能源植物纤维素结构对生物质降解效率的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源危机和全球气候变暖,导致人们迫切需要低成本的可再生能源。目前,木质纤维素被认为可以用来生产生物燃料。但由于生物质降解的屏障,生物质转化一直处于发展阶段。尽管人们为提高转化效率投入了大量精力,但预处理和酶解仍然是问题的关键所在。这主要是由于纤维素结晶度和木质素的交联结构所导致。因此阐明细胞壁结构以及细胞壁如何影响生物质降解转化效率,对当前发展生物质能具有重要意义。
     本研究筛选到6份芒草种质资源和3份玉米脆杆突变体,分别进行了0.25%(v/v)硫酸酸和0.5%(w/w)氢氧化钠预处理及酶解产糖测定。结果显示氢氧化钠处理后的酶解效率普遍高于硫酸。不同芒草材料的酶解效率差异较大,变化范围在8%-18%。
     细胞壁成分分析结果显示不同生物质秸秆的纤维素含量发生了显著变化,最高达50%,主要表现在晶体纤维素含量的改变。半纤维素含量和纤维素有相同变化趋势,主要表现在木糖和阿拉伯糖含量的变化,而木质素和果胶变化不明显。
     论文通过聚合度DP,分子数量和结晶度等3个指标来表征的结构,纤维素DP是晶体状纤维素DP的5-10倍,提取出的晶体纤维素摩尔数量却是总纤维素的5-10倍,说明纤维素微纤丝结构由多个结晶区和非结晶区组成。结果显示晶体纤维素的聚合度和结晶度与酶解效率呈负相关,晶体纤维素的分子数量与酶解效率成正相关。可以推测,纤维素聚合度和分子数量可能决定了细胞壁的组成和性质。
Energy crisis and globe warming have led to an intensive demand for renewable and sustainable fuels. Currently, lignocelluloses biomass is considered for conversion to liquid fuels. However, biomass conversion is still under developing because of its recalcitrance. Despite that a great effort has been made to increase the lignocelluloses conversion rate, the difficulty remains with two crucial factors:biomass pretreatment and enzymatic degradation. It is determined by properties of the cellulose crystallinity and lignin intercross linking. Therefore, understanding of plant cell wall structure and its effects on biomass conversion is scientifically important for developing biofuels in the near future.
     In terms of the experiments, I initially collected several typical energy crops including 6 miscanthus germplasm and 3 brittle culm mutants of maize. Analyzed their enzymatic degradation after 0.25%(v/v)H2SO4 and 0.5%(w/w)NaOH pretreatments.The results indicated that enzymatic sugar release from H2SO4 treated miscanthus was higher than NaOH treated. And there were significant differences among these materials, from 8% to 18%.
     The cellulose structural features were characterized as DP value, molecule number and crystallinity. The DP of crude cellulose was 5-10 time more than the crystal cellulose, and the molecule number of crystal cellulose was 5-10 time more than the crude cellulose. It means the cellulose is constructed by a series of crystal sections and amorphous sections. The results also showed that the sugar yields released by enzymatic hydrolysis were closely correlated with the cellulose content, DP value and mole number of cellulose. A significantly negative correlation was tested between cellulose crystallinity and its degradation efficiency. Thus, it was concluded that the DP and mole number of cellulose can determine the composition and property of plant cell walls to some degree.
引文
1.蒋应梯,许炯.竹纤维素分子聚合度的粘度测定法及其应用.林产化工通讯2005,39:24-27.
    2.匡廷云,马克平,白克智.生物质能研发展望.中国科学基金,2005,326-330.
    3.孙永明,袁振宏,孙振钧.中国生物质能源与生物质利用现状与展望.可再生能源2006,78-82.
    4.桑涛.能源植物新秀—芒草.生命世界2011,38-43.
    5.吴甫成,丁纪祥.芒草群丛的生态经济研究.农业现代化研究1992,36-38.
    6.王久臣,戴林,田宜水,秦世平.中国生物质能产业发展现状及趋势分析.农业工程学报2007,276-282.
    7. Aden A., Ruth M., Ibsen K., Jechura J., Neeves K., Sheehan J., Wallace B., Montague L., Slayton A., Lukas J. Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Acid Prehydrolysis for Corn Stover. National Renewable Energy NREL/TP 2002,510:32438.
