转化及dauU基因的阻断突变研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阿霉素是柔红霉素C-14位羟化的衍生物,具有比柔红霉素更广的抗肿瘤谱和更小的毒副作用,在临床上作为一线抗肿瘤药物使用,主要用于多种实体瘤和急性白血病的治疗,仅阿霉素在世界范围内的市场已超过2亿美元。目前阿霉素的工业生产主要采用化学半合成法,从微生物发酵产生的柔红霉素出发须经过七步反应获得阿霉素,收率较低且污染环境。因此,研究酶法和微生物转化及生物合成直接生产阿霉素的新工艺将是技术进步和环境友好的必由之路。本研究对阿霉素合成的两种方法进行了探索,一是酶或微生物转化,即通过优化表达系统及引入DNR/DXR抗性基因来改善工程菌的阿霉素的产量;二是通过柔红霉素产生菌旁路代谢途径的阻断来研究对阿霉素合成的影响。
     研究结果如下:
     将来自天蓝淡红链霉菌SIPI-1482的编码柔红霉素C-14羟化酶的doxA基因克隆至一高效表达载体pET32a中,构建了表达载体pYG914,Western blotting实验证明该融合蛋白在大肠杆菌中表达正确,SDS-PAGE电泳检测表达蛋白主要为包涵体。对包涵体复性和酶分离纯化条件进行了研究,最终获得了单一条带的目的蛋白。通过引入辅因子再生系统尝试体外酶法转化阿霉素,实验结果表明,由于所涉及的影响因素太多,大肠杆菌系统不适合阿霉素的转化。
     通过PCR方法从SIPI-1482中扩增了含核糖体结合位点大小为1.3Kb的编码C-14柔红霉素羟化酶的doxA基因,编码SnpR蛋白的snpR基因及受SnpR调控的snpA启动子序列。与GenBank报道的来自链霉菌(S.sp.)C5的相关DNA序列比对表明,doxA基因和snpA启动子序列的同源性均为100%,而snpR的同源性为99.4%,氨基酸序列同源性为96.5%,有8个氨基酸的差异。
     构建了三个链霉菌表达质粒pYG908、pYG915和pYG927,使得doxA基因分别在上游受SnpR激活的snpA启动子、红霉素抗性基因突变启动子(ermEp~*)及诱导型启动子tipA控制之下,导入变铅青链霉菌(S.lividans)TK24获得了三株含doxA基因的工程菌。SDS-PAGE蛋白电泳证明,它们都能够表达大小约45KD的柔红霉素C-14羟化酶蛋白。工程菌发酵转化实验表明,它们都能将柔红霉素转化为阿霉素,其中,含pYG927/ET的工程菌的转化能力相对较强。对该工程菌发酵转化条件进行了初步研究,当底物(柔红霉素)浓度为2μg/ml时,工程菌的阿霉素产量为0.25μg/ml,转化率为12%。
     为提高工程菌转化中底物的浓度,尝试将来自链霉菌S.peucetius ATCC 29050(另一株柔红霉素产生菌)的柔红霉素抗性基因之一drrC克隆至载体pYG934(含dnrV与doxA的串连片段)并导入变铅青链霉菌TK24,转化试验表明,含drrC的工程菌可在10μg/ml的底物浓度下进行转化,阿霉素的产量为0.3μg/ml,比2μg/ml底物浓度时的产量提高了
Doxorubicin, a C-14 hydroxylated derivative of daunorubicin, is primarily used as first line chemotherapeutic agent in treatment of a variety of neoplasias and adult myelogenous leukemia. Compared with daunorubicin, doxorubicin has a broader spectrum of anti-tumor activity, lower toxicity and fewer side-effects. The world market of doxorubicin exceeded two hundreds of millions of dollars. Currently, doxorubicin is produced by semi-synthesis which is initiated from daunorubicin. The relative low productivity and high pollution make it possible to study on enzymatic biotransformation and fermentation production of doxorubicin, which is the essential way to friendly environment and technology advancement. In this research, two methods were studied for the production of doxorubicin. One was optimization on microbial conversion system by means of choosing different promoters and/or introducing DNR/DXR resistance gene into the host to increase the yield of doxorubicin. The other was disruption of dauU gene responsible for a shunt pathway in the daunorubicin-producing strain Streptomyces coeruleorubidus SIPI-1482 so as to explore the possibility of direct production of doxorubicin by fermentation.
