辣椒疫病生防ASD菌株筛选及对土壤微生态调控机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
辣椒疫病(Phytophthora capsici)是保护地辣椒生产上造成产量损失极大的土传病害。由于连作、大水漫灌和化学药剂频繁使用,常导致保护地土壤中该病菌菌源积累增大、农药污染加重,微生态环境易遭到破坏。目前生产上缺少生防菌剂产品,缺乏有效的生物防治措施。本文以辽宁省辣椒疫病为研究对象,开展了辣椒疫霉病菌遗传多样性、生防菌和微生态调控研究,取得如下结果:
     1.通过形态学和rDNA-ITS同源性分析表明,来源于辽宁省不同地区辣椒疫病病菌形态学相似,菌丝多为直角或锐角分枝,孢子囊梗无色、丝状,孢子囊单孢、卵圆形或梨形,乳突单生;病菌rDNA-ITS序列805-877bp。聚类分析表明,辽宁省不同地区的辣椒疫病菌表现出较高的同源性,无区域性差异。
     2.通过SRAP技术对病菌遗传多样性分析表明,不同地区辣椒疫病病菌的群体遗传相似性很高,具出丰富的多态性,但区域性差异不明显;致病力测定表明,辽宁省辣椒疫病菌存在11种致病力类型,主要以中等致病力为主,致病力增强风险较大。辣椒疫病菌致病力与遗传相似性无明显相关性。
     3.采用平板稀释法分离辣椒生产田56份土样,对获得的微生物进行对峙抑菌试验,得到对辣椒疫病菌有明显的拮抗作用的ASD菌株,其抑菌带达11.7mm。盆栽试验防治效果可达75.12%,优于80%代森锰锌可湿性粉剂300mg/L、50%烯酰吗啉水分散粒剂20mg/L。
     4.形态学及分子鉴定结果表明,ASD菌株在PDA培养基上菌落丝绒状,菌丝初为白色至土黄色,偶有透明液渗出。分生孢子顶囊为辐射形,分生孢子球形,有小梗及链状排列的分生孢子;测定ASD菌株rDNA-ITS序列为621bp,与黄柄曲霉序列相似度达97%,确认ASD菌株为黄柄曲霉菌(Aspergillus flavipes)。
     5.控病机理研究表明,生防菌ASD菌株可产生抑菌物质,可致病菌菌丝畸形,抑制病菌生长。加入疫病菌丝可诱导CMC酶活性、木聚糖酶活性显著提高,且随着底物浓度的增加酶活性升高,抑制疫病菌生长的主要因素是诱导产生的CMC酶、木聚糖酶,而与B-1,3葡聚糖酶和蛋白酶关系不大。
     6.发酵条件优化结果表明,诱导ASD菌产生抑菌物质由高到低的碳源顺序为单糖、双糖和多糖,最佳碳源为葡萄糖;有机氮明显优于无机氮,最佳有机氮和无机氮分别为甘氨酸、硝酸铵;KCl、MgSO4·7H2O、FeSO4等盐类在低浓度下有利于抑菌物质产生结合正交试验确定生防菌ASD菌株产生抑菌物质的环境最佳发酵配方及条件是2%葡萄糖、0.1%甘氨酸、0.003%FeSO4、0.01%KCl、0.01%MgSO4·7H20,pH6,180rpm,30℃下,装液量30mL/100mL,培养5d。
     7.微生态区系分析表明,采集不同地块不同年限病株与健株的根际土壤细菌、放线菌及真菌数量变化规律不明显。同一地块健株根际土壤细菌与放线菌数量比病株多,而真菌数量比病株少;病株土壤较健株土壤的细菌/真菌、放线菌/真菌、细菌/放线菌值高。
     8.经对分离出的土壤优势微生物形态学观察、生理生化试验及16srDNA序列分析,鉴定出芽孢杆菌7种,占全部细菌种类43.75%;土壤放线菌17株。B33、B40、B22和B44菌株只鉴定到属,有待与进一步鉴定。
     9.ASD菌株对土壤微生态区系影响研究表明,施用生防菌后,健株与病株根际土壤中细菌和放线菌数量均有所减少,真菌数量增加。随着生防菌ASD菌株定殖时间增加,健株根际土壤细菌数量逐渐增加,病株根际土壤细菌数量基本不变,而健株和病株土壤放线菌数量变化不大,健株和病株土壤真菌数量逐渐下降。
     10.对土壤酶影响研究表明,施用生防菌ASD菌株后,健株与病株根际土壤脲酶活性、酸性磷酸酶活性、蔗糖酶活性及脱氢酶活性均有不同程度的提高,只有过氧化氢酶活性提高不显著;随着生防菌ASD菌病定殖时间增加,不同酶活性变化趋势基本一致,即增加后下降,但均高于对照;施用ASD菌株后影响各种土壤酶活性大小的顺序依次为脲酶、脱氢酶、蔗糖酶、酸性磷酸酶和过氧化氢酶,可以改良土壤环境。
Phytophthora capsici Leonian is one of soil borne diseases, which is prevalently occur and seriously reduce pepper yield in conservation field. As a result of continuously cropping, flood irrigation and chemical abuse, the accumulation of pathogen source is increasing, the problem of pesticide pollution is aggravating and the micro ecology environment is liable to be broken. At present, the production of biocontrol agent is scarce and the effective biocontrol technology is absent. In the present study, the researches on genetic polymorphism, biocontrol strain and micro ecology biocontrol are carried out for pepper Phytophthora blight. The results are as follows:
     1. The analysis of morphology and rDNA-ITS homology for Phytophthora capsici showed:the various strains collected from different regions of Liaoning province are similar on the configuration. Most of mycelial branches are right or acute angle. The sporangiophore is colorless and filamentous. The sporangium is single, ovoid or pyriform, and the mastoid is single. The sequences of rDNA-ITS change from805bp to877bp. Clustering analysis show that those strains collected from different regions are obvious homology, and there are not regional characteristics.
     2. Using Sequence Related Amplified Polymorphism (SRAP) technology, the genetic polymorphism of Phytophthora capsici Leonian collected from different regions of Liaoning province is evaluated. The results show that the genetic similarity of Phytophthora capsici Leonian is very high and the strains have abundant polymorphism, while the regional diversity is not significant. The pathogenicity determination show that these strains are divided11pathogenic types, which of the intermediate type is primary. There are not significant correlations between the genetic similarity and pathogenicity.
     3. Fifty-six samples collected from different fields are separated by plate dilution method. The ASD strain is screened and has significant resistant to Phytophthora capsici Leonian by bacteriostatic test. The width of inhibition zone is11.7mm. The control efficiency of ASD strain reaches to75.12%against Phytophthora capsici in pot experiment, which is better than80%WP Mancozeb300mg/L and50%alkene acyl complexes of water dispersible granules20mg/L
     4. The morphology and molecular determinations show that the ASD strain is velvet on PDA medium. The early myceliums vary from white to khaki, occasionally exude transparent liquid. The conidium is spherical, having small stems and arraying as catenulate type, which of top sporangium is radiate. The rDNA-ITS sequence of ASD strain is621bp, which of97%is similar to Aspergillus flavipes. According to the above result, the ASD strain is determined as Aspergillus flavipes.
     5. The study of resistance mechanism shows that the biological control ASD strain can produce antibacterial substances, which can cause mycelia abnormality and inhibit the pathogen growth. The activities of CMC and xylem enzymes are significant improved by the biological control ASD. With the increase of substrate concentration, the enzyme activities are improved. The main factors inhibiting the growth of Phytophthora are CMC and xylanase enzymes, while there is little relation with β-1,3glucanase and protease.