    8. Adriana J.,Bernal, Cheol-Min Yoo, Marek Mutwil, Jensen Jakob Kriiger, Hou, Guichuan, Claudia Blaukopf, Iben Sarensen, Elison B. Blancaflor, Scheller4 Henrik Vibe, William, Willats G.T. Functional Analysis of the Cellulose Synthase-Like Genes CSLD1, CSLD2, and CSLD4 in Tip-Growing Arabidopsis Cells. Plant Physiology 2008,148:1238-1253
    9. Akira Kokubo Naoki Sakurai, Susumu Kuraishi, and Kazuyoshi Takeda. Culm Brittleness of Barley (Hordeum vulgare L.) Mutants Is Caused by Smaller Number of Cellulose Molecules in Cell Walll. Plant Physiology 1991,97:509-514.
    10. Anoop Sindhu, Tiffany Langewisch, Anna Olek, Dilbag S. Multani, Maureen C. McCann, Wilfred Vermerris, Nicholas C. Carpita, Johal Gurmukh. Maize Brittle stalk2 Encodes a COBRA-Like Protein Expressed in Early Organ Development But Required for Tissue Flexibility at Maturity. Plant Physiology 2007,145:1444-1459.
    11. Arioli T., Peng L., Betzner A. S., Burn J., Wittke W., Herth W., Camilleri C, Hofte H., Plazinski J., Birch R., Cork A., Glover J., Redmond J., Williamson R. E. Molecular Analysis of Cellulose Biosynthesis in Arabidopsis. Science 1998,279:717-720.
    12. Bacic, Harris, Stone. Structure and function of plant cell walls. In, The Biochemistry of Plants, Carbohydrates. Academic Press, San Diego 1988,14:297-371.
    13. Barr B.K., Hsieh Y.L., Ganem B., Wilson D.B. Identification of two functionally different classes of exocellulases. Biochemistry 1996,35:586-592.
    14. Baucher M., M.A. Bernard Vailhe, B. Chabbert J.M. Besle, C. Opsomer, M. Van Montagu, Botterman J. Down-regulation of cinnamyl alcohol dehydrogenase in transgenic alfalfa (Medicago sativa L.) and the effect on lignin composition and digestibility. Plant Mol Biol.1999,39:437-447.
    15. Baulcombe D. C. Fast forward genetics based on virus-induced gene silencing. Curr Opin Plant Biol.1999,2:109-113.
    16. Baydoun EAH, Waldron KW, Brett ET. The interaction of xylosyltransferase and glucuronyltransferase involved in glucuronoxylan synthesis in pea (Pisum-sativum) epicotyls. Biochem J.1989,257:853-858.
    17. Bayer E.A., Belaich J.P., Shoham Y., Lamed R. The cellulosomes, Multienzyme machines for degradation of plant cell wall polysaccharides. Annual Review of Microbiology 2004,58:521-554.
    18. Blanchette R.A. Delignification by Wood-Decay Fungi. Annual Review of Phytopathology 1991,29:381-403.
    19. Brett CT. Cellulose microfibrils in plants, biosynthesis, deposition, and integration into the cell wall. Int Rev Cytol.2000,199:161-199.
    20. Burton R. A., Wilson S. M., Hrmova M., Harvey A. J., Shirley N. J., Medhurst A., Stone B. A., Newbigin E. J., Bacic A., Fincher G. B. Cellulose synthase-like Cs1F genes mediate the synthesis of cell wall (1,3;1,4)-beta-D-glucans. Science 2006,311: 1940-1942.
    21. Cadoche L., Lopez G.D. Assessment of size reduction as a preliminary step in the production of ethanol form lignocellulosic wastes. Biological Wastes 1989,153-158.
    22. Carpita N. C. Update on mechanisms of plant cell wall biosynthesis, how plants make cellulose and other (1->4)-{beta}-D-glycans. Plant Physiol.2011,155:171-184.
    23. Carroll A., Somerville C. Cellulosic biofuels. Annu Rev Plant Biol.2009,60: 165-182.
    24. Chaogang Liu, Wyman Charles E. The Effect of Flow Rate of Compressed Hot Water on Xylan, Lignin, and Total Mass Removal from Corn Stover. Industrial and Engineering Chemistry Research 2003,24:5409-5416.
    25. Chapple C., Ladisch M., Meilan R. Loosening lignin's grip on biofuel production. Nat Biotechnol.2007,25:746-748.
    26. Chapple Clint, Bonawitz Nicholas. Lignin Structure and Biosynthesis. Annual Review of Genetics 2010,44:337-363.
    27. Chen F., Dixon R. A. Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 2007,25:759-761.
    28. Dai X., You C., Chen G, Li X., Zhang Q., C. Wu. OsBC1L4 encodes a COBRA-like protein that affects cellulose synthesis in rice. Plant Mol Biol.2011,75:333-345.
