吸烟诱导水解酶活性微囊泡在粥样斑块薄壁纤维帽进展中的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     吸烟明显增加动脉粥样硬化(Atherosclerosis, AS)斑块的破裂和破裂后血管内血栓形成的危险性,然而相关分子机制尚不明确。微囊泡(Micro vesciles, MVs)是细胞凋亡过程中产生的膜性囊状结构,近年研究证实动脉粥样斑块中存在大量单核巨噬细胞源性MVs,其致病力较母细胞更强、更持久,与AS斑块的进展密切相关。我们前期研究发现,TSE (Tobacco smoke extract, TSE)可增加单核细胞源性MVs的产生,该MVs携带组织因子,体外具有强大的促凝活性,解释了吸烟患者血液的高凝状态和斑块破裂后血栓形成的机制,但尚不能够解释吸烟患者AS斑块破裂的机制。因此,本研究旨在探讨TSE诱导巨噬细胞源性MVs是否具有蛋白水解酶活性,并探讨TSE诱导的蛋白水解酶活性MVs的分子性质和产生的分子信号通路机制。
     方法:
     1.PMA诱导人THP-1单核细胞建立巨噬细胞模型和贴壁筛选法分离诱导外周血单核巨噬细胞;
     2.酶谱法和荧光底物分解法测量TSE诱导MVs水解酶活性;
     3.在37℃应用Pro-MMP2与分离MVs体外共孵育1h,然后用酶谱法检测TSE诱导MVs激活Pro-MMP2的活性;
     4.免疫荧双染色共聚焦显微镜观察TSE诱导巨噬细胞膜性基质金属蛋白酶1(membrane type1metalloproteinase, MT1-MMP)又称MMP14和细胞凋亡早期标志物磷脂酰丝氨酸(PS)表达及分布;
     5. Western Blot检测TSE诱导巨噬细胞MMP14蛋白表达变化、MAPKs信号通路的激活和MVs携带MMP14情况;
     6.应用流式细胞技术测量TSE诱导总MVs和MMP14+MVs数量;
     7.应用凋亡抑制剂(caspase inhibitor, CASPi),观察TSE诱导MMP14+MVs的产生和活性;
     8.应用MAPKs信号通路p38/ERK/JNK特异性抑制剂干预细胞后,观察TSE诱导MVs产生和活性。
     结果:
     1.成功应用PMA建立THP-1巨噬细胞和贴壁筛选法分离诱导人外周血原代单核巨噬细胞;
     2.TSE诱导MVs可动态水解人工合成荧光底物肽段1和降解凝胶中天然底物明胶蛋白和胶原蛋白;
     3.TSE诱导MVs可激活人工重组Pro-MMP2的活性,级联放大效应发挥水解胶原蛋白的活性;
     4.TSE诱导巨噬细胞呈浓度和时间依赖性增加MMP14的表达,共聚焦显微镜显示MMP14在巨噬细胞膜上呈结节性表达增加且与细胞膜的早期凋亡标志分子PS共定位,提示TSE诱导MVs携带MMP14;
     5.流式分析显示TSE可诱导巨噬细胞源性总MVs和MMP14+MVs的产生;
     6. CASPi可明显抑制TSE诱导巨噬细胞源性总MWs和MMP14+MVs的产生,并抑制MVs水解酶活性,不影响巨噬细胞表达MMP14;
     7.TSE可激活MAPKs信号通路,使通路重要蛋白p38、ERK和JNK磷酸化,其中p38和JNK磷酸化与TSE诱导的巨噬细胞表达MMP14有关,与ERK的磷酸化无关;
     8.应用p38和JNK特异性抑制剂可明显减少TSE诱导的MMP14+MVs的数量和活性。
     结论:
     TSE干预巨噬细胞可明显增加蛋白水解酶活性MVs产生,与其携带的跨膜蛋白酶基质金属蛋白酶家族的MMP14有关,具有强大胶原和明胶蛋白酶的活性;TSE诱导的水解酶活性MVs产生与MAPKs信号通路中JNK和p38的磷酸化有关,与ERK磷酸化无关。我们的研究提示TSE诱导的蛋白水解酶活性MVs可能在AS斑块薄壁纤维帽形成中起着重要作用,是斑块破裂新的致病因子。
Objectives:
     Cigarette smoking greatly increases the risk of atherosclerosis plaque rupture and subsequent intravascular thrombosis. However, the underlying mechanisms remain poorly understood. Increasing evidences have shown that the progression of atherosclerotic plaque was associated with accumulation of amounts of microvesicles (MVs) within the plaque lesion. Our group recently found that tobacco smoke extract (TSE) induces human monocytes/macrophages to generate tissue factor-positive MVs which have procoagulant activity. This finding may account for the increases content of tissue factor in atheromata from smokers and their increased risk of thrombotic occlusion after plaque rupture. But it would not necessarily explain the underlying mechanisms of plaque rupture. Therefore, in the present study, we sought to determine whether exposure of human macrophages to TSE induces the release MVs with proteolytic activity, what nature of the proteases on TSE-induced MVs might be, and what the molecular mechanisms might be responsible for their generation.
     Methods:
     1. The human THP-1cells were differentiated to macrophages using PMA. Primary human monocyte-derived macrophages (hMDMs) were prepared from fresh buffy coats by selecting monocytes by adherence followed by differentiation into macrophages.
     2. The proteolytic activities of TSE-induced MVs were assayed by zymogram and flurometric analysis.
     3. TSE-induced MVs were determined to activate pro-MMP2to gelatinase MMP2by zymogram after co-incubation with pro-MMP12for1hour at37℃.
     4. Confocal microscopy was used to documents MMP14display and exteriorization of phosphatidylserine (PS) on the surface of TSE-treated macrophage.
     5. Western Blot was used to detect the expression of MMP14and activation of MAPKs signaling pathways in the TSE-treated macrophages and MVs.
     6. Flow cytometry were used to detect the generation of TSE-induced total-and MMP14-positive MVs.
     7. Pretreatment macrophages with caspase inhibitor intervene the generation of TSE-induced total and proteolytic MVs.
     8. Pretreatment macrophages with p38or JNK inhibitor intervene the generation of TSE-induced total-and proteolytic MVs.
     Results
     1. THP-1cell successfully differentiated to macrophages by PMA and got the hMDMs by adherence.
     2. TSE-induced MVs significantly cleaved fluorogenic substrate I and degraded the native substrates gelatin and collagen in SDS gels.
     3. Pre-coincubation of TSE-induced MVs with pro-MMP2can activate the MMP2gelatinase.
     4. TSE exposure of macrophages significantly increased expression of MMP14in dose-and time-dependent manners. Confocal images showed a huge induction of cell surface MMP14and PS exteriorization on TSE-treated macrophages. The TSE-induced MVs were proved to carry MMP14by Western Blot.