     6. The results of optimizing fermentation condition show that the order of carbon source induced ASD strain to produce antibacterial substances is monosaccharide, disaccharides and polysaccharides. The glucose is the most optimize carbon source. The organic nitrogen is significantly superior to the inorganic nitrogen. The best organic and inorganic nitrogen are glycine and ammonium nitrate, respectively. KCl, MgSO4·7H2O, FeSO4are benefit to produce the antibacterial substances when the concentrations are low. Combining with orthogonal test, the optimal condition is2%Glucose,0.1%Glycine,0.003%FeSO4,0.01%KCl, MgSO4·7H2O, pH6,180rpm,30℃, the Volume30mL/100mL, culturing for5days.
     7. The analysis of micro ecological system shows that the varieties of numbers of bacteria, actinomycetes and fungus are not significant, which collected from capsicum rooting zone soil of the healthy and infected plants in different regions and various years,. The numbers of bacteria and actinomycetes in capsicum rooting zone soil of healthy plant are more than those in rooting zone soil of infected plants, while the number of fungus is lower. The scales of bacteria/actinomycetes, fungus/actinomycetes and bacteria/fungus in rooting zone soil of infected plants are higher than those in rooting zone soil of healthy plants.
     8. By the morphological observation, physiological and biochemical test and16s rDNA sequence analysis, seven types of dominent bacillus are identified, which is43.75%of total bacteria. There are17soil funguses. The strains of B33、B40、B22and B44are only determined to genus level. The further study should be carried out in the future.
     9. Research on the effect of micro ecological system in soil, the results show that the biocontrol strain ASD could significantly reduce the quantity of the bacteria and actinomycetes, and increase the number of the fungi in capsicum rooting zone soil of the healthy and infected plants. With the colonization time increase of the biocontrol strain ASD, the number of the bacteria is gradually increased in capsicum rooting zone soil of healthy plants, while it is not changed in the capsicum rooting zone soil of infected plants. The number of the actinomycetes is not changed in capsicum rooting zone soil of the healthy and infected plants, while the number of the fungi is gradually reduced.
     10. Research on the effect of soil enzyme, the activities of urease, acid phosphatase, sucrose enzyme and dehydrogenase are significantly increased by the biocontrol strain ASD in capsicum rooting zone soil of the healthy and infected plants, while the activity of catalase is not significant increased. With the colonization time increase of the biocontrol strain ASD, the activities of various enzymes are higher than the control and their variation trends are very similar, which firstly increased and decreased afterward. The responses of soil enzyme activities affected by the biocontrol strain ASD from high to low are as follows:urease, dehydrogenase, sucrose enzyme, acid phosphatase and catalase. The results showed that the biocontrol strain ASD could improve the micro ecological systems in soil.
引文
1.阿里玛斯,黄丽丽,涂璇,等.2007.内生放线菌gCLA4对辣椒疫病的防治研究.西北农林学报,16(5):256-261.
    2.蔡晓剑,杨希鹃,陈占全.2011.青海温室辣椒疫病生防菌应用技术研究.安徽农业科学,39(19):11489-11491
    3.蔡燕飞,廖宗文,董春,等.2002.番茄青枯病的土壤微生态防治研究.农业环境保护,21(5):417-420.
    4. 蔡燕飞,廖宗文.2002.土壤微生物生态学研究方法进展.土壤与环境,11(2):167-171.
    5. 陈慧,郝慧荣,熊君,等.2007.地黄连作对根际微生物区系及土壤酶活性的影响.应用生态学报,1802):2755-2759.
    6. 陈强龙,谷洁,高华等.2009.秸杆还田对土壤脱氢酶和多酚氧化酶活性动态变化的影响.干旱地区农业研究,27(4):147-151.
    7. 陈庆和,翁启勇,谢世勇,等.2004.福建省致病疫霉交配型分布及对甲霜灵的抗药性.植物保护学报,31(2):151-156.
    8.董艳,董坤,鲁耀,等.2009.设施栽培对土壤化学性质及微生物区系的影响.云南农业大学学报,24(3):418-424.
    9. 杜晓华,巩振辉,李大伟.2005.辣椒抗疫病的遗传与育种.西北农业学报,14(1):30-36.