    29. Dalgaard T., Jorgensen U., Olesen J. E., Jensen E. S., Kristensen E. S. Looking at biofuels and bioenergy. Science 2006,312:1743-1744.
    30. De La Luz Reus Medina M., Kumar V. Comparative evaluation of powder and tableting properties of low and high degree of polymerization cellulose I and cellulose II excipients. Int J Pharm.2007,337:202-209.
    31. Demain A.L., Newcomb M., Wu J.H. Cellulase, clostridia, and ethanol. Microbiology and Molecular Biology Reviews 2005,69:124-154.
    32. Diamantopoulou L. K., Karaoglanoglou L. S., Koukios E. G. Biomass Cost Index, mapping biomass-to-biohydrogen feedstock costs by a new approach. Bioresour Technol.2011,102:2641-2650.
    33. Dias A. A., Freitas G. S., Marques G. S., Sampaio A., Fraga I. S., Rodrigues M. A., Evtuguin D. V., Bezerra R. M. Enzymatic saccharification of biologically pre-treated wheat straw with white-rot fungi. Bioresour Technol.2010,101:6045-6050.
    34. Digman M. F., Shinners K. J., Casler M. D., Dien B. S., Hatfield R. D., Jung H. J., Muck R. E., Weimer P. J. Optimizing on-farm pretreatment of perennial grasses for fuel ethanol production. Bioresour Technol.2010,101:5305-5314.
    35. Dinis M. J., Bezerra R. M., Nunes F., Dias A. A., Guedes C. V., Ferreira L. M., Cone J. W., Marques G. S., Barros A. R., Rodrigues M. A. Modification of wheat straw lignin by solid state fermentation with white-rot fungi. Bioresour Technol.2009,100: 4829-4835.
    36. Duff S.J.B., Murray W.D. Bioconversion of forest products industry waste cellulosics to fuel ethanol, A review. Bioresource Technology 1996,55:1-33.
    37. Eggeman T., Elander R. T. Process and economic analysis of pretreatment technologies. Bioresour Technol.2005,96:2019-2025.
    38. Fargione J., Hill J., Tilman D., Polasky S., Hawthorne P. Land clearing and the biofuel carbon debt. Science 2008,319:1235-1238.
    39. Fry S.C. Cellulases, hemicelluloses and auxin-stimulated growth, A possible relationship. Physiologia Plantarum 1989,75:532-536.
    40. Fu C, Mielenz J. R., Xiao X., Ge Y., Hamilton C. Y., Rodriguez M., Jr., Chen F., Foston M., Ragauskas A., Bouton J., Dixon R. A., Wang Z. Y. Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. Proc Natl Acad Sci USA 2011,108:3803-3808.
    41. Fukushima R. S., Hatfield R. D. Comparison of the acetyl bromide spectrophotometric method with other analytical lignin methods for determining lignin concentration in forage samples. J Agric Food Chem 2004,52:3713-3720.
    42. Gnansounou Edgard. Production and use of lignocellulosic bioethanol in Europe, Current situation and perspectives. Bioresource Technology 2010,101,4842-4850.
    43. Grobe A. Properties of cellulose materials. Polymer Handbook 1989,117:144-149.
    44. Hall M., Bansal P., Lee J. H., Realff M. J., Bommarius A. S. Cellulose crystallinity--a key predictor of the enzymatic hydrolysis rate. FEBS J 2010,277:1571-1582.
    45. Hayashi T. Xyloglucans in the primary cell wall. Annual Review'of Plant Physiology' and Plant Molecular Biology 1989,40:139-168.
    46. He L., Terashima N. Formation and structure of lignin in monocotyledons. III. Heterogeneity of sugarcane (Saccharum officinarum L.) lignin with respect to the composition of structural units in different morphological regions. J Wood Chem Technol 1990,4:435-459.
    47. Heaton E, Voigt T, Long SP. A quantitative review comparing the yields of two candidate C-4 perennial biomass crops in relation tonitrogen, temperature and water. Biomass and Bioenergy 2004,27:21-30.
    48. Heitz M., Capek-Menard E., Koeberle P.G., Gangne J., Chornet E. Fractionation of Populus tremuloides at the pilot plant scale, Optimization of steam pretreatment conditions using the Stake Ⅱ technology.1991,35:23-32.