     5. Flow cytometry results showed that TSE exposure of macrophages significantly increased the generation of total-and MMP14-positive MVs.
     6. Pretreatment of macrophage with CASPi significantly blocked the generation TSE-induced total-and MMP14-positive MVs and the proteolytic activity without affecting cellular expression of MMP14.
     7. TSE exposure of macrophages increased the phosphoralytion of3major MAPKs including JNK, p38and ERK. The TSE-induced MMP14expression was associated with the phosphoralytion of JNK and p38, not ERK.
     8. Pretreatment of macrophage with of JNK or p38inhibitor significantly blocked the generation of TSE-induced total-and MMP14-positive MVs, also blocked the proteolytic acitivity.
     Conclusions:
     TSE-induced macrophage-derived MVs carry substantial gelatinolytic and collagenolytic activities which can be attributed to a single, dominant, transmembrane protease of the MMP superfamily, namely MMP14. The production of these MVs relies on the activation of JNK and p38MAPKs, not ERK activation. The new pathogenic factors might play an important role in the formation of atherosclerosis thinning fibrous cap and plaque rupture.
引文
[1]Ambrose JA, Barua RS. The pathophysiology of cigarette smoking and cardiovascular disease:an update [J]. J Am Coll Cardiol.2004, 19;43(10):1731-7.
    [2]Teo KK, Ounpuu S, Hawken S, et al. Tobacco use and risk of myocardial infarction in 52 countries in the INTERHEART study:a case-control study [J]. Lancet.2006,19;368(9536):647-58.
    [3]Meyers DG Smoking bans in public places result in a reduced incidence of acute myocardial infarction [J]. Expert Rev Cardiovasc Ther.2010 Mar;8(3):311-3.
    [4]Meyers DG, Neuberger JS, He J. Cardiovascular effect of bans on smoking in public places:a systematic review and meta-analysis [J]. J Am Coll Cardiol. 2009 Sep 29;54(14):1249-55.
    [5]Hardoon SL, Whincup PH, Lennon LT, et al. How much of the recent decline in the incidence of myocardial infarction in British men can be explained by changes in cardiovascular risk factors? Evidence from a prospective population-based study [J]. Circulation.2008,5;117(5):598-604.
    [6]Bolinder G, Alfredsson L, Englund A, et al. Smokeless tobacco use and increased cardiovascular mortality among Swedish construction workers [J]. Am J Public Health 1994;84:399-404.
    [7]Glantz SA, Parmley WW. Passive smoking and heart disease:epidemiology, physiology, and biochemistry [J]. Circulation 1991;83:1-12.
    [8]Barnoya J, Glantz SA. Cardiovascular effects of secondhand smoke:nearly as large as smoking [J]. Circulation.2005 May 24;111(20):2684-98.
    [9]Barua RS, Ambrose JA, Eales-Reynolds LJ, et al. Dysfunctional endothelial nitric oxide biosynthesis in healthy smokers with impaired endothelium-dependent vasodilatation [J]. Circulation,2001;104:1905-10.
    [10]Ijzerman RG, Serne EH, van Weissenbruch MM, et al. Cigarette smoking is associated with an acute impairment of microvascular function in humans [J]. Clin Sci (Lond) 2003; 104:247-52.
    [11]Smith CJ, Fischer TH. Particulate and vapor phase constituents of cigarette mainstream smoke and risk of myocardial infarction [J]. Atherosclerosis 2001;158:257-67.
    [12]Bermudez EA, Rifai N, Buring JE, et al. Relation between markers of systemic vascular inflammation and smoking in women [J]. Am J Cardiol 2002;89:1117-9.
    [13]Wright WR, Parzych K, Crawford D, et al. Inflammatory transcriptome profiling of human monocytes exposed acutely to cigarette smoke [J]. PLoS One. 2012;7(2):e30120.
    [14]Weber C, Erl W, Weber K, Weber PC. Increased adhesiveness of isolated monocytes to endothelium is prevented by vitamin C intake in smokers [J]. Circulation 1996;93:1488-92.
    [15]Yan-Ling Z, Dong-Qing Z, Chang-Quan H, et al. Cigarette smoking and its association with serum lipid/lipoprotein among Chinese nonagenarians centenarians [J]. Lipids Health Dis.2012 Jul 24;11:94.
    [16]Reaven G, Tsao PS. Insulin resistance and compensatory hyperinsulinemia:the key player between cigarette smoking and cardio-vascular disease [J]. J Am Coll Cardiol,2003;41:1044-7.
    [17]Heitzer T, Yla-Herttuala S, Luoma J, et al. Cigarette smoking potentiates endothelial dysfunction of forearm resistance vessels in patients with hypercholesterolemia. Role of oxidized LDL [L]. Circulation.1996 Apr 1;93(7):1346-53.
    [18]Nawrot TS, Staessen JA, Holvoet P, et al. Telomere length and its associations with oxidized-LDL, carotid artery distensibility and smoking. Front Biosci [J]. 2010 Jun 1;2:1164-8.
    [19]Nishio E, Watanabe Y. Cigarette smoke extract inhibits plasma paraoxonase activity by modification of the enzyme's free thiols. Biochem Biophys Res Commun 1997;236:289-93.
    [20]Sawada M, Kishi Y, Numano F, Isobe M. Smokers lack morning increase in platelet sensitivity to nitric oxide [J]. J Cardiovasc Pharmacol 2002;40:571-6.
    [21]Shah RS, Cole JW. Smoking and stroke:the more you smoke the more you stroke [J]. Expert Rev Cardiovasc Ther.2010 Jul;8(7):917-32.
    [22]Csordas A, Bernhard D.The biology behind the atherothrombotic effects of cigarette smoke [J]. Nat Rev Cardiol.2013 Apr;10(4):219-30.
    [23]Stone GW, Maehara A, Lansky AJ, et al. A prospective natural-history study of coronary atherosclerosis [J]. N Engl J Med.2011 Jan 20;364(3):226-35.
    [24]Burke AP, Farb A, Malcom GT, et al. Coronary risk factors and plaque morphology in men with coronary disease who died suddenly [J]. N Engl J Med 1997;336:1276-82.
    [25]Burke AP, Farb A, Malcom GT, Liang Y, Smialek J, Virmani R. Effect of risk factors on the mechanism of acute thrombosis and sudden coronary death in women [J]. Circulation 1998;97:2110-6.
    [26]Tabas I, Seimon T, Timmins J, et al. Macrophage apoptosis in advanced atherosclerosis [J]. Ann N Y Acad Sci.2009 Sep;1173 Suppl 1:E40-5.
    [27]Virmani R, Burke AP, Farb A, et al. Pathology of the vulnerable plaque [J]. J Am Coll Cardiol.2006,18;47(8 Suppl):C13-8.
    [28]Lim WS, Timmins JM, Seimon TA, et al. Signal transducer and activator of transcription-1 is critical for apoptosis in macrophages subjected to endoplasmic reticulum stress in vitro and in advanced atherosclerotic lesions in vivo [J]. Circulation.2008,19; 117(7):940-51.
