树脂吸附-水相结晶法分离纯化红霉素工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
红霉素是一种重要的大环内酯类抗生素,工业上由微生物发酵而得,其下游分离纯化工艺一直是红霉素生产的关键。现有的红霉素分离工艺还难以高收率的提取主产物红霉素A的同时,去除主要副产物红霉素C。为此,本文开发一条新的红霉素提取和纯化工艺,它采用大孔树脂HZ816固定床动态吸附经50nm陶瓷膜过滤的发酵液中的红霉素,经碱性缓冲盐溶液洗涤树脂后用乙酸丁酯解吸红霉素,然后往此红霉素丁酯解吸液中加入不混溶的磷酸盐缓冲液,利用乙酸丁酯和水产生的非均相共沸移走乙酸丁酯,红霉素则转移到磷酸盐缓冲液中,最后往磷酸盐缓冲液中加入碱调高pH,使得红霉素在水相中结晶出来。
     研究表明:(1)树脂固定床吸附红霉素符合Adams-Bohart吸附模型,吸附穿透损失是吸附量、进料流速和进料液红霉素浓度三者的函数;当吸附量控制在树脂饱和吸附量(123mg/ml)的60%左右时,对不同浓度的进料液采用合适的进料流速(两者大小相反),可使吸附收率达98%。(2)用碱性缓冲盐溶液洗涤树脂后可以将树脂上离子态的红霉素转为游离碱态,从而大大提高后续乙酸丁酯解吸红霉素的速率和收率,减少乙酸丁酯用量;较为合适的碱性缓冲盐溶液是pH9.4的氯化铵-氨水;后续解吸用乙酸丁酯以0.5倍床层体积每小时的流速洗脱,收集1.2倍固定床体积的红霉素酯相溶液即可使解吸收率达98%,得到浓度为61.5mg/ml左右的红霉素乙酸丁酯溶液。(3)共沸蒸馏可以移除乙酸丁酯,使得红霉素从乙酸丁酯相转移到K2HPO4-KH2PO4缓冲水溶液中,相转移收率可达96%;之后在50℃~55℃下逐渐加入4%的稀氨水至pH到9.6~9.8时,红霉素A的结晶收率可达96%,而红霉素C的收率仅为50%左右。
     通过上述研究实现了红霉素从在树脂上吸附、解吸再到水相结晶的整条分离纯化工艺,该工艺对红霉素A的总收率可达89%,对红霉素C为46%左右,可从发酵滤液中得到高质量的红霉素产品。
Erythromycin is an important kind of macrolide antibiotics, which is obtained from microbial fermentation in industry. The downstream separation and purification process is the key to production of erythromycin. Existing erythromycin separation processes are yet unable to recover principal product, erythromycin A, with high yield and remove the main byproduct, erythromycin C, at the same time. For this reason, this article developed a new erythromycin recovery process, which employs macroporous resin HZ816fixed-bed to adsorb erythromycin from fermentation liquid filtrated by50nm ceramic membrane, uses butyl acetate to desorb erythromycin from resin after washing resin with alkali buffer solution, then transfers erythromycin to phosphate buffer solution by carrying out heterogeneous azeotropic distillation of butyl acetate and water after adding immiscible phosphate buffer solution to erythromycin butyl acetate solution, and then crystalizes erythromycin by adding alkali to this phosphate buffer solution to increase pH.
     It turned out that:(1) Adams-Bohart adsorption model could fit erythromycin adsorption onto resin fixed-bed. Adsorption breakthrough loss was the function of adsorption amount, feeding flow velocity and feeding erythromycin concentration. When the adsorption amount was60%of the saturated amount, the adsorption yield could be98%at appropriate feeding flow velocity for different feeding erythromycin concentrations.(2) Protonized erythromycin could be converted to erythromycin alkali by washing resin with alkali buffer solution, thus the erythromycin desorption rate and yield increased and the consumption of desorbing agent, butyl acetate, decreased. Ammonia-ammonium chloride solution was a suitable choice for this process. After washing, desorption was carried out by butyl acetate at feeding flow rate of0.5fixed-bed volume per hour, and the yield of desorbed erythromycin in the first1.2fix-bed volume butyl acetate elution could be98%. The erythromycin concentration in butyl acetate elution was about61.5mg/ml.(3) Erythromycin could be transferred into aqueous solution after azeotropic distillation of butyl acetate and water and the yield could be96%. Then,4%ammonia water was added into the erythromycin aqueous solution until pH was9.6-9.8at temperature of50-55℃. The crystallization yield of erythromycin A could be96%while that of erythromycin C was only about50%.
     A whole erythromycin separation and purification process which consists of erythromycin adsorption, desorption and aqueous crystallization was established. It can recover erythromycin with yield of erythromycin A of89%and erythromycin C of46%, therefore can obtain high quality erythromycin from fermentation filtrate.
引文
[1]Mcguire JM, Bunch RL, Andersen RC et al. Erythromycin a New Antibiotic[J]. Antibiotics and Chemotherapy.1952,2(2):281-283.