    49. Helena Pala Manuel Mota, Francisco Miguel Gama Enzymatic depolymerisation of cellulose. Carbohydrate Polymers 2007,68:101-108.
    50. Himmel M. E., Ding S. Y., Johnson D. K., Adney W. S., Nimlos M. R., Brady J. W., Foust T. D. Biomass recalcitrance, engineering plants and enzymes for biofuels production. Science 2007,315:804-807.
    51. Hofte H. Plant cell biology, how to pattern a wall. Curr Biol.2010,20:450-452.
    52. Huang A. A. Enzymatic hydrolysis of cellulose to sugar. Biotechnol Bioeng Symp 1975,245-252.
    53. Hubbell C. A., Ragauskas A. J. Effect of acid-chlorite delignification on cellulose degree of polymerization. Bioresour Technol 2010,101:7410-7415.
    54. Hugo Melida, Penelope Garcia-Angulo, Ana Alonso-Simon, Antonio Encina, Jesus Alvarez, Acebes Jose Luis. Novel type Ⅱ cell wall architecture in dichlobenil habituated maize calluses, planta 2009,229:617-631.
    55. IEA2009a. Energy Balance of OECD Countries.2009, Edition 2009, OECD/IEA.
    56. Jacobsen S.E., Wyman C.E. Cellulose and hemicellulose hydrolysis models for application to current and novel pretreatment processes Applied Biochemistry and Biotechnology 1999,84:81-96.
    57. Jarvis M. C. Interconversion of the Ialpha and Ibeta crystalline forms of cellulose by bending. Carbohydr Res.2000,325:150-154.
    58. Jung H.G., and M.D. Casler. Relationship of lignin and esteri fied phenolics to fermentation of smooth bromegrass fibre. Anim Feed Sci Technol.1991,32:63-68.
    59. Jung H.G., R.R. Smith, Endres. C.S. Cell wall composition and degradability of stem tissue from lucerne divergently selected for lignin and in vitro dry-matter disappearance. Grass Forage Sci.1994,49:295-304.
    60. Jung H.G., W.T. Ni, C.C.S. Chapple, Meyer K. Impact of lignin composition on cell-wall degradability in an arabidopsis mutant. J Sci Food Agric.1999,79,922-928.
    61. Karpenstein-Machan M. Sustainable cultivation concepts for domestic energy production from biomass (Special issue on bioenergy). Critical Reviews in Plant Sciences 2001,20:1-14.
    62. Keegstra K., Talmadge K.W., Bauer W.D., Albersheim P. Thestructure of plant cell walls.III. A model of the walls of suspension-cultured sycamore cells based on the interconnections ofthe macromolecular components. Plant Physiology 1973,51: 188-196.
    63. Kikuchi A., Edashige Y., Ishii T., Satoh S. A xylogalacturonan whose level is dependent on the size of cell clusters is present in the pectin from cultured carrot cells. Planta 1996,200:369-372.
    64. Kim K. H., Tucker M. P., Nguyen Q. A. Effects of pressing lignocellulosic biomass on sugar yield in two-stage dilute-acid hydrolysis process. Biotechnol Prog.2002,18: 489-494.
    65. Kim S., Dake B E. Global potential bioethanol production from wasted crop residues Biomass and Bioenergy 2004,26:361-375.
    66. Kim T. H., Lee Y. Y. Pretreatment of corn stover by soaking in aqueous ammonia. Appl Biochem Biotechnol.2005,121-124:1119-1131.
    67. Kim T. H., Nghiem N. P., Hicks K. B. Pretreatment and fractionation of corn stover by soaking in ethanol and aqueous ammonia. Appl Biochem Biotechnol.2009,153: 171-179.
    68. Lee Y.Y., Prashant Iyer, Torget R. W. Dilute-acid hydrolysis of lignocellulosic biomass. Advances in Biochemical Engineering and Biotechnology 1999,65:93-115.
    69. Lerouxel O., Cavalier D. M., Liepman A. H., Keegstra K. Biosynthesis of plant cell wall polysaccharides-a complex process. Curr Opin Plant Biol.2006,9:621-630.
    70. Lingqiang Wang, Kai Guo, Yu Li, Yuanyuan Tu, Huizhen Hu, Bingrui Wang, Cui Xiaocan, Peng Liangcai. Expression profiling and integrative analysis reveal CESA/CSL predominant roles in cell wall biosynthesis in rice. BMC Plant Biology 2010,10:282-297.