    [29]Kolodgie FD, Narula J, Burke AP, et al. Localization of apoptotic macrophages at the site of plaque rupture in sudden coronary death [J]. Am J Pathol. 2000;157(4):1259-68.
    [30]Badimon L, Nemerson Y, Fuster V, et al. Tissue factor modulates the thrombogenicity of human atherosclerotic plaques [J]. Circulation. 1997,4;95(3):594-9.
    [31]Hathcock JJ, Nemerson Y. Platelet deposition inhibits tissue factor activity:in vitro clots are impermeable to factor Xa [J]. Blood.2004,1;104(1):123-7.
    [32]Steppich BA, Braun SL, Stein A, et al. Plasma TF activity predicts cardiovascular mortality in patients with acute myocardial infarction. Thromb J. 2009,2;7:11.
    [33]Steppich BA, Braun SL, Stein A, et al. Plasma TF activity predicts cardiovascular mortality in patients with acute myocardial infarction [J]. Thromb J.2009 Jul 2;7:11.
    [34]Holschermann H, Terhalle HM, Zakel U, et al Monocyte tissue factor expression is enhanced in women who smoke and use oral contraceptives [J]. Thromb Haemost.1999;82:1614-1620.
    [35]Sambola A, Osende J, Hathcock J, et al. Role of risk factors in the modulation of tissue factor activity and blood thrombogenicity [J]. Circulation. 2003; 107:973-977.
    [36]Matetzky S, Tani S, Kangavari S et al. Smoking increases tissue factor expression in atherosclerotic plaques:implications for plaque thrombogenicity[J], Circulation.2000,8;102(6):602-4.
    [37]Montoro-Garcia S, Shantsila E, Marin F, et al. Circulating microparticles:new insights into the biochemical basis of microparticle release and activity [J]. Basic Res Cardiol.2011,106(6):911-23.
    [38]Furmanski P. Revealing the mechanism of tissue damage due to tobacco use: finally, a smoking gun [J]? Am J Pathol,2013,182:1489-93.
    [39]Del Conde I, Shrimpton CN, Thiagarajan P, et al. Tissue-factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation[J]. Blood.2005,1; 106(5):1604-11.
    [40]Boulanger CM, Amabile N, Tedgui A, et al. Circulating microparticles:a potential prognostic marker for atherosclerotic vascular disease [J]. Hypertension.2006;48(2):180-6.
    [41]Blann A, Shantsila E, Shantsila A. Microparticles and arterial disease [J]. Semin Thromb Hemost.2009,35(5):488-96.
    [42]Liu ML, Williams KJ. Microvesicles:potential markers and mediators of endothelial dysfunction [J]. Curr Opin Endocrinol Diabetes Obes.2012, 19(2):121-7.
    [43]Sinauridze El, Kireev DA, Popenko NY, et al. Platelet microparticle membranes have 50-to 100-fold higher procoagulant activity than activated platelets. Thromb Haemost 2007;97:425-434.
    [44]Mallat Z, Hugel B, Ohan J, et al. Shed membrane microparticles with procoagulant potential in human atherosclerotic plaques:a role for apoptosis in plaque thrombogenicity [J]. Circulation.1999; 99:348-353.
    [45]Del Conde I, Shrimpton CN, Thiagarajan P, et al. Tissue-factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation[J]. Blood.2005, 1;106(5):1604-11.
    [46]Morel O, Toti F, Hugel B, et al. Procoagulant microparticles:disrupting the vascular homeostasis equation? Arterioscler Thromb Vase Biol. 2006;26:2594-2604.
    [47]Liu ML, Reilly MP, Casasanto P, et al. Cholesterol enrichment of human monocyte/macrophages induces surface exposure of phosphatidylserine and the release of biologically-active tissue factor-positive microvesicles. Arterioscler Thromb Vase Biol.2007;27:430-435.
    [48]Heiss C, Jahn S, Taylor M, et al. Improvement of endothelial function with dietary flavanols is associated with mobilization of circulating angiogenic cells in patients with coronary artery disease [J]. J Am Coll Cardiol.2010 Jul 13;56(3):218-24.
    [49]Gordon C, Gudi K, Krause A, et al. Circulating endothelial microparticles as a measure of early lung destruction in cigarette smokers [J]. Am J Respir Crit Care Med.2011,15;184(2):224-32.
    [50]Li M, Yu D, Williams KJ, et al. Key NS. Tobacco smoke induces the generation of procoagulant microvesicles from human monocytes/macrophages[J]. Arterioscler Thromb Vase Biol,2010,30(9):1818-24.
    [51]Plenz GA, Deng MC, Robenek H, et al. Vascular collagens:spotlight on the role of type Ⅷ collagen in atherogenesis [J]. Atherosclerosis. 2003;166(1):1-11.
    [52]Libby P. Molecular bases of the acute coronary syndromes [J]. Circulation. 1995 1;91(11):2844-50.
    [53]Shah PK, Falk E, Badimon JJ, et al. Human monocyte-derived macrophages induce collagen breakdown in fibrous caps of atherosclerotic plaques. Potential role of matrix-degrading metalloproteinases and implications for plaque rupture[J]. Circulation.1995,15;92(6):1565-9.
    [54]Schneider F, Sukhova GK, Aikawa M, et al. Matrix-metalloproteinase-14 deficiency in bone-marrow-derived cells promotes collagen accumulation in mouse atherosclerotic plaques [J]. Circulation,2008,117(07):931-9.
    [55]Moore KJ, Tabas I. Macrophages in the pathogenesis of atherosclerosis [J]. Cell. 2011,29;145(3):341-55.
    [56]Daigneault M, Preston JA, Marriott HM, et al. The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages. PLoS One.2010,13;5(1):e8668.
    [57]Ezzati M, Lopez AD. Lopez AD Estimates of global mortality attributable to smoking in 2000 [J]. Lancet.2003 Sep 13;362(9387):847-52.
    [58]Galis ZS. Vulnerable plaque:the devil is in the details [J]. Circulation, 2004,110(03):244-6.
    [59]Johnson JL, Newby AC. Macrophage heterogeneity in atherosclerotic plaques[J].Curr Opin Lipidol.2009 Oct;20(5):370-8.
    [60]Gordon SB, Irving GR, Lawson RA, et al. Intracellular trafficking and killing of Streptococcus pneumoniae by human alveolar macrophages are influenced by opsonins[J]. Infect Immun.2000 Apr;68(4):2286-93.
    [61]Murao S, Gemmell MA, Callaham ME, et al. Control of macrophage cell differentiation in human promyelocytic HL-60 leukemia cells by 1,25-dihydroxyvitamin D3 and phorbol-12-myristate-13-acetate [J]. Cancer Res. 1983;43:4989-4996.