    Results are described as follows:
    doxA gene coding for daunorubicin C-14 hydroxylase was amplified by PCR from Streptomyces coeruleorubidus SIPI-1482 genomic DNA and was cloned into a E.coli expression vector pET32a. The expressed protein was confirmed by western blotting and it showed that most of the fusion protein was inclusion body. Thus, the process of renaturation including washing, dissolving, refolding and purification of inclusion body were studied and a single band of purified protein was obtained. In vitro biotransformation of doxorubicin was studied in E.coli by adding co-factor regeneration system. The result showed E.coli is not a suitable host due to uncertain impact factor in the system.
    doxA gene containing a strong ribosome binding site GGAGG was PCR amplified from SIPI-1482 strain. A gene encoding SnpR and snpA promoter sequence were also amplified from SIPI-1482 strain. Sequence alignment indicated that the cloned doxA gene and the snpA promoter from SIPI-1482 were identity with that from S. sp. C5, while snpR from SIPI-1482 had a 99.4% DNA homology and 96.5% amino acid homology with the published sequence from S. sp. C5, respectively.
    Three novel expression plasmids pYG908, pYG915, pYG927 were constructed for the cloning and expression of doxA in Streptomyces lividans so that the transcription of doxA was
引文
1. Arcamone F, Cassinelli G, Fantini G, et al. Adriamycin, 14-hydroxydaunomycin, a new antitumor antibiotic from Streptornycespeucetius var caesius. Biotechnol Bioeng, 1969, 11: p. 1101-1110.
    2. Arcamone F, Animati F, Capranico G, et al. New developments in antitumor anthracyclines. Pharmacol Ther, 1998, 76: p. 117-124.
    3. Hutchinson CR. Biosynthetic studies of daunorubicin and tetracenomycin C. Chem Rev, 1997, 97: p. 2525-2535.
    4. Furuya K, Huthinson CR. The DrrC protein of Streptomyces peueetius, a UvrA-like protein, is a DNA-binding protein whose gene is induced by daunorubicin. FEMS Lett, 1998, 168: p. 243-249.
    5. Walczak RJ, Dickens ML, Priestley ND, et al. Purification, properties and characterization of recombinant Streptomyces sp. Strain C5 doxA, a cytochrome P-450 catalyzing multiple steps in doxorubicin biosynthesis. J Bacteriol, 1999, 181: p. 298-304.
    6. Komiyama T, Matsuzawa Y, Oki T, et al. Baumycins, new antitumor antibiotics related to daunomycin. J Antibiot, 1977, 30: p. 619-621.
    7. Takahashi Y, Naganawa H, Takeuchi T, et al. The structure of baumycins A1, A2, B1, B2, C1 and C2. J Antibiot, 1977, 30: p. 622-624.
    8. Natalie L, Sharee L, Otten, et al. Doxorubicin overproduction in Streptornyces peucetius: cloning and characterization of the dnrU ketoreductase and dnrV genes and the doxA cytochrome P-450 Hydroxylase gene. J Bacteriol, 1999, 181: p. 305-318.
    9. Dickens ML, Strohl WR. Isolation and characterization of a gene from Streptomyces sp.Strain C5 that confers the ability to convert daunomycin to doxorubicin on Streptomyces lividans TK24. J Bacteriol, 1996, 178: p.3389-3395.
    10. Gramajo HC, White J, Hutchinson CR, et al. Overproduction and localization of components of the polyketide synthase of Streptomyces glaucescens involved in the production of the antibiotic tetracenomycin C. J Bacteriol, 1991, 173: p. 6475-6483.
