脂肪酶产生菌的细胞融合选育及其产酶条件优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脂肪酶(Lipase)是一种特殊的酯键水解酶,它可作用于甘油三酯的酯键,使甘油三脂降解为甘油二酯、单甘油酯、甘油和脂肪酸。脂肪酶是最早被人们研究的酶类之一,也是一种重要的工业用酶,被广泛应用于轻工领域。微生物脂肪酶被发现以来,由于其种类多,高度的底物专一性,宽范围的作用pH和温度,容易工业化生产应用等优点,选育脂肪酶高产菌株成了国内外相关研究的热点。
     本文利用化学PEG融合法使白地霉(Geotrichum candidum NS3)原生质体和假丝酵母(Candida valida T2)原生质体融合,结合抗药性标记筛选方法,成功筛选出一株产脂肪酶能力较高并且生长能力较强的融合菌株,并对融合株的固态发酵产脂肪酶条件进行初步研究。主要研究工作和结果如下:
     (1)脂肪酶双亲本菌株抗药性标记的选择。实验利用药物浓度梯度平板法和医学给药原则,选用12种药物分别对白地霉(Geotrichum candidum NS3)和假丝酵母(Candida valida T2)进行抗药性测定,成功筛选出白地霉和假丝酵母的抗药性标记。白地霉抗性而假丝酵母非抗性的药物标记为曲咪新乳膏浓度为2×103μg/ml,假丝酵母抗性而白地霉非抗性的药物标记则为硫酸铜浓度为2×103μg/ml。
     (2)双亲本菌株原生质体制备和再生条件的研究。利用单因素实验探讨影响白地霉和假丝酵母原生质体形成率和再生率的各种因素,结果表明制备原生质体的优化条件为:双亲本菌龄为对数生长中期、1.5%的纤维素酶酶解1小时、酶解温度30℃、脱壁促进剂为0.05%的半胱氨酸、渗透压稳定剂为0.7MNaCl。
     (3)双亲本原生质体融合及融合子的鉴定。利用化学PEG方法使双亲本原生质体融合,通过影印法筛选得到50株融合子。连续传代10次,获得8株性状稳定的融合子,再通过油脂同化平板法筛选得到一株融合菌株,命名为CG16。通过比较双亲本及融合子CG16的菌落表型、显微结构,以及对融合子CG16全细胞可溶性蛋白电泳分析,结果表明融合子CG16是由双亲本原生质体融合得到的新菌株。
     (4)融合子CG16固态发酵生产脂肪酶条件初步优化研究。通过单因素比较实验,对融合子CG16进行了固态发酵培养基成分和发酵培养条件的初步优化。结果表明固态发酵的优化培养基为:12g固体物质(麦麸:大豆粉=3:2),8 ml营养盐溶液(g/L:KH2PO47.07, Na2HPO422.06, MgSO4·7H2O 2.0, Na2CO3 2.0, NaNO37.07);发酵条件为:接种量为2%,30℃,初始pH7.0,培养72 h,产酶酶活达到82.22 U/g干物质,比亲本假丝酵母和白地霉的产酶活力分别提高了32%和171%。
Lipase was a special ester bond hydrolase, which can act on the ester bond of triglyceride and cause triglyceride degrade into diacylglycerol, monoglyceride, glycerol and fatty acids. Lipase was an important industrial enzyme and widely used in various industrial fields, which was one of the earliest enzymes being studied. Since the microbial lipase was discovered, screening high-yield microbial strains of lipase has become a research focus at home and abroad because of its following advantages such as diversity, highly specificity of substrate, wide range action pH and temperature, convenient to realize industrialization, easy to obtain and so on.