    [62]Olsson I, Gullberg U, Ivhed I, et al. Induction of differentiation of the human histiocytic lymphoma cell line U-937 by 1 alpha,25-dihydroxycholecalciferol [J]. Cancer Res.1983;43:5862-5867.
    [63]Fleit HB, Kobasiuk CD. The human monocyte-like cell line THP-1 expresses Fc gamma RI and Fc gamma RII [J]. J Leukoc Biol.1991;49:556-565.
    [64]J Duyster, H Schwende, E Fitzke, et al. Different roles of protein kinase C-beta and-delta in arachidonic acid cascade, superoxide formation and phosphoinositide hydrolysis. Biochem J.1993,15; 292(Pt 1):203-207.
    [65]Marten A. Hoeksema, J. Lauran Stoger, et al. Molecular Pathways Regulating Macrophage Polarization:Implications for Atherosclerosis. Curr Atheroscler Rep. 2012; 14(3):254-263
    [66]Joshua T. Chai, Janet E. Digby, Neil Ruparelia, et al. Nicotinic Acid Receptor GPR109A Is Down-Regulated in Human Macrophage-Derived Foam Cells [J]. PLoS One.2013; 8(5):e62934.
    [67]E Kunisch, R Fuhrmann, A Roth, et al. Macrophage specificity of three anti-CD68 monoclonal antibodies (KP1, EBM11, and PGM1) widely used for immunohistochemistry and flow cytometry. Ann Rheum Dis.2004; 63(7): 774-784.
    [68]Aoshiba K, Tamaoki J, Nagai A. Acute cigarette smoke exposure induces apoptosis of alveolar macrophages. Am J Physiol Lung Cell Mol Physiol. 2001;281:L1392-1401.
    [69]Rangasamy T, Cho CY, Thimmulappa RK, Zhen L, Srisuma SS, Kensler TW, Yamamoto M, Petrache I, Tuder RM, Biswal S. Genetic ablation of Nrf2 enhances susceptibility to cigarette smoke-induced emphysema in mice. J Clin Invest.2004;114:1248-1259.
    [70]Fujihara M, Nagai N, Sussan TE, Biswal S, Handa JT. Chronic cigarette smoke causes oxidative damage and apoptosis to retinal pigmented epithelial cells in mice. PLoS ONE.2008;3:e3119.
    [71]Boulanger CM, Scoazec A, Ebrahimian T, et al. Circulating microparticles from patients with myocardial infarction cause endothelial dysfunction [J]. Circulation, 2001,27;104(22):2649-52.
    [72]Libby P, Ridker PM, Hansson GK. Inflammation in atherosclerosis:from pathophysiology to practice [J]. J Am Coll Cardiol.2009,1;54(23):2129-38.
    [73]Jung KH, Chu K, Lee ST, et al. Risk of macro vascular complications in type 2 diabetes mellitus:endothelial microparticle profiles [J]. Cerebrovasc Dis. 2011;31(5):485-93.
    [74]Jung KH, Chu K, Lee ST, et al. Circulating endothelial microparticles as a marker of cerebrovascular disease [J]. Ann Neurol.2009;66(2):191-9.
    [75]Qiu Q, Xiong W, Yang C, et al. Lymphocyte-derived microparticles induce bronchial epithelial cells'pro-inflammatory cytokine production and apoptosis [J]. Mol Immunol.2013;55(3-4):220-30.
    [76]Hoyer FF, Giesen MK, Nunes FC, et al. Monocytic microparticles promote atherogenesis by modulating inflammatory cells in mice [J]. J Cell Mol Med. 2012; 16(11):2777-88.
    [77]Perez-Casal M, Downey C, Cutillas-Moreno B, et al. Microparticle-associated endothelial protein C receptor and the induction of cytoprotective and anti-inflammatory effects [J]. Haematologica.2009;94(3):387-94.
    [78]Leroyer AS, Rautou PE, Silvestre JS, et al. CD40 ligand+microparticles from human atherosclerotic plaques stimulate endothelial proliferation and angiogenesis a potential mechanism for intraplaque neovascularization [J]. J Am Coll Cardiol,2008,52(16):1302-11.
    [79]刘莹,宾建平.新生滋养血管在动脉粥样斑块进展中的作用.中国动脉硬化杂志,2009,17(11):954-957.
    [80]Bernal-Mizrachi L, Jy W, Jimenez JJ, et al. High levels of circulating endothelial microparticles in patients with acute coronary syndromes [J]. Am Heart J,2003,145(06):962-70.
    [81]Taraboletti G, D'Ascenzo S, Borsotti P, et al. Shedding of the matrix metalloproteinases MMP-2, MMP-9, and MT1-MMP as membrane vesicle-associated components by endothelial cells. Am J Pathol,2002, 160(2):673-680.
    [82]Snoek-van Beurden PA, Von den Hoff JW:Zymographic techniques for the analysis of matrix metalloproteinases and their inhibitors [J]. Biotechniques 2005,38:73-83
    [83]Newby AC:Dual role of matrix metalloproteinases (matrixins) in intimal thickening and atherosclerotic plaque rupture [J]. Physiol Rev 2005,85:1-31.
    [84]Bauvois B:New facets of matrix metalloproteinases MMP-2 and MMP-9 as cell surface transducers:Outside-in signaling and relationship to tumor progression []. Biochim Biophys Acta 2011,1825:29-36.
    [85]Liu J, Sukhova GK, Sun JS, et al. Lysosomal cysteine proteases in atherosclerosis [J]. Arterioscler Thromb Vase Biol 2004,24:1359-1366
    [86]Yao H, Edirisinghe I, Yang SR, et al:Genetic ablation of NADPH oxidase enhances susceptibility to cigarette smoke-induced lung inflammation and emphysema in mice, Am J Pathol 2008,172:1222-1237
    [87]Shap PK. Plaque disruption and thrombosis:potential role of inflammation and infection[J]. Cardiol Rev,2000,24:356-359.
    [88]Schonbeck U, Mach F,. Sukhova GK, et al.Expression of Stromelysin-3 in Atherosclerotic Lesions:Regulation via CD40-CD40 Ligand Signaling In Vitro and In Vivo[J]. J Exp Med.1999 March 1; 189(5):843-853.
    [89]Tabas I, Williams KJ, Boren J.Subendothelial lipoprotein retention as the initiating process in atherosclerosis:update and therapeutic implications [J]. Circulation.2007,16;116(16):1832-44.
    [90]Lusis AJ. Atherosclerosis [J]. Nature.2000 Sep 14;407(6801):233-41.
    [91]Kockx MM, Herman AG. Apoptosis in atherosclerosis:beneficial or detrimental[J]? Cardiovasc Res.2000 Feb;45(3):736-46.
    [92]Tabas I. Consequences and therapeutic implications of macrophage apoptosis in atherosclerosis:the importance of lesion stage and phagocytic efficiency [J]. Arterioscler Thromb Vase Biol.2005 Nov;25(11):2255-64.