    11. Augusto S, Breme U, Colombo AL, et al. Daunorubin 14-hydroxylase, 1998, US, 5786190.
    12. Otten Sl, Ferguson J, Hutchinson CR. Regulation of daunorubicin production in Streptomyces peucetius by the dnrR2 locus. J Bacteriol, 1995, 177: p. 1216-1224.
    13. Stutzman-Engwall KJ, Otten SL, Hutchinson CR. Regulation of secondary metabolism in Streptomyces spp. and the overproduction of daunorubicin in Streptomyces peucetius. J Bacteriol, 1992, 174: p. 144-154.
    14. DeMot R, Parret AH. A novel class of self-sufficient cytochrome P450 monooxygenases in prokaryotes. Trends Microbiol, 2002, 10: p. 502-508.
    15. Van den Brink HM, Van gorcom RE Van den Hodel CA. Cytochrome P450 enzyme systems in fungi Fungal Genet Biol, 1998, 23: p. 1-17.
    16. Wouter A, Duetz, Jan B, et aL Using proteins in their natural environment: potential and limitations of microbial whole-cell hydroxylations in applied biocatalysis. Current Opinion in Biotechnology, 2001, 12: p. 419-425.
    17. Thompson CJ, et al. Cloning of antiotic resistance and nutritional genes in Streptomyces. J bacteriol, 1982, 151: p. 668-677.
    18. Mervyn, Bibb J, white J, et al. The mRNA for the 23s rRNA Methylase Encoded by the ermE gene of Saccharopolyspora erytraea is translated in the absence of a conventional ribosome binding site. Molecular Microbiology, 1994, 14: p. 533-545.
    19. Murakami T, Holt TG, Thompson CJ. Thiostrepton-induced gene expression in Streptomyces lividans. Journal of bacteriology, 1989, 171: p. 1459-1466.
    20. DeSanti CI, Strohl WR. Characterization of the Streptomyces sp. strain C5 snp locus and development of snp-derived expression vectors. Appl Environ Microbiol, 2003, 69: p. 1647-1654.
    21. Lampel JS, Aphale KA, Lampel, et al. Cloning and sequencing of a gene encoding a novel extracellular neutral proteinase from Streptomyces sp. strain C5 and expression of the gene in Streptomyces lividans 1326. J Bacteriol, 1992, 174: p. 2797-2808.
    22. Henikoff S, Haughn GW, Calvo JM, et al. A large family of bacterial activator proteins. Proc Natl Acad Sci USA, 1988, 85: p. 6602-6606.
    23. Lichenstein HS, Busse LA, Smith GA, et al. Cloning and characterization of a gene encoding extracellular metalloprotease from Streptomyces lividans. Gene, 1992, 111: p. 125-130.
    24. Butler MJ, Davey CC, Krygsman P, et al. Cloning of genetic loci involved in endoprotease activity in Streptomyces lividans 66: a novel neutral protease gene with an adjacent divergent putative regulatory gene. J Microbiol, 1992, 38(9): p. 912-920.
    25. Dammann T, Wohlleben W. A metalloprotease gene from Streptomyces coelicolor 'Muller' and its transcriptional activator, a member of the LysR family. Mol Microbiol, 1992, 6: p. 2267-2278.
    26. Bertrand Jl, Morosoli R, Shareak F, et al. Expression of the xylanase gene of Streptomyces lividans and production of the enzyme on natural substrates. Biotechnol Bioeng, 1989, 33: p. 791-794.
    27. 陆德如,陈永青.基因工程.2002,北京:化学工业出版社
    28. Pulido D, Jimenez A. Optimization of gene expression in Streptomyces lividans by a transcription terminator. Nucleic Acid Research, 1987, 15: p. 4227-4240.
    29. Higgins CF. Molecular basis of multidrug resistance mediated by P-glycoprotein. Curr Opin Biotechnol, 1991, 2: p. 278-281.
    30. Higgins CF, Hiles ID, Salmond GPC, et al. A family of related ATP-binding subunits coupled to many distinct biological processes in bacteria. Anthracycline antibiotic production in Streptomyces peucetius. Proc. Natl. Nature (London), 1986, 323: p. 448-450.