     In this thesis, the protoplast fusion of Geotrichum candidum NS3 protoplast and Candida valida T2 protoplast was studied by chemical PEG fusion method. In the meanwhile, the resistance of drugs was also used to screen a fusion strain with high-yield of lipase and strong growth ability. Moreover, the solid-state fermentation conditions of fusant for producing lipase were studied preliminary. The specific methods and research results are as follows:
     (1) The resistant marker was selected from the parents stains produced lipase. Twelve kinds of drugs were chosen as the sign of resistance to antibiotics of Geotrichum candidum NS3 and Candida valida T2, respectively by the method of concentration gradient and principles of medical administration. The resistant markers of the two stains were obtained. One of the medical tags is Qumixi slave at a concentration of 2×103μg/ml when Geotrichum candidum NS3 is resistance and Candida valida T2 non-resistance. The other one is CuSO4 at the concentration of 2×103μg/ml when Candida valida T2 is resistance and Geotrichum candidum NS3 is non-resistance.
     (2) The parents of the strains protoplast preparation and regeneration conditions were studied. The various factors that affect the formation rate and regeneration rate of Geotrichum candidum NS3 protoplast and Candida valida T2 protoplast were investigated by means of single factor experiment. The results showed the optimum preparation conditions for protoplasts of Candida valida T2 and Geotrichum candidum NS3 were as following:using middle exponential phase cells, the action of 1.5% cellulase enzyme at 30℃for 1 h, taking 0.05% cysteine as the reagent of promoting cell wall degradation and using 0.7M NaCl as osmotic stabilizer.
     (3) The protoplast fusion of the parents and identification of fusant. The protoplast fusion of parents strains protoplasts was studied by chemical PEG fusion method. Fifty individual fusants have been got by replica platting method, and eight individual plants were isolated from the first generation, a steady fusant was selected from the tenth generation culture, then the fusant named CG16. By comparing the colonial morphology and microstructure of the parents and fusant CG16, and the full-cell solubility protein electrophoresis, the result showed that CG16 fusant was a new strain derived from the protoplast fusion of parents.
     (4) The invesitigetion and optimization of solid-fermentation conditions of fusant CG16 have been carry out by single factor comparison experiment. The results showed that the optimal medium composition for producing lipase by fusant CG16 was:12 g solid matter (wheat bran: soybean meal=3:2),8 ml nutrient solution (g/L: KH2PO4 7.07, Na2HPO4 22.06, MgSO4·7H2O 2.0, Na2CO3 2.0, NaNO3 7.07). The lipase activity produced by CG16 reached 82.22 U/g dry matter under the fermentation conditions with 30℃, initial pH 7.0 and culture 72 h. The lipase activity of CG16 was higher 32% and 171% than that of the parent strains produced, respectively.
引文
[1]梅德清,袁银南,王忠,等.生物柴油燃料特性的研究[J].可再生能源,2004,(5):20-22
    [2]Janaun J, Ellis N. Perspectives on biodiesel as a sustainable fuel [J]. Renewable and Sustainable Energy Reviews,2010(14):1312-1320
    [3]Quick G R. "Oilseeds as Energy Crops" in Oil Crops of the World [M]. Mc Graw-Hill Publishing Co.New York 1989:118-131
    [4]章亭洲,杨立荣,朱自强.脂肪酶改性对其在有机相中催化特性的影响[J].浙江大学学报(农业与生命科学版),2001,27(3):237-243
    [5]Sarda L, Desnuelle P. Action de la lipase pancreatique sur les esters en emulsion [J]. Biochimica et Biophysica Acta,1958,30:513-521