    [93]Morel O, Toti F, Hugel B, et al. Cellular microparticles:a disseminated storage pool of bioactive vascular effectors [J]. Curr Opin Hematol.2004,11 (3):156-64.
    [94]Lee RT, Libby P. The unstable atheroma [J]. Arterioscler Thromb Vase Biol 1997,17(10):1859-67.
    [95]Ray BK, Shakya A, Turk JR, et al. Induction of the MMP-14 gene in macrophages of the atherosclerotic plaque:role of SAF-1 in the induction process [J]. Circ Res,2004,95(11):1082-90.
    [96]Libby P. Inflammation in atherosclerosis [J]. Nature,2002,420(6917):868-74.
    [97]Johnson JL, George SJ, Newby AC, et al Divergent effects of matrix metalloproteinases 3,7,9, and 12 on atherosclerotic plaque stability in mouse brachiocephalic arteries [J]. Proc Natl Acad Sci U S A,2005,102(43): 15575-80.
    [98]Browatzki M, Larsen D, Pfeiffer CA, et al. Angiotensin II stimulates matrix metalloproteinase secretion in human vascular smooth muscle cells via nuclear factor-kappaB and activator protein 1 in a redox-sensitive manner [J]. J Vase Res. 2005;42(5):415-23.
    [99]Johnson JL, Sala-Newby GB, Ismail Y, et al. Low tissue inhibitor of metalloproteinases 3 and high matrix metalloproteinase 14 levels defines a subpopulation of highly invasive foam-cell macrophages [J]. Arterioscler Thromb Vase Biol.2008 Sep;28(9):1647-53.
    [100]d'Ortho M P, Will H, Atkinson S, et al. Membrane-type matrix metalloproteinases 1 and 2 exhibit broad-spectrum proteolytic capacities comparable to many matrix metalloproteinases [J]. Eur J Biochem,1997,250(03): 751-7.
    [101]Filippov S, Koenig GC, Chun TH, et al. MT1-matrix metalloproteinase directs arterial wall invasion and neointima formation by vascular smooth muscle cells. J Exp Med.2005 Sep 5;202(5):663-71.
    [102]Deshmukh HS, McLachlan A, Atkinson JJ, et al. Matrix metalloproteinase-14 mediates a phenotypic shift in the airways to increase mucin production [J]. Am J Respir Crit Care Med 2009,180:834-845
    [103]Loffek S, Schilling O, Franzke CW. Series "matrix metalloproteinases in lung health and disease":Biological role of matrix metalloproteinases:a critical balance[J].Eur Respir J 2011,38:191-208.
    [104]Rajavashisth TB, Xu XP, Jovinge S, Meisel S, Xu XO, Chai NN, Fishbein MC, Kaul S, Cercek B, Sharifi B, Shah PK:Membrane type 1 matrix metalloproteinase expression in human atherosclerotic plaques:evidence for activation by proinflammatory mediators, Circulation 1999,99:3103-3109
    [105]Kolodgie FD, Narula J, Burke AP, et al. Localization of apoptotic macrophages at the site of plaque rupture in sudden coronary death. Am J Pathol. 2000;157(4):1259-68.
    [106]Li CJ, Liu Y, Chen Y, et al. Novel proteolytic microvesicles released from human macrophages after exposure to tobacco smoke[J]. Am J Pathol,2013, 182(5):1552-62.
    [107]Sato H, Takino T, Okada Y, et al. A matrix metalloproteinase expressed on the surface of invasive tumour cells [J]. Nature.1994,7;370(6484):61-5.
    [108]Shuman Moss LA, Jensen-Taubman S, Stetler-Stevenson WG. Matrix metalloproteinases:changing roles in tumor progression and metastasis [J]. Am J Pathol.2012 Dec;181(6):1895-9.
    [109]Newby AC. Metalloproteinases and vulnerable atherosclerotic plaques [J]. Trends Cardiovasc Med.2007 Nov;17(8):253-8.
    [110]Muzzio ML, Miksztowicz V, Brites F, et al. Metalloproteases 2 and 9, Lp-PLA(2) and lipoprotein profile in coronary patients. Arch Med Res. 2009;40(1):48-53.
    [111]Lehti K, Lohi J, Juntunen MM, et al. Oligomerization through hemopexin and cytoplasmic domains regulates the activity and turnover of membrane-type 1 matrix metalloproteinase [J]. J Biol Chem.2002 Mar 8;277(10):8440-8.
    [112]Park JH, Park SM, Park SH, Cho KH, Lee ST:Cleavage and functional loss of human apolipoprotein E by digestion of matrix metalloproteinase-14, Proteomics 2008,8:2926-2935
    [113]Yana I, Sagara H, Takaki S,et al. Crosstalk between neovessels and mural cells directs the site-specific expression of MT1-MMP to endothelial tip cells [J]. J Cell Sci.2007 May 1;120(Pt 9):1607-14.
    [114]Chun TH, Sabeh F, Ota I, Murphy H, et al. MT1-MMP-dependent neovessel formation within the confines of the three-dimensional extracellular matrix. J Cell Biol.2004 Nov 22;167(4):757-67.
    [115]Inal JM, Ansa-Addo EA, Stratton D, et al. Microvesicles in health and disease [J]. Arch Immunol Ther Exp (Warsz).2012 Apr;60(2):107-21.
    [116]Ferreira KS, Kreutz C, Macnelly S, et al. Caspase-3 feeds back on caspase-8, Bid and XIAP in type I Fas signaling in primary mouse hepatocytes [J]. Apoptosis.2012 May;17(5):503-15.
    [117]Sun KW, Ma YY, Guan TP, et al. Oridonin induces apoptosis in gastric cancer through Apaf-1, cytochrome c and caspase-3 signaling pathway [J]. World J Gastroenterol.2012 Dec 28;18(48):7166-74.
    [118]Tiwari RL, Singh V, Barthwal MK. Macrophages:an elusive yet emerging therapeutic target of atherosclerosis. Med Res Rev.2008 Jul;28(4):483-544.
    [119]Kim L, Del Rio L, Butcher BA, et al. p38 MAPK autophosphorylation drives macrophage IL-12 production during intracellular infection [J]. J Immunol. 2005,1;174(7):4178-84.
    [120]Ispanovic E, Haas TL. JNK and PI3K differentially regulate MMP-2 and MT1-MMP mRNA and protein in response to actin cytoskeleton reorganization in endothelial cells [J]. Am J Physiol Cell Physiol 2006,291:C579-588.
    [121]Kim H, Liu X, Kohyama T, et al. Cigarette smoke stimulates MMP-1 production by human lung fibroblasts through the ERK1/2 pathway. COPD. 2004 Apr;1(1):13-23.
    [122]Itoh Y, Seiki M. MT1-MMP:an enzyme with multidimensional regulation [J]. Trends Biochem Sci.2004 Jun;29(6):285-9.