    10.段学辉,冷桂华,曾文兵,等.2004.紫黑吸水链霉菌Streptomyces Violaceoniger-hygroscopicus发酵代谢产物对儿种常见果蔬病原菌的拮抗活性.江西农业大学学报,26(2):266-269
    11.冯东昕,李宝栋.1999.辣椒疫病病原菌及抗病育种研究进展.中国蔬菜,2:48-52.
    12.冯永君,宋未.2001.植物内生细菌.自然杂志,23(5):249-253.
    13.高克祥,王淑红,刘晓光,等.1999.木霉菌株T88对7种病原真菌的拮抗作用,14(2):160-163.
    14.郭明,张小萍,曹玉.2001.3种杀虫剂对土壤磷酸酶活性的影响.西北农林科技大学学报,29(4):69-72.
    15.郭志英,薛泉宏,张晓鹿,等.2008.生防菌苗床接种对辣椒根域微生态及产量的影响.西北农林科技大学学报,36(4):159-160.
    16.何红,思鑫,蔡学清,等.2004.辣椒内生细菌BS-1和BS-2在植物体内的定殖及鉴定.微生物学报,1:13-18.
    17.何康,刘瑞龙.主编.中国农业百科全书.植物病理学卷.农业出版社.1996.12.
    18.何允波,唐丽平,张宝国.2004.辣椒疫病菌的抗药性和新药的筛选研究.吉林农业科学,29(3):26-29.
    19.何欣,郝文雅,杨兴明,等.2010.生物有机肥对香蕉植株生长和香蕉枯萎病防治的研究.植物营养与肥料学报,16(4):978-985.
    20.何延静,刘海明,胡洪波,等.2006.一株拮抗辣椒疫霉的假单胞菌的分离与鉴定.微生物学报,46(4):516-521.
    21.胡可,王利宾,王永富.2011.生物有机肥的发展与展望.山西农业科学,39(12):1334-1336.
    22.康白.2002.微生态发展的历史轨迹.中国微生态学杂志,14(6):311-314.
    23.孔华忠.1995.云南省可培养丝孢真菌资源的调查研究Ⅱ.生物多样性,3(15):15-20.
    24.孔维栋,朱永官,傅伯杰,等.2004.农业土壤微生物基因与群落多样性研究进展.生态学报,24(12):2894-2900.
    25.兰海,段光斌,胡细荒.2008.辣椒疫霉菌研究概况.湖北植保,1:16-17.
    26.李宝聚,王莉,陈捷.2005.植物病害微生态防治研究.北方园艺,6:89-91.
    27.李春格,李晓鸣,王敬国.2006.大豆连作对土体和根际微生物群落功能的影响.生态学报,26(4):1 144-1 150.
    28.李东坡,武志杰,陈利军,等.2005.长期定位培肥黑土土壤蔗糖酶活性动态变化及其影响因素.中国农业生态学报,13(2):102-105.
    29.李琼芳.不同连作年限麦冬根际微生物区系动态研究.2006.土壤通报,37(3):563-565.
    30.李淑彬,王军,杨劲松,等.2001.抗真菌抗生素179M产生菌的分离鉴定和生理特性研究.菌物系统,2001,20(3):362-367.
    31.李淑彬,周仁超,钟英长.2002.金属离子对黄柄曲霉生长和抗真菌抗生素合成的影响.微生物学通报,29(3):20-24.
    32.李淑彬,王军,钟英长.2003.多轮复合诱变选育抗真菌抗生素高产菌株及其发酵条件研究.广西科学,10(2):135-138.
    33.李毅,王国平,张克诚.2005.拮抗放线茵LJ50和MJ52的分离与初步鉴定.湖南农业大学学报,31(3):310-313.
    34.李智军,龙卫平,郑锦荣,等.2007.广东辣椒疫霉菌分离鉴定及其致病力和生理小种分化研究.华南农业大学学报,28(1):50-54.