    [6]Desnuelle P, Sarda L, Ailhaud G. Inhibition of pancreatic lipase by diethyl-p-nitrophenyl phosphate in emulation [J]. Biochimica et Biophysica Acta,1960,37(2):570-571
    [7]Norin M, Olsen O, Svendsen A, et al. Theoretical studies of Rhizomucor mieheilipase activation [J]. Protein Engineering,1993,6(8):855-863
    [8]Arai S, Nakashima K, Tanino T, et al. Production of biodiesel fuel from soybean oil catalyzed by fungus whole-cell biocatalysts in ionic liquids [J]. Enzyme and Microbial Technology,2010 (46):51-55
    [9]Angkawidjajaa C, Youa D J, Matsumura H. Crystal structure of a family 1.3 lipase from Pseudomonas sp. MIS38 In a closed conformation [J]. FEBS Letters,2007,581:5060-5064
    [10]Perret B, Mabile L, Martinez L, et al. Hepatic lipase:structure/function relationship, synthesis, and regulation [J]. Journal of Lipid Research Volume,2002,43,1163-1169
    [11]Mead J R, Irvine S A, Ramji D P, et al. Lipoprotein lipase:structure, function, regulation, and role in disease [J]. Journal of molecular medicine,2002,80(12):753-769
    [12]Cecilia G A, Carelli A A, Ferreira M L. Relation between lipase structures and their catalytic ability to hydrolyse triglycerides and phospholipids [J]. Enzyme and Microbial Technology, 2007,41(1-2):35-43
    [13]Malcata F X, Reyes H R, Garcia H S, et al. Kinetics and mechanism of reactions catalysed by immobilized lipases [J]. Enzyme Microb. Technol.,1992,14(6):426-446
    [14]陈晟,陈坚,吴敬.微生物脂肪酶的结构及功能研究进展[J].工业微生物,2009,39(5):53-58
    [15]杨学昊,尹春华,傅四周,等.根霉脂肪酶发酵条件优化和酶性质的研究[J].中国油脂,2004,29(7):29-32
    [16]董恒涛,吴晓英,刘仁春,等.粗状假丝酵母产脂肪酶催化特性及水解猪油的初步研究[J].饲料工业,2008,29(12):8-11
    [17]胡泊,吴胜,杨柳,等.嗜冷枯草芽孢杆菌低温脂肪酶纯化与酶学性质研究[J].微生物学通报,2007,34(3):524-527
    [18]Nawani N, Kaur J. Purification, characterization and thermostability of a Iipase from a thermophilic Bacillus sp. J33 [J]. Molecular and Cellular Biochemistry,2000,206(1-2): 91-96
    [19]Andersson R E, Hedlund G B, Jensson V. Thermal inactivation of a heat-resistant Iipase produced by the psychrotrophic bacterium Pseudomonas fluorescens [J]. Journal of Dairy Science,1979,62(3):361-367
    [20]Kanwar L, Goswami P. Isolation of a Pseudomonas lipase produced in pure hydrocarbon substrate and its application in the synthesis of isoamyl acetate using membrane-immobilised lipase [J]. Enzyme and Microbial Technology,2002,31(6): 727-735
    [21]Bradoo S, Saxena R K, Gupta R. Two acidothermotolerant lipases from new variants of Bacillus spp [J]. World Journal of Microbiology and Biotechnology,1999,15(1):87-91
    [22]Liu Z Q, Chi Z M, Wang L, et al. Production, purification and characterization of an extracellular lipase from Aureobasidium pullulans HM2.3 with potential application for the hydrolysis of edible oils [J]. Biochemical Engineering Journal,2008,40(3):445-451
    [23]黄建忠,施巧琴,郑毅,等.中温碱性脂肪酶的研究——Ⅱ.扩展青霉PF868变株产酶条件[J].工业微生物,1995,25(4):10-15
    [24]Niu W N, Li Z P, Zhang D W, et al. Improved thermostability and the optimum temperature of Rhizopus arrhizus lipase by directed evolution [J]. Journal of Molecular Catalysis B: Enzymatic,2006,43(1-4):33-39
    [25]肖海群,段学辉,牛春铃.粗状假丝酵母(Candida valida T2)生产脂肪酶的发酵条件[J].食品与生物技术学报,2007,26(4):62-66
    [26]欧阳军梅,段学辉,傅奇,等.聚氨酯泡沫固定产脂肪酶粗状假丝酵母(Candida validaT2)细胞的研究[J].生物加工过程,2008,6(6):52-57
    [27]刘亚男,冯娜,薛璟花,等.白地霉的化学成分研究[J].热带亚热带植物学报,2008,16(1):57-60
    [28]Boutrou R, Gueguen M. Interests in Geotrichum candiudum for cheese technology [J]. International Journal of Food Microbiology,2005,102(1):1-20