    [123]Boulanger CM, Amabile N, Tedgui A. Circulating microparticles:a potential prognostic marker for atherosclerotic vascular disease[J]. Hypertension 2006, 48:180-186
    [124]Owens AP,3rd, Mackman N:Microparticles in hemostasis and thrombosis [J]. Circ Res 2011,108:1284-1297
    [125]VanWijk MJ, VanBavel E, Sturk A, et al. Microparticles in cardiovascular diseases [J]. Cardiovasc Res.2003,1;59(2):277-87.
    [126]Klestadt D, Laval-Gilly P, Foucaud L, et al. Modification of membrane markers on THP-1 cells after ozone exposure in the presence or absence of fMLP[J]. Toxicol In Vitro 2004,18:279-283.
    [127]Sulahian TH, Imrich A, Deloid G, et al. Signaling pathways required for macrophage scavenger receptor-mediated phagocytosis[J]. analysis by scanning cytometry, Respir Res 2008,9:59.
    [128]Zhou H, Deloid G, Browning E, et al. Genome-Wide RNAi Screen in IFN-gamma-Treated Human Macrophages Identifies Genes Mediating Resistance to the Intracellular Pathogen Francisella tularensis[J]. PLoS One 2012,7:e31752
    [129]Hellermann GR, Nagy SB, Kong X, et al. Mechanism of cigarette smoke condensate-induced acute inflammatory response in human bronchial epithelial cells [J]. Respir Res.2002;3:22.
    [130]Kuo WH, Chen JH, Lin HH, et al. Induction of apoptosis in the lung tissue from rats exposed to cigarette smoke involves p38/JNK MAPK pathway [J]. Chem Biol Interact.2005;155:31-42.
    [131]Li CJ, Ning W, Matthay MA, et al. MAPK pathway mediates EGR-1-HSP70-dependent cigarette smoke-induced chemokine production [J]. Am J Physiol Lung Cell Mol Physiol.2007;292:L1297-1303.
    [132]Syed DN, Afaq F, Kweon MH, et al. Green tea polyphenol EGCG suppresses cigarette smoke condensate-induced NF-kappaB activation in normal human bronchial epithelial cells [J]. Oncogene.2007;26:673-682.
    [133]Lee YC, Chuang CY, Lee PK, et al. TRX-ASK1-JNK signaling regulation of cell density-dependent cytotoxicity in cigarette smoke-exposed human bronchial epithelial cells [J]. Am J Physiol Lung Cell Mol Physiol.2008;294:L921-931.
    [134]Birrell MA, Wong S, Catley MC, et al. Impact of tobacco-smoke on key signaling pathways in the innate immune response in lung macrophages [J]. J Cell Physiol.2008;214:27-37.
    [135]Karagiannis ED, Popel AS. A theoretical model of type I collagen proteolysis by matrix metalloproteinase (MMP) 2 and membrane type 1 MMP in the presence of tissue inhibitor of metalloproteinase 2 [J]. J Biol Chem 2004, 279:39105-39114.
    [1]Virmani R, Burke AP, Farb A, et al. Pathology of the vulnerable plaque [J]. J Am Coll Cardiol.2006,18;47(8 Suppl):C13-8.
    [2]Burke AP, Kolodgie FD, Zieske A, et al. Morphologic findings of coronary atherosclerotic plaques in diabetics:a postmortem study [J]. Arterioscler Thromb Vase Biol.2004,24(7):1266-71.
    [3]Montoro-Garcia S, Shantsila E, Marin F, et al. Circulating microparticles:new insights into the biochemical basis of microparticle release and activity [J]. Basic Res Cardiol.2011,106(6):911-23.
    [4]Wolf P. The nature and signifiance of platelet products in human plasm [J]. Br J Haematol,1967,13(3):269-288.
    [5]Furmanski P. Revealing the mechanism of tissue damage due to tobacco use: finally, a smoking gun [J]? Am J Pathol,2013,182:1489-93.
    [6]Del Conde I, Shrimpton CN, Thiagarajan P, et al. Tissue-factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation [J]. Blood.2005, 1;106(5):1604-11..
    [7]Jimenez JJ, Jy W, Mauro LM, et al. Endothelial cells release phenotypically and quantitatively distinct microparticles in activation and apoptosis [J]. Thromb Res,2003,109(4):175-180.
    [8]Dey-Hazra E, Hertel B, Kirsch T, et al. Detection of circulating microparticles by flow cytometry:influence of centrifugation, filtration of buffer, and freezing [J]. Vase Health Risk Manag.2010,6;6:1125-33.
    [9]Burnier L, Fontana P, Kwak BR, et al. Cell-derived microparticles in haemostasis and vascular medicine [J]. Thromb Haemost.2009 Mar;101(3):439-51.
    [10]Key NS. Analysis of tissue factor positive microparticles[J]. Thromb Res 2010 125 (Suppl 1):S42-45.
    [11]Li CJ, Liu Y, Chen Y, et al. Novel proteolytic microvesicles released from human macrophages after exposure to tobacco smoke[J]. Am J Pathol,2013, 182(5):1552-62.
    [12]Li M, Yu D, Williams KJ, et al. Key NS. Tobacco smoke induces the generation of procoagulant microvesicles from human monocytes/macrophages[J]. Arterioscler Thromb Vase Biol,2010,30(9):1818-24.
    [13]Zwicker JI, Liebman HA, Neuberg D, et al. Tumor-derived tissue factor-bearing microparticles are associated with venous thromboembolic events in malignancy[J]. Clin Cancer Res.2009,15;15(22):6830-40.
    [14]Blann A, Shantsila E, Shantsila A. Microparticles and arterial disease [J]. Semin Thromb Hemost.2009,35(5):488-96.
    [15]Kolowos W, Gaipl US, Sheriff A, et al. Microparticles shed from different antigen-presenting cells display an individual pattern of surface molecules and a distinct potential of allogeneic T-cell activation [J]. Scand J Immunol. 2005,61(3):226-33.
    [16]Bernimoulin M, Waters EK, Foy M, et al. Differential stimulation of monocytic cells results in distinct populations of microparticles. J Thromb Haemost.2009 Jun;7(6):1019-28.
    [17]Peterson DB, Sander T, Kaul S, et al. Comparative proteomic analysis of PAI-1 and TNF-a-derived endothelial microparticles [J]. Proteomics,2008,8:2430-46.
    [18]Liu ML, Williams KJ. Microvesicles:potential markers and mediators of endothelial dysfunction [J]. Curr Opin Endocrinol Diabetes Obes.2012, 19(2):121-7.
    [19]Dymicka-Piekarska V, Kemona H, Butkiewicz A, et al. Platelets and platelet microparticles glycoprotein Ⅱb/Ⅲa complex in patients with unstable angina [J]. Pol Merkur Lekarski,2005,18(103):9-12.