    35.连玲丽,谢荔岩,陈锦明,等.2011.生防菌EN5的定殖能力及其对根际土壤微生物类群的影响.植物保护,37(2):31-35.
    36.刘乐涛,曹远银,肖淑芹.2008.辣椒疫病拮抗菌的筛选及其防治效果研究.沈阳农业大学学报,39(3):313-317.
    37.刘建国,张伟,李彦斌,等.2009.新疆绿洲棉花长期连作对土壤理化性状与土壤酶活性的影响.中国农业科学,42(2):725-733.
    38.刘建华,杨宇红,卢鉴植.1998.辣椒种质资源对疫霉的抗病性鉴定研究.湖南农业科学,3:30-31.
    39.刘任,卢兆金.2003.哈茨木霉T2菌株对辣椒土传真菌病害的控制作用[J].仲恺农业技术学院学报,16(1):16-11.
    40.刘永刚,张海英,郭建国,等.2008.甘肃省辣椒疫霉菌的交配型分布及其致病力差异.植物保护学报,35(5):448-452.
    41.路鹏鹏,沈卫荣,韩丽萍,等.2011.陕西设施蔬菜根结线虫生防菌株JXC224的分离筛选.广东农业科学,19:78-80.
    42.马俊才,赵玉峰,王大耗,等.1992.中国微生物资源数据库(MRDC).微生物学通报,19(4):193-196.
    43.马俊才,赵玉峰,王大耗,等.1990.中国微生物资源数据库细菌性状子库的数据结构与检索功能设计.微生物学通报,17(4):210-214.
    44.马艳,常志州,朱万宝,等.2004.拮抗真菌F-310对辣椒疫霉菌的抗生活性及防效.江苏农业学报,20(3):180-183.
    45.马艳,常志州,赵江涛,等.2006.一株疫病拮抗青霉P.st10菌株的抗菌活性及其对辣椒疫病的盆栽防效.中国生物防治,22(3):239-243.
    46.梅新兰,赵青云,谭石勇,等.2010.辣椒疫病拮抗菌株筛选、鉴定及其防效.应用生态学报,21(10)2652-2658.
    47.戚仁德,丁建成,顾江涛,等.2002.辣椒疫霉致病力分化的初步研究.植物保护学报,29(2):189-190.
    48.戚仁德,汪涛,李萍,等.2012.安徽省辣椒疫霉交配型的分布及在无性后代的遗传.植物病理学报,42(1):45-50.
    49.齐祖同,孔华忠,孙曾美.1997.中国真菌志第五卷曲霉属及其相关有性型.北京科学出版社.1-198.
    50.秦国政,田世平,刘海波,等.2003.拮抗菌与病原菌处理对采后桃果实多酚氧化酶、过氧化物酶及苯丙氨酸解氨酶的诱导.中国农业科学,36(1):89-93.
    51.邱思鑫,何红,阮宏椿,等.2004.内生芽孢杆菌TB2防治辣椒疫病效果及其机理初探.植物病理学报,34(2):173-179.
    52.任华中,沈火林.1996.辣椒抗疫病遗传与育种研究进展.中国农业大学学报,1(3):71-76.
    53.任天志,Stefano G.2000.持续农业中的土壤生物指标研究.中国农业科学,33(1):68-75.
    54.商瑞,曾会才,毛家.2008.农用抗生素分离纯化的研究进展.广东农业科学,2:124-127.
    55.沈崇尧,王有琪,田林,等.1990.甘肃省辣椒疫病病原菌鉴定及生物学特性研究.云南农业大学学报,5(2):71-78.
    56.司美茹,薛泉宏,余博,等.2005.36株生防菌对辣椒疫病等4种病原真菌的拮抗作用研究.西北农林科技大学学报,33(1):49-54.
    57.宋晓霞,张亚玉,王英平,等.2008.人参与西洋参土壤脲酶活性对比研究.特产研究,30(2):33-35
    58.孙海新,刘训理.2004.茶树根际微生物研究.生态学报,24(7):1353-1357.
    59.孙文秀,张修国