    [29]Treichel H, Oliveira D, Mazutti M A. A review on microbial lipase production [J]. Food and Bioprocess Technology,2009,3(2):182-196
    [30]Rodriguez J A, Mateos J C, Nungaray J, et al. Improving lipase production by nutrient source modification using Rhizopus homothallicus cultured in solid state fermentation [J]. Process Biochemistry,2006,41(11):2264-2269
    [31]Ikram U H, Shumaila I, Ibrahim R M. Production of lipase by Rhizopus oligosporous by solid-state fermentation [J]. Process biochemistry,2002,37(6):637-641
    [32]Mhetras N C, Bastawde K B, Gokhale D V. Purification and characterization of acidic lipase from Aspergillus niger NCIM 1207 [J]. Bioresource Technology,2009,100(3):1486-1490
    [33]Nagy V, Toke E R, Lee K C, et al. Kinetic resolutions with novel, highly enantioselective fungal lipases produced by solid state fermentation [J]. Journal of Molecular Catalysis B: Enzymatic,2006,39(1-4):141-148.
    [34]曲音波.微生物技术开发原理[M].北京:化学工业出版社,2005
    [35]刘涛.固、液态发酵生产微生物脂肪酶[J].粮食与油脂,2009(12):8
    [36]Kar T, Delvigne F, Masson M, et al. Investigation of the effect of different extracellular factors on the lipase production by Yarrowia lipolityca on the basis of a scaledown approach [J]. Journal of Industrial Microbiology and Biotechnology,2008,35(9):1053-1059
    [37]Yang X H, Wang B W, Cui F N, et al. Production of lipase by repeated batch fermentation with immobilized Rhizopus arrhizus [J]. Process Biochemistry,2005,40(6):2095-2103
    [38]Zhao W, Wang J W, Deng R Q, et al. Scale-up fermentation of recombinant Candida rugosa lipase expressed in Pichia pastoris using the GAP promoter [J]. Journal of Industrial Microbiology and Biotechnology,2008,35(3):189-195
    [39]Kim B S, Hou C T. Production of lipase by high cell density fed-batch culture of Candida cylindracea [J]. Bioprocess and Biosystems Engineering,2006,29(1):59-64
    [40]Montesinos J, Dalmau E, Casas C. Lipase production by candida rugosa [J]. Journal of Chemical Technology and Biotechnology,2003,78(1):753-761
    [41]邱立友.固态发酵工程原理及应用[M].北京:中国轻工业出版社,2008
    [42]Mahadik N D, Puntambekar U S, Bastawde K B, et al. Production of acidic lipase by Aspergillus niger in solid state fermentation [J]. Process Biochemistry,2002,38(5): 715-721
    [43]孙森,宋俊梅,张长山.固态发酵技术的研究应用现状[J].中国食品添加剂,2007(4):54-58
    [44]汪小峰,闫云君.固态发酵生产微生物脂肪酶[J].中国生物工程杂志,2009,29(1):105-110
    [45]Mateos D J, Rodriguez J A, Roussos S, et al. Lipase from the thermotolerant fungus Rhizopus homothallicusis more thermostable when produced using solid state fermentation than liquid fermentation procedures [J]. Enzyme and Microbial Technology,2006,39(5): 1042-1050
    [46]Castilho L R, Polato C M, Baruque E A, et al. Economic analysis of lipase production by Penicillium restrictum in solid-state and submerged fermentations [J].Biochemical Engineering Journal,2000,4(3):239-247
    [47]De Azeredo L A I, Gomes P M, Sant A G, et al. Production and regulation of lipase activity from Penicillium restrictum in submerged and solid-state fermentations [J]. Current Microbiology,2007,54(5):361-365
    [48]宋向阳,余世袁.生物细胞固定化技术及研究进展[J].科技进展,2000(11):37-39
    [49]Hasan F, Shah A A, Hameed A. Industrial applications of microbial lipase [J]. Enzyme and Microbial Technology,2006,39(2):235-251
    [50]Specialty and Industrial Enzymes:Market Analysis Of Biocatalysis. Mind Branch, Inc.; 2002. http://www.healthcare-information.com/R154-344.html
    [51]Jaeger K E, Dijkstra B W, Reetz M T. Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases [J]. Annu Rev Microbiol,1999,53:315-351.