    [20]Bergmann C, Strauss L, Wieckowski E, et al. Tumor-derived microvesicles in sera of patients with head and neck cancer and their role in tumor progression [J]. Head Neck.2009,31(3):371-80.
    [21]Deregibus MC, Cantaluppi V, Calogero R, et al. Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA [J]. Blood,2007,110(7):2440-2448.
    [22]Al-Nedawi K, Meehan B, Kerbel RS, et al. Endothelial expression of autocrine VEGF upon the uptake of tumor-derived microvesicles containing oncogenic EGFR. Proc Natl Acad Sci U S A.2009,10;106(10):3794-9.
    [23]Huber LC, Jungel A, Distler HW, et al. The role of membrane lipids in the induction of macrophage apoptosis by microparticles [J]. Apoptosis, 2007,12(2):363-74.
    [24]Raturi A, Miersch S, Hudson JW, et al. Platelet microparticle-associated protein disulfide isomerase promotes platelet aggregation and inactivates insulin [J]. Biochim Biophys Acta,2008,1778(12):2790-6.
    [25]Lamping K, Faraci F.Enhanced vasoconstrictor responses in eNOS deficient mice [J]. Nitric Oxide 2003,8(4):207-13.
    [26]Yang Z, Ming XF. Recent advances in understanding endothelial dysfunction in atherosclerosis [J]. Clin Med Res.2006 Mar; 4(1):53-65.
    [27]Boulanger CM, Scoazec A, Ebrahimian T, et al. Circulating microparticles from patients with myocardial infarction cause endothelial dysfunction [J]. Circulation, 2001,27;104(22):2649-52.
    [28]Amabile N, Guerin AP, Leroyer A, et al. Circulating endothelial microparticles are associated with vascular dysfunction in patients with end-stage renal failure [J]. J Am Soc Nephrol.2005,16(11):3381-8.
    [29]Agouni A, Lagrue-Lak-Hal AH, Ducluzeau PH, et al. Endothelial dysfunction caused by circulating microparticles from patients with metabolic syndrome [J]. Am J Pathol.2008;173(4):1210-9.
    [30]Fontaine D, Pradier O, Hacquebard M, Stefanidis C, Carpentier Y, de Canniere D, Fontaine J, Berkenboom G. Oxidative stress produced by circulating microparticles in on-pump but not in off-pump coronary surgery. Acta Cardiol. 2009 Dec;64(6):715-22.
    [31]Essayagh S, Brisset AC, Terrisse AD, et al. Microparticles from apoptotic vascular smooth muscle cells induce endothelial dysfunction, a phenomenon prevented by beta3-integrin antagonists [J]. Thromb Haemost.2005;94(4):853-8.
    [32]Brodsky SV, Zhang F, Nasjletti A, et al. Endothelium-derived microparticles impair endothelial function in vitro [J]. Am J Physiol Heart Circ Physiol. 2004,286(5):H1910-5.
    [33]Martin S, Tesse A, Hugel B, et al. Shed membrane particles from T lymphocytes impair endothelial function and regulate endothelial protein expression [J]. Circulation.2004,6; 109(13):1653-9.
    [34]Jansen F, Yang X, Franklin BS, et al. High glucose condition increases NADPH oxidase activity in endothelial microparticles that promote vascular inflammation. Cardiovasc Res.2013,1;98(1):94-106.
    [35]Libby P, Ridker PM, Hansson GK. Inflammation in atherosclerosis:from pathophysiology to practice [J]. J Am Coll Cardiol.2009,1;54(23):2129-38.
    [36]Mallat Z, Benamer H, Hugel B, et al. Elevated levels of shed membrane microparticles with procoagulant potential in the peripheral circulating blood of patients with acute coronary syndromes [J]. Circulation.2000,29;101(8):841-3.
    [37]Jimenez JJ, Jy W, Mauro LM, et al. Endothelial microparticles (EMP) as vascular disease markers [J]. Adv Clin Chem.2005;39:131-57.
    [38]Jung KH, Chu K, Lee ST, et al. Risk of macrovascular complications in type 2 diabetes mellitus:endothelial microparticle profiles [J]. Cerebrovasc Dis. 2011;31(5):485-93.
    [39]Jung KH, Chu K, Lee ST, et al. Circulating endothelial microparticles as a marker of cerebrovascular disease [J]. Ann Neural.2009;66(2):191-9.
    [40]Qiu Q, Xiong W, Yang C, et al. Lymphocyte-derived microparticles induce bronchial epithelial cells'pro-inflammatory cytokine production and apoptosis [J]. Mol Immunol.2013;55(3-4):220-30.
    [41]Hoyer FF, Giesen MK, Nunes FC, et al. Monocytic microparticles promote atherogenesis by modulating inflammatory cells in mice [J]. J Cell Mol Med. 2012;16(11):2777-88.
    [42]Barry OP, Praticd D, Savani RC, et al. Modulation of monocyte-endothelial cell interactions by platelet microparticles [J]. J Clin Invest.1998,1;102(1):136-44.
    [43]Angelot F, Seilles E, Biichle S, et al. Endothelial cell-derived microparticles induce plasmacytoid dendritic cell maturation:potential implications in inflammatory diseases [J]. Haematologica.2009;94(11):1502-12.
    [44]Perez-Casal M, Downey C, Cutillas-Moreno B, et al. Microparticle-associated endothelial protein C receptor and the induction of cytoprotective and anti-inflammatory effects [J]. Haematologica.2009;94(3):387-94.
    [45]Leroyer AS, Isobe H, Leseche G, et al. Cellular origins and thrombogenic activity of microparticles isolated from human atherosclerotic plaques [J]. J Am Coll Cardiol.2007,20;49(7):772-7.
    [46]Mayr M, Grainger D, Mayr U, et al. Proteomics, metabolomics, and immunomics on microparticles derived from human atherosclerotic plaques [J]. Circ Cardiovasc Genet.2009;2(4):379-88.
    [47]Hansson GK, Hermansson A. The immune system in atherosclerosis [J]. Nat Immunol.2011;12(3):204-12.
    [48]Canault M, Leroyer AS, Peiretti F, et al. Microparticles of human atherosclerotic plaques enhance the shedding of the tumor necrosis factor-alpha converting enzyme/ADAM17 substrates, tumor necrosis factor and tumor necrosis factor receptor-1 [J]. Am J Pathol.2007;171(5):1713-23.
    [49]Huber J, Vales A, Mitulovic G, et al. Oxidized membrane vesicles and blebs from apoptotic cells contain biologically active oxidized phospholipids that induce monocyte-endothelial interactions [J]. Arterioscler Thromb Vase Biol 2002,22(01):101-7.
    [50]Freyssinet JM, Toti F, Hugel B, et al. Apoptosis in vascular disease [J]. Thromb Haemost 1999;82(2):727-735.