    31. Guilfoile PG, Hutchinson CR. A bacterial analog of the mdr gene of mammalian tumor cells is present in Streptomyces peucetius, the producer of daunorubicin and doxorubicin. Proc Natl Acad Sci USA, 1991, 88: p. 8553-8557.
    32. Kaur P, Russell J. Biochemical coupling between the DrrA and DrrB protein of the doxorubicin efflux pump of Streptomyces peucetius. J Biol Chem, 1998, 273: p. 17933-17939.
    33. Colombo AL, Solinas G, Perini G, et al. Expression of doxorubicin-daunorubicin resistance genes in different anthracycline-producing mutants of Streptomyces peucetius. J Bacteriol, 1992, 174: p. 1641-1646.
    34. Husain I, Van Houten B, Thomas DC, et al. Sequences of Escherichia coli uvrA gene and protein reveal two potential ATP binding sites. J Biol Chem, 1986, 261: p. 4895-4901.
    35. Novegen.pET系统操作手册.2002,上海:默克中国-Novagen.
    36. Mariyan Oliynyk, Christian B, Stark W, et al. Analysis of the biosynthetic gene cluster for the polyether antibiotic monensin in Streptomyces cinnamonensis and evidence for the role of monB and monC genes in oxidative cyclization. Molecular Microbiology, 2003, 49: p. 1179-1190.
    37. Lee LG, Whitesides GM. Preparation of optically-active 1, 2-diols and a-hydroxy ketones using glycerol dehydrogenase as catalyst-limits to enzyme-catalyzed synthesis due to noncompetitive and mixed inhibition by product. Enzymes and bacterial coupling systems. J Org Chem, 1986, 51: p. 25-36.
    38. Chenault HK, Simon ES, Whitesides GM. Cofactor regeneration for enzyme-catalyzed synthesis. Biotechnol Genet Eng Rev, 1988, 6: p. 221-270.
    39. Wichmann R, Wandrey C, Buckmann AF, et al. Continuous enzymatic transformation in an enzyme membrane with simultaneous NAD(H) regeneration. Biotechnol Bioeng reactor with simultaneous NAD(H) regeneration. Biotechnol Bioeng, 2000, 67: p. 791-804.
    40. Wong CH, Drueckhammer DG, Sweers HM. Enzymatic vs fermentative synthesis thermostable glucose-dehydrogenase catalyzed regeneration of NAD(P)H for use in enzymatic synthesis. J Am Chem Soc, 1985, 107: p. 4028-4031.
    41. Crans DC, Whitesides GM. A convenient synthesis of disodium acetyl phosphate for use in in situ ATP cofactor regeneration. J Org Chem, 1983, 48: p. 3130-3132.
    42. Koizumi S, Endo T, Tabata K, et al. Large-scale production of UDP-galactose and globotriose by coupling metabolically engineered bacteria. NatBiotechnol, 1998, 16: p. 847-850.
    43. Faber K. Biotransformations in Organic Chemistry. 2000, Berlin, Germany: Springer-Verlag.
    44. Billhardt UM, Stein P, Whitesides GM. Enzymatic methods for the preparation of acetyl-CoA and analogs. Bioorg Chem, 1989, 17: p. 1-12.
    45. Wichmann R, Vasic D. Cofactor regeneration at the lab scale. Adv Biochem Engin/Biotechnol, 2005, 92: p. 225-260.
    46. Kataoka M, Kita K, Wada M, et al. Novel bioreduction system for the production of chiral alcohols. Applied Micobiology and Biotechnology, 2003, 4: p. 1-19.
    47.唐建国,茹炳根,徐长法.蛋白质工程的研究.北京大学学报(自然科学版),1998,34:p.3423-3448.
    48.崔立斌,马清钧.新生肽的折叠与重组蛋白可溶性表达.生物工程进展,1998,18:p.36-40.