    [52]Nicoll A, Lewis B. Evaluation of the roles of lipoprotein lipase and hepatic lipase in liporotein metabolism:in vivo and in vitro studies in man [J]. European Journal of Clinical Investigation,2008,10(6):487-495
    [53]Snellman E A, Sullivan E R, Colwell R R. Purification and properties of the extracellular lipase, LipA, from Acinetobacter sp.RAG-1 [J]. FEBSJ,2002,269:5771-5779
    [54]Houde A, Kademi A, Leblanc D. Lipases and their industrial applications: an overview [J]. Applied Biochemistry Biotechnology,2004,118(1-3):155-170
    [55]AU-DBC Research Centre. Applications of Lipase [EB/01]. http://www.au-kbc.org/ beta/bioproj2/uses.html
    [56]Gupta M N. Methods in non-aqueous enzymology [M]. Basel:Birkhauser Verlag,2000
    [57]Akoh C C. Lipase-catalysed synthesis of partial glyceride [J]. Biotechnology Lettters,1993, 15(9):949-954
    [58]McNeill G P, Shimizu S, Yamane T. High yield enzymatic glycerolysis of fats and oils [J]. Journal of American Oil Chemists Society,1991,68(1):1-5
    [59]Linko Y Y, Lamsa M, Wu X, et al. Biodegradable products by lipase biocatalysis [J]. Journal of Biotechnology,1998,66(1):41-50
    [60]Cortezon J. Properties of enzymes and their use in the textile industry [EB/01]. http://science.ntu.ac.uk/research/EnzyTex/EnzRepl.html.,2002-12-14
    [61]劳继红,叶圣于.碱性脂肪酶对重油滞头原料的除油研究[J].丝绸,2002(9):24-26
    [62]Gulrajani M L, Agarwal R, Grover A, et al. Degumming of silk with lipase and protease [J]. Indian Journal of Fibre and Textile Research,2000,25(1):69-74
    [63]Enzymatic modification of the surface of a polyester fiber or article [EB/01]. http://www.wipo.int,2000
    [64]Yang D J, Qiu X Q, Chen H Q. Studies on the Application of Lipase in Detergency [J]. Journal of South China University of Technology (Natural Science Edition),2002,30(1): 75-78
    [65]Willis W M, Marangoni A G. Assessment of lipase- and chemically catalyzed lipid modification strategies for the production of structured lipids [J]. Journal of the America Oil Chemists Society,1999,76(4):443-450
    [66]Macedo G A, Lozano M M S, Pastore G M. Enzymatic synthesis of short chain citronellyl esters by a new lipase from Rhizopus sp. [J]. Electronic Journal of Biotechnology,2003, 6(1):72-75
    [67]刘海洲,吴小飞,牛佰慧,等.脂肪酶在食品工业中的应用与研究进展[J].粮食加工,2008,33(5):55-57
    [68]刘晶,韩清波,张耀.乳脂酶及其对乳制品品质的影响[J].食品工业科技,2006,27(4):194-196
    [69]吴秋明,叶兴乾,吴丹,等.脂肪酶在食品工业中的应用[J].粮油加工与食品机械,2004(11):72-73
    [70]Maugard T, Rejasse B, Legoy M D. Synthesis of water-soluble retinol derivatives by enzymatic method [J]. Biotechnology Progress,2002,18(3):424-428