    [2]Brisson-Noel A, Trieu-Cuot P, Courvalin P. Mechanism of Action of Spiramycin and Other Macrolides[J]. Journal of Antimicrobial Chemotherapy.1988,22(suppl B):13-23.
    [3]刘昌胜.红霉素在几种缓冲溶液中的溶解度[J].中国抗生素杂志.1995,20(1):17-19.
    [4]Egutkin NL, Maidanov VV. Solvation of Erythromycin by Organic Solvents under Extraction Condition[J]. Methods of Synthesis and Technoloby of Drug Production.1984, 18(7):858-861.
    [5]Kim YH, Heinze TM, Beger R et al. A Kinetic Study on the Degradation of Erythromycin a in Aqueous Solution[J]. International Journal of Pharmaceutics.2004,271(1-2):63-76.
    [6]Shreve RN, Brink JAS. Chemical Process Induxtries[M]. New York:McGraw Hill,1977.
    [7]Schugerl K. Extraction of Primary and Secondary Metabolites[J]. Advances in Biochemical Engineering/Biotechnology.2005,92:1-48.
    [8]刘建,胡晓玲.一种提取红霉素碱的生产工艺[P].中国专利:1099039,1995-02-22.
    [9]Zagreb, Yugoslavia, Industriji i Ku. Extraction of Erythromycin from Fermentation Liquid-with Me Iso-Bu Ketone[J]. Res. Inst., Pliva, Pharm., Chem., Food Cosmet. Ind.1980, 29(4):173-174.
    [10]Oniscu C, Cascaval D, Galaction A-I et al. Study on Reactive Extraction of Erythromycin[J]. Roumanian Biotechnological Letters.2000,5(6):439-447.
    [11]Le QH, Shong LG, Shi YH. Extraction of Erythromycin from Fermentation Broth Using Salt-Induced Phase Separation Processes[J]. Separation and Purification Technology.2001, 24(1-2):85-91.
    [12]Habaki H, Isobe S, Egashira R et al. Permeation and Concentration of Erythromycin by Supported and Emulsion Liquid Membranes[J]. Journal of Chemical Engineering of Japan. 1998,31(1):47-54.
    [13]Loh KF, Lau SE, Lau SW et al. Reverse Micelle Extraction of Erythromycin[C]. Proceedings of the 18th Symposium of Malaysian Chemical Engineerers.2004,1:340-345.
    [14]Lye GJ, Stuckey DC. Extraction of Erythromycin-a Using Colloidal Liquid Aphrons:I. Equilibrium Partitioning [J]. Journal of Chemical Technology and Biotechnology.2000,75(5): 339-347.
    [15]朱自强,李勉等.双水相萃取法提取红霉素的方法[P].中国专利:1054131, 2000-07-05.
    [16]Manic MS, da Ponte MN, Najdanovic-Visak V. Recovery of Erythromycin from Aqueous Solutions with an Ionic Liquid and High-Pressure Carbon Dioxide[J]. Chemical Engineering Journal.2011,171(3):904-911.
    [17]柳小强.红霉素发酵液过滤工艺的研究与改进[D].西安:西北大学,2008.
    [18]Li SZ, Li XY, Cui ZF et al. Application of Ultrafiltration to Improve the Extraction of Antibiotics[J]. Separation and Purification Technology.2004,34:115-123.
    [19]Alves AMB, Morao A, Cardoso JP. Isolation of Antibiotics from Industrial Fermentation Broths Using Membrane Technology[J]. Desalination.2002,148:181-186.
    [20]Berthold W, Van Kempken R. Interaction of Cell Culture with Downstream Purification: A Case Study. Cytotechnol.1994,15:229-242.
    [21]He YS, Chen G, Ji ZJ et al. Combined Uf-Nf Membrane System for Filtering Erythromycin Fermentation Broth and Concentrating the Filtrate to Improve the Downstream Efficiency[J]. Separation and Purification Technology.2009,66(2):390-396.
    [22]Schroen CGPH, Woodley JM. Membrane Separation for Downstream Processing of Aqueous-Organic Bioconversions[J]. Biotechnol. Prog.1997,13(3):276-283.
    [23]孙瑞军,李泉山.一种红霉素硫氰酸盐的生产方法[P].中国专利:101407533,2009-04-15.
    [24]Li SZ, Li XY Wang DZ. Membrane (Ro-Uf) Filtration for Antibiotic Wastewater Treatment and Recovery of Antibiotics [J]. Separation and Purification Technology.2004, 34(1-3):109-114.
    [25]Payne GF, Shuler ML. Selective Adsorption of Plant Products[J]. Biotechnology and Bioengineering.1988,31(9):922-928.
    [26]顾觉奋.大孔网状吸附剂在抗生素分离纯化中的应用[J].中国抗生素杂志.1991,16(3):220-230.