    49. Taise Shimaoka, Yokota A, Miyake C. Purification and Characterization of Chloroplast Dehydroascorbate Reductase from Spinach Leaves. Plant Cell Physio, 2000, 41(10): p. 1110-1118.
    50.杨润英,胡志浩.链霉菌表达系统的研究进展.农业生物技术学报,1996,4:p.260-266.
    51. Scotti, et al. Process for preparing daunorubicin, 1997, US, 5652125
    52. Taknao E, White J, Thompson CJ, et al. Construction of thiostrepton-inducible, high-copy-number expression vectors for use in Streptomyces spp. Gene, 1995, 166: p. 133-137.
    53. Doumith M, Weingarten P, Wehmeier UF, et al. Analysis of genes involved in 6-deoxyhexose biosynthesis and transfer in Saccharopolyspora erythraea. Mol Gen Genet, 2000, 264: p. 477-485.
    54.蒋红,等.变铅青链霉菌启动子活性片段的亚克隆及测序分析.微生物学报,1994,34:p.489-482.
    55. Janssen GR, Ward JM, Bibb MJ. Unusual transcriptional and translational Features of the Aminoglycoside phosphotransferase gene(aph) from Streptornyces frodioe. Genes level, 1989, 3: p. 415-429.
    56. Dikens ML, Priestley ND, Strohl WR. In vivo and in vitro bioconversion of rhodomycinone glycoside to doxorubicin: Functions of DauP, DauK and DoxA. J bacteriol, 1997, 179: p. 2641-2650.
    57. Kacinski BM, Rupp WD. Interactions of the UvrABC endonuclease in vivo and in vitro with DNA damage produced by antineoplastic anthracyclines. Cancer Res, 1984, 44: p. 3489-3492.
    58. Feinstein EE, Canaani, Weiner LM. Dependence of nucleic acid degradation on in situ free-radical production by adriamycin. Biochemistry, 1993, 32: p. 13156-l 3161.
    59. Malhotra KS, Kim T, Sancar A. Characterization of a medium wavelength type DNA photolyase: purification and properties of photolyase from Bacillus firmus. Biochemistry., 1994, 33: p. 8712-8718.
    60. Guilfoile PG, Hutchinson CR. Sequence and transcriptional analysis of the Streptomyces glaucescens tcmAR tetracenomycin C resistance and repressor loci. J Bacteriol, 1992, 174: p. 3651-3658.
    61. Fernandez-Moreno MA, Caballero JL, Hopwood DA, et al. The act cluster contains regulatory and antibiotic export genes, direct targets for translational control by the bldA tRNA gene of Streptomyces. Cell 66, 1991, 66: p.769-780.
    62. Grein A. Antitumor anthracyclines produced by Streptomyces peucetius. Adv Appl Microbiol, 1987, 32: p. 203-214.
    63. Filippini S, Colombo AL. Unpublished results.
    64. Oh SH, Charter KF. Denaturation of circular or linear DNA facilitates targeted integrative transformation of Streptomyces coelicolor A3. J. Bacteriol, 1997, 179: p. 122-127.
    65.丁小明,张霓,焦瑞身.利用同源重组建立地中海拟无枝菌酸菌U32染色体的基因置换/中断系统.生物工程学报,2002,18:p.431-437.
    66. Grimm A, Madduri K, Hutchinson CR, et al. Characterization of the Streptomyces peucetius ATCC 29050 genes encoding doxorubicin polyketide synthase. Gene, 1994, 151: p. 1-10.
    67. Vara JA, Lewandowska-Skarbek M, Strohl WR, et al. Isolation and sequence analysis of polyketide synthase genes from the daunomycin-producing Streptomyces sp. strain C5. J Bacteriol, 1994, 176: p. 6270-6280.
    68. Meurer G, Gerlitz M, Hutchinson CR, et al. Iterative, type Ⅱ polyketide synthases, cyclases and ketoreductases exhibit context dependent behavior in the biosynthesis of linear and angular decapolyketides. Chem Biol, 1997, 4: p. 433-443.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700