    [71]Annenkov G A, Klepikov N N, Martynova L P, et al. Wide range of the use of natural lipases and esterases to inhibit Mycobacterium tuberculosis [J]. Probl Tuberk Bolezn Legk,2004(6): 52-56
    [72]Kato K, Nakamura S, Sakugi T, et al. Tumor necrosis factor and its activators for the treatment of malignant tumors [J]. Japanese Patentl,1989,186:820-826
    [73]Ville E, Carriere F, Renou C, et al. Physiological study of pH stability and sensitivity to pepsin of human gastric lipase [J]. Digestion,2002,65(2):73-81
    [74]周丽清,李炜煊.胰蛋白酶原-2与淀粉酶、脂肪酶联合检测在急性胰腺炎诊疗中的临床研究[J].国际医药卫生导报,2004,10(8):61-62
    [75]谈重芳,王雁萍,陈林海,等.微生物脂肪酶在工业中的应用及研究进展[J].食品工业科技,2006,27(7):193-195
    [76]于红,傅英娟,汤镇江.脂肪酶对混合办公废纸脱墨的研究[J].纤维素科学与技术,2002,10(4):49-52
    [77]岑沛霖,蔡谨.工业微生物学[M].北京:化学工业出版社,2000
    [78]Pronk J T. Auxotrophic yeast strains in fundamental and applied research [J]. Applied and Environmental Microbiology,2002,68(5):2095-2100
    [79]刘玲,叶博,刘长江.原生质体融合亲本菌株抗药性标记的筛选[J].江苏农业科学,2007(3):225-227
    [80]龙建友,唐世荣,吴文君.原生质体融合技术对秦岭霉素产量提高的影响[J].中国农业科学,2007,40(7):1416-1421
    [81]李灿明,黄时海,张云开,等.灭活原生质体融合技术提高豆鼓纤溶酶菌产酶量[J].食品工业科技,2009,30(8):140-142
    [82]Dillon A J P, Camassola M, Henriques J A P, et al. Generation of recombinants strains to celluslase production by protoplast fusion between Penicillium echinulatum and Trichoderma harzianum [J]. Enzyme and Microbial Technology,2008,43(6):403-409
    [83]谭珍连,梁静娟,庞宗文,等.原生质体紫外诱变选育白地霉GXU08脂肪酶高产菌株[J].生物技术,2007,17(2):42-44
    [84]赵志强,郑小林,张思杰,等.细胞融合技术[J].生物学通报,2005,40(10):40-41
    [85]Kao K N, Michayluk M R. A method for high-frequency inter generic fusion of plant protoplasts [J]. Planta,1974,115(4):355-367
    [86]Zimmermann U, Pillwat G. Sixth international biophysics congress [C]. Kyoto,1978, IV-19(H):140
    [87]王春平,韦强,鲍国连.微生物原生质体融合技术研究进展[J].动物医学研究进展,2008,29(5):64-67
    [88]王登宇,臧威,孙剑秋,等.细菌原生质体融合育种技术及其应用进展[J].中国酿造,2008(7):1-6
    [89]朱振华,胡欣荣,陈五岭,等.He-Ne激光在异种间原生质体融合中的应用[J].光子学报,2007,36(1):144-147
    [90]Stromberg A, Karlsson A, Ryttsen F, et al. Microfluidic device for combinatorial fusion of liposomes and cells [J]. Anal Chem,2001,73(1):126-130
    [91]Skelley A M, Kirak O, Suh H Y, et al. Microfluidic control of cell pairing and fusion [J]. Nature Methods,2009,6(2):147-152
    [92]Lee S W, Choi J H, Kim Y K. Analysis and experimental investigation of dielectrophoretic force in a planar electrode structure [J]. Journal of Micromechanics and Microengineering, 1996,6(1):66-68
    [93]孙剑秋,周东坡.微生物原生质体技术[J].生物学通报,2002,37(7):9-11
    [94]辛明秀,马玉娥.微生物的原生质体融合及应用[J].微生物学通报,1995,22(6):365-370