    [27]Ribeiro MHL, Ribeiro IAC. Recovery of Erythromycin from Fermentation Broth by Adsorption onto Neutral and Ion-Exchange Resins[J]. Separation and Purification Technology. 2005,45(3):232-239.
    [28]宋应华.吸附法分离提纯红霉素的基础研究[D].上海:华东理工大学,2006.
    [29]顾觉奋,王鲁燕,倪孟详.抗生素[M].上海:上海科学技术出版社.2001.
    [30]Samsonov GV, Fleer LP. Study of Erythromycin Adsorption by Cation-Exchange Resins[J]. Tr. Leningr. Khim-Farmalt. Inst.1962,15:225-232.
    [31]Fujita S, Takatsu A, Shibuya K, et al. Process for Purifying Erythromycin[P]. US Patent: 3629233,1971-12-21.
    [32]陈涛,曾庆轩,冯长根等.离子交换纤维对红霉素吸附特性的研究[J].功能材料.2009,40(11):1895-1899.
    [33]张朝晖,刘丽,聂丽华.溶胶—凝胶法制备红霉素印迹固相萃取材料及其选择吸附性[J].高分子学报.2010,6(6):677-683.
    [34]邬行彦.抗生素生产工艺学[M].上海:化学工业出版社.1988.
    [35]马小平,宋鲁宁.一种红霉素的结晶方法[P].中国专利:101724000,2010-06-09.
    [36]陈葵,朱家文.红霉素盐制备红霉素的动态控制结晶方法[P].中国专利:1513864,2004-07-21.
    [37]Elmahdi I, Baganz F, Dixon K et al. Ph Control in Microwell Fermentations of S-Erythraea Ca340:Influence on Biomass Growth Kinetics and Erythromycin Biosynthesis[J]. Biochemical Engineering Journal.2003,16(3):299-310.
    [38]俞文和,杨纪根.抗生素工艺学(第一版)[M].沈阳:辽宁科学技术出版社.1988.
    [39]范代娣,尚龙安,米钰等.气升式生物反应器内红霉素发酵的动力学分析[J].西北大学学报(自然科学版).2003,33(1):34-36.
    [40]李啸,陈长华,朱凤等.红霉素生产及其有效组分转化的优化[J].中国抗生素杂志.2005,30(2):65-69.
    [41]李学志,钱江潮,陈云等.重组工业红色糖多孢菌优化红霉素发酵液组分[J].中国抗生素杂志.2009,34(3):152-155.
    [42]Booth AJ, Sutherland IA, Lye GJ. Modeling the Performance of Pilot-Scale Countercurrent Chromatography:Scale-up Predictions and Experimental Verification of Erythromycin Separation[J]. Biotechnology and Bioengineering.2003,81(6):640-649.
    [43]Booth AJ, Ngiam SH, Lye GJ. Antibiotic Purification from Fermentation Broths by Counter-Current Chromatography:Analysis of Product Purity and Yield Trade-Offs[J]. Bioprocess and Biosystems Engineering.2004,27(1):51-61.
    [44]孙瑛.红霉素A和红霉素C的层析过程研究[D].上海:华东理工大学,2009.
    [45]Zhu S, Zhu JW, Chen K. Effect of Ph and Ionic Strength on Competitive Adsorption of Erythromycin a and C onto Macroporous Resin Sepabead Sp825 at Different Temperatures[J]. Chemical Engineering Communications.2011,198(10):1206-1217.
    [46]Ribeiro MHL, Ribeiro I AC. Modelling the Adsorption Kinetics of Erythromycin onto Neutral and Anionic Resins[J]. Bioprocess and Biosystems Engineering.2003,26(1):49-55.
    [47]Sun Y, Zhu JW, Chen K et al. Modeling Erythromycin Adsorption to the Macroporous Resin Sepabead Sp825[J]. Chemical Engineering Communications.2009,196(8):906-916.
    [48]Lye GJ, Stuckey DC. Extraction of Erythromycin-a Using Colloidal Liquid Aphrons:I. Equilibrium Partitioning [J]. Journal of Chemical Technology & Biotechnology.2000,75: 339-347.
    [49]国家药典委员会.中国人民共和国药典[M].北京:化学工业出版社,2005.
    [50]Pendela M, Van den Bossche L, Hoogmartens J et al. Combination of a Liquid Chromatography-Ultraviolet Method with a Non-Volatile Eluent, Peak Trapping and a Liquid Chromatography-Mass Spectrometry Method with a Volatile Eluent to Characterise Erythromycin Related Substances[J]. Journal of Chromatogr A.2008,1180(1-2):108-121.
    [51]Du X, Yuan Q, Li Y. Equilibrium, Thermodynamics and Breakthrough Studies for Adsorption of Solanesol onto Macroporous Resins[J]. Structure.2008,47:1420-1427.
    [52]Li SZ, Li XY, Cui ZF et al. Application of Ultrafiltration to Improve the Extraction of Antibiotics[J]. Separation and Purification Technology.2004,34(1-3):115-123.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700