    [51]Di Stefano R, Felice F, Balbarini A. Angiogenesis as risk factor for plaque vulnerability [J]. Curr Pharm Des 2009,15(10):1095-106.
    [52]Lacroix R, Sabatier F, Mialhe A, et al. Activation of plasminogen into plasmin at the surface of endothelial microparticles. Blood,2007,110(7):2432-2439.
    [53]Taraboletti G, D'Ascenzo S, Borsotti P, et al. Shedding of the matrix metalloproteinases MMP-2, MMP-9, and MT1-MMP as membrane vesicle-associated components by endothelial cells. Am J Pathol,2002, 160(2):673-680.
    [54]刘莹,宾建平.新生滋养血管在动脉粥样斑块进展中的作用.中国动脉硬化杂志,2009,17(11):954-957.
    [55]Leroyer AS, Rautou PE, Silvestre JS, et al. CD40 ligand+microparticles from human atherosclerotic plaques stimulate endothelial proliferation and angiogenesis a potential mechanism for intraplaque neovascularization [J]. J Am Coll Cardiol,2008,52(16):1302-11.
    [56]Zwaal RA, Schroit AJ. Pathophysiologic implications of membrane phospholipid asymmetry in blood cells [J]. Blood,1997;89(4):1121-1132.
    [57]Taylor Jr. FB, He SE, Chang AC et al. Infusion of phospholipid vesicles amplifies the local thrombotic response to TNF and anti-protein C into a consumptive response [J]. Thromb Haemost 1996;75(4):578-584.
    [58]Sinauridze EI, Kireev DA, Popenko NY, et al. Platelet microparticle membranes have 50-to 100-fold higher procoagulant activity than activated platelets. Thromb Haemost 2007;97:425-434.
    [59]Celi A, Pellegrini G, Lorenzet R et al. P-selectin induces the expression of tissue factor on monocytes. Proc Natl Acad Sci USA 1994;91(19):8767-8771.
    [60]Mallat Z, Hugel B, Ohan J, et al. Shed membrane microparticles with procoagulant potential in human atherosclerotic plaques:a role for apoptosis in plaque thrombogenicity [J]. Circulation.1999; 99:348-353
    [61]Nieuwland R, Berckmans R J, Rotteveel-Eijkman R C, et al. Cell-derived microparticles generated in patients during cardiopulmonary bypass are highly procoagulant [J]. Circulation,1997,96(10):3534-41.
    [62]Gabel J, Westerberg M, Bengtsson A. et al. Cell salvage of cardiotomy suction blood improves the balance between pro-and anti-inflammatory cytokines after cardiac surgery [J]. Eur J Cardiothorac Surg,2013 in press.
    [63]Lee RT, Libby P. The unstable atheroma [J]. Arterioscler Thromb Vase Biol 1997,17(10):1859-67.
    [64]Ray BK, Shakya A, Turk JR, et al. Induction of the MMP-14 gene in macrophages of the atherosclerotic plaque:role of SAF-1 in the induction process [J]. Cire Res,2004,95(11):1082-90.
    [65]Galis ZS. Vulnerable plaque:the devil is in the details [J]. Circulation, 2004,110(03):244-6.
    [66]Libby P. Inflammation in atherosclerosis [J]. Nature,2002,420(6917):868-74.
    [67]Lusis AJ. Atherosclerosis [J]. Nature,2000,407(6801):233-41.
    [68]Johnson JL, George SJ, Newby AC, et al Divergent effects of matrix metalloproteinases 3,7,9, and 12 on atherosclerotic plaque stability in mouse brachiocephalic arteries [J]. Proc Natl Acad Sci U S A,2005,102(43): 15575-80.
    [69]Zeng B. Prasan A. Fung K C. et al. Elevated circulating levels of matrix metalloproteinase-9 and-2 in patients with symptomatic coronary artery disease [J]. Intern Med J,2005,35(06):331-5.
    [70]d'Ortho M P, Will H, Atkinson S, et al. Membrane-type matrix metalloproteinases 1 and 2 exhibit broad-spectrum proteolytic capacities comparable to many matrix metalloproteinases [J]. Eur J Biochem,1997,250(03): 751-7.
    [71]Schneider F, Sukhova GK, Aikawa M, et al. Matrix-metalloproteinase-14 deficiency in bone-marrow-derived cells promotes collagen accumulation in mouse atherosclerotic plaques [J]. Circulation,2008,117(07):931-9.
    [72]Ueba T, Nomura S, Inami N, et al. Plasma level of platelet-derived microparticles is associated with coronary heart disease risk score in healthy men [J]. J Atheroscler Thromb,2010,17(4):342-9.
    [73]Bernal-Mizrachi L. Jy W, Fierro C, et al. Endothelial microparticles correlate with high-risk angiographic lesions in acute coronary syndromes [J]. Int J Cardiol,2004,97(03):439-46.
    [74]Bernal-Mizrachi L, Jy W, Jimenez JJ, et al. High levels of circulating endothelial microparticles in patients with acute coronary syndromes [J]. Am Heart J,2003,145(06):962-70.
    [75]Sinning JM, Losch J,Walenta K, et al. Circulating CD31+/Annexin V+ rnicroparticles correlate with cardiovascular outcomes[J]. Eur Heart J 2011,32(16):2034-41.
    [76]Amabile N, Guerin AP, Tedgui A, et al. Predictive value of circulating endothelial microparticles for cardiovascular mortality in end-stage renal failure: a pilot study[J]. Nephrol Dial Transplant,2012,27(5):1873-80.
    [77]Nozaki T, Sugiyama S, Sugamura K, et al. Prognostic value of endothelial microparticles in patients with heart failure [J]. Eur J Heart Fail,2010,12(11): 1223-8.
    [78]Jung KH. Chu K. Lee ST. Risk of macrovascular complications in type 2 diabetes mellitus:endothelial microparticle profiles [J]. Cerebrovasc Dis, 2011,31(5):485-93.
    [79]Koga H, Sugiyama S, Kugiyama K, et al. Elevated levels of VE-cadherin-positive endothelial microparticles in patients with type 2 diabetes mellitus and coronary artery disease [J]. J Am Coll Cardiol, 2005,45(10):1622-30.
    [80]Reverter J C, Beguin S, Kessels H, et al. Inhibition of platelet-mediated, tissue factor-induced thrombin generation by the mouse/human chimeric 7E3 antibody. Potential implications for the effect of c7E3 Fab treatment on acute thrombosis and "clinical restenosis" [J]. J Clin Invest,1996,98(03):863-74.
    [81]Lee YJ, Jy W, Horstman LL, et al. Elevated platelet microparticles in transient ischemic attacks, lacunar infarcts, and multiinfarct dementias [J]. Thromb Res,1993,72(4):295-304.
    [82]Rossig L, Hoffmann J, Hugel B, et al. Vitamin C inhibits endothelial cell apoptosis in congestive heart failure [J]. Circulation,2001,104(18):2182-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700