    [95]甘志波.微生物原生质体融合:问题与对策[J].微生物学杂志,1996,16(1):46-51
    [96]Mahadik N D, Bastawde K B, Puntambekar U S, et al. Production of acidic lipase by a mutant of Aspergillus niger NCIM 1207 in submerged fermentation [J]. Process Biochemistry,2004,39(12):2031-2034
    [97]夏葵,曾虹燕,姜和,等.诱变选育脂肪酶高产菌株及其脂肪酶固定化[J].中国生物工程杂志,2009,29(5):88-94
    [98]Seo H S, Kim S E, Han K Y, et al. Functional fusion mutant of Candida anrarctica lipase B(CalB) expressed in Escherishia coli [J]. Biochimica et Biophysica Acta (BBA)-Proteins & Proteomics 2009,1794(3):519-523
    [99]张庆庆,晋青波,危勤涛.原生质体紫外诱变脂肪酶高产菌株[J].2008,29(4):155-157
    [100]单志文.应用原生质体技术筛选高产耐碱性的脂肪酶菌株的实验[D].杭州,浙江工业大学:2001,5
    [101]吴克,刘斌,蔡敬民,等.Rhizopus sp. PW358菌脂肪酶固态发酵生产[J].生物学杂志,2002,19(5):14-16
    [102]B·施特尔马赫.酶的测定方法[M].北京:中国轻工业出版社,1992
    [103]Watanabe N, Yasuhide O A, Yasuji M. Isolation and identification of alkaline lipase-producing microorganisims, cultural conditions and some properties of crude enzyme [J]. Agricultural and Biological Chemistry,1997,41(8):1353-1358
    [104]郭勇.酶工程[M].北京:中国轻工业出版社,1994:317-319
    [105]林树梅.白地霉2.498与白腐真菌5.776原生质体融合[D].沈阳:沈阳农业大学,2004,6
    [106]张释文,王美欢.硫酸铜对稻瘟病菌的抑制效果研究[J].广东农业科学,2008(9):77-79
    [107]简卫东.曲咪新乳膏治疗小儿含珠菌皮炎112例疗效观察[J].中国现代医药应用,2008,2(15):59
    [108]杨桂霞.硝酸咪康唑栓联合氟康唑治疗外阴阴道假丝酵母菌病疗效观察[J].山西医药杂志,2007,37(5):437-438
    [109]余碧娥,方丽.复方醋酸曲安奈德治疗慢性瘙痒性皮肤病临床观察[J].上海医药,2001,24(11):694-696
    [110]陈冬纯,周传云.根霉、酵母原生质体的制备与融合探讨[J].现代食品科技,2006,22(1):26-29
    [111]刘青,刘长江,朱凤妹.克鲁丝假丝酵母原生质体形成与再生条件的研究[J].沈阳农业大学学报,2002,33(5):374-376
    [112]施巧琴,吴松刚.工业微生物育种学(第二版)[M].北京:科学出版社,2003
    [113]Zhang Y, Lin S M., Zhu Y J, et al. Protoplast fusion between Geotrichum candidium and Phanerochaete chrysosporium to produce fusants for corn stover fermentation [J]. Biotechnology Letters,2006,28(17):1351-1359
    [114]杜木英,陈娟,阚建全.青稞酒曲酿酒酵母与假丝酵母原生质体形成与再生条件的研究[J].食品科学,2007,28(9):378-383
    [115]Mala J G, Edwinoliver N G, Kamini N R, et al. Mixed substrate solid state fermentation for production and extraction of lipase from Aspergillus niger MTCC 2594 [J]. The Journal General and Applied Microbiology,2007,53(4):247-253
    [116]Alkan H, Baysal Z, Uyar F, et al. Production of lipase by a newly isolated Bacillus coagulans under solid-state fermentation using melon wastes [J]. Applied Biochemistry and Biotechnology,2007,136(2):183-192
    [117]Rodriguez J A, Mateos J C, Nungaray J, et al. Improving lipase production by nutrient source modification using Rhizopus homothallicus cultured in solid state fermentation Process Biochemistry,2006,41(11):2264-2269

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700