    71. McCann M. C., Carpita N. C. Designing the deconstruction of plant cell walls. Curr Opin Plant Biol.2008,11:314-320.
    72. Mohnen D. Pectin structure and biosynthesis. Curr Opin Plant Biol 2008,11,266-277.
    73. Nakamura A., Furuta H., Maeda H., Takao T., Nagamatsu Y. Structural studies by stepwise enzymatic degradation of the main backbone of soybean soluble polysaccharides consisting of galacturonan and rhamnogalacturonan. Bioscience, Biotechnology and Biochemistry 2002,66:1301-1313.
    74. Nidetzky B., Steiner W., Hayn M., Claeyssens M. Cellulose hydrolysis by the cellulases from Trichoderma reesei, A newmodel for synergistic interaction. Biochemical Journal.1994,298:705-710.
    75. Nishiyama Y, Langan P, Chanzy H. Crystal Structure and Hydrogen-Bonding System in Cellulose Iβ from Synchrotron X-ray and Neutron Fiber Diffraction. J Am Chem Soc.2002,124:9074-9082.
    76. Nishiyama Y, Sugiyama J, Chanzy H, P. Langan. Crystal structure and hydrogen bonding system in cellulose la from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc.2003,125:14300-14306.
    77. O'Neill M. A., Ishii T., Albersheim P., Darvill A. G. Rhamnogalacturonan II, structure and function of a borate cross-linked cell wall pectic polysaccharide. Annu Rev Plant Biol.2004,55:109-139.
    78. O'Neill M., Albersheim P., Darvill A. The pectic polysaccharides of primary cell walls. Methods in Plant Biochemistry 1990,2:415-441.
    79. Ohlrogge J., Allen D., Berguson B., Dellapenna D., Shachar-Hill Y, Stymne S. Energy. Driving on biomass. Science 2009,324,1019-1020.
    80. Pauly M., Keegstra K. Plant cell wall polymers as precursors for biofuels. Curr Opin Plant Biol.2010,13:305-312.
    81. Peng L. Energy Crop and Biotechnology for Biofuel Production. JIPB Meeting Report 2011,90-92.
    82. Peng L., Hocart C. H., Redmond J.W., Williamson R. E. Fractionation of carbohydrates in Arabidopsis root cell walls shows that three radial swelling loci are specifically involved in cellulose production. Planta 2000,211:406-414.
    83. Peng L., Kawagoe Y., Hogan P., Delmer D. Sitosterol-β-glucoside as Primer for Cellulose Synthesis in Plants. Science 2002,295:147-150.
    84. Pingoud K., Cowie A., Bird N., Gustavsson L., Ruter S., Sathre R., Soimakallio S., Turk A., Woess-Gallasch S. Bioenergy, counting on incentives. Science 2010,327: 1199-1200; author reply 1200-1191.
    85. Prabuddha Bansal, Melanie Hall, Matthew J. Realff, Jay H. Lee, Bommarius Andreas S. Multivariate statistical analysis of X-ray data from cellulose, A new method to determine degree of crystallinity and predict hydrolysis rates. Bioresource Technology 2010,101:4461-4471.
    86. Price L., Bullard M., Lyons H. Identifying the yield potential of Miscanthus ×giganteus, an assessment of the spatial and temporal variability of M. ×giganteus biomass productivity across England and Wales. Biomass and Bioenergy 2004,26: 3-13.
    87. Puri V. P. Effect of crystallinity and degree of polymerization of cellulose on enzymatic saccharification. Biotechnol Bioeng.1984,26:1219-1222.
    88. Ragauskas A. J., Williams C. K., Davison B. H., Britovsek G., Cairney J., Eckert C. A., Frederick W. J., Jr., Hallett J. P., Leak D. J., Liotta C. L., Mielenz J. R., Murphy R., Templer R., Tschaplinski T. The path forward for biofuels and biomaterials. Science 2006,311:484-489.
    89. Regalbuto J. R. Engineering. Cellulosic biofuels--got gasoline? Science 2009,325, 822-824.
    90. Richard T. L. Challenges in scaling up biofuels infrastructure. Science 2010,329: 793-796.
    91. Ridley B.L., O'Neill, M.A., Mohnen D. Pectins, Structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 2001,57:929-967.
    92. Roman Brunecky, Todd B. Vinzant, Stephanie E. Porter, Bryon S. Donohoe, David K. Johnson, Himmel Michael E. Redistribution of Xylan in Maize Cell Walls During Dilute Acid Pretreatment. Biotechnology and Bioengineering 2008,102,1537-1543.
    93. Rubin E. M. Genomics of cellulosic biofuels. Nature 2008,454:841-845.
    94. Sannigrahi P., Miller S. J., Ragauskas A. J. Effects of organosolv pretreatment and enzymatic hydrolysis on cellulose structure and crystallinity in Loblolly pine. Carbohydr Res.2010,345:965-970.
    95. Scheller Henrik Vibe, Ulvskov Peter. Hemicelluloses. Annu Rev Plant Biol.2010,61: 263-289.
    96. Segal L., Creely J.J., Martin A.E., Conrad C.M. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal 1959,29:786-794.
    97. Simmons B. A., Loque D., Blanch H. W. Next-generation biomass feedstocks for biofuel production. Genome Biol.2008,9:242-248.
    98. Somerville C, Youngs H., Taylor C., Davis S. C., Long S. P. Feedstocks for lignocellulosic biofuels. Science 2010,329:790-792.
    99. Sun Y., Cheng J. Hydrolysis of lignocellulosic materials for ethanol production, a review. Bioresour Technol 2002,83:1-11.
    100.Tassinari T., Macy C., Spano L. Technology advances for continuous compression milling pretreatment of lignocellulosics for enzymatic hydrolysis. Biotechnology and Bioengineering 1982,24:1495-1491.
    101.Teymouri F., Laureano-Perez L., Alizadeh H., Dale B. E. Optimization of the ammonia fiber explosion (AFEX) treatment parameters for enzymatic hydrolysis of corn stover. Bioresour Technol 2005,96:2014-2018.
    102.Thygesen A., Oddershede J., Lilholt H., Thomsen A.B. On the determination of crystallinity and cellulose content in plan fibres. Cellulose 2005,12:563-576.
    103.Turon X., Rojas O. J., Deinhammer R. S. Enzymatic kinetics of cellulose hydrolysis, a QCM-D study. Langmuir 2008,24:3880-3887.
    104.USP.25/NF20. (United States Pharmacopeia 25/National Formulary 20). Washington, DC 2002,701:2010.
    105.Venturi P., Venturi G. Analysis of energy comparison for crops in European agricultural systems. Biomass and Bioenergy 2003,25:235-255.
    106.Wakelin J.H., Virgin H.S., Crystal E. Development and comparison of two X-ray methods for determining the crystallinity of cotton cellulose. Journal of Applied Physics 1959,30:1654-1662.
    107.Weng J. K., Li X., Bonawitz N. D., Chapple C. Emerging strategies of lignin engineering and degradation for cellulosic biofuel production. Curr Opin Biotechnol 2008,19:166-172.
    108.Wong D. W. Structure and action mechanism of ligninolytic enzymes. Appl Biochem Biotechnol.2009,157:174-209.
    109.Wyman C. E., Dale B. E., Elander R. T., Holtzapple M., Ladisch M. R., Lee Y. Y. Coordinated development of leading biomass pretreatment technologies. Bioresour Technol.2005,96:1959-1966.
    110.Xiang Q., Lee Y. Y, Torget R. W. Kinetics of glucose decomposition during dilute-acid hydrolysis of lignocellulosic biomass. Appl Biochem Biotechnol. 2004,113-116:1127-1138.
    111.Xie Guosheng, Peng Liangcai. Genetic Engineering of Energy Crops, A Strategy for Biofuel Production in China Journal of Integrative Plant Biology 2011,53:143-150.
    112.Yoshida M., Liu Y., Uchida S., Kawarada K., Ukagami Y, Ichinose H., Kaneko S., Fukuda K. Effects of cellulose crystallinity, hemicellulose, and lignin on the enzymatic hydrolysis of Miscanthus sinensis to monosaccharides. Biosci Biotechnol Biochem.2008,72:805-810.
    113.Zandleven J., Sorensen S.O., Harholt J., Beldman G., Schols H.A., Scheller H.V., Voragen A.J. Xylogalacturonan exists in cell walls from various tissues of Arabidopsis thaliana. Phytochemistry 2007,68:1219-1226.
    114.Zhang Baocai, Deng Lingwei, Qian Qian, Xiong Guangyan, Zeng Dali, Li Rui, Guo Longbiao, Li Jiayang, Zhou Yihua. A missense mutation in the transmembrane domain of CESA4 affects protein abundance in the plasma membrane and results in abnormal cell wall biosynthesis in rice. Plant Mol Biol 2009,71:509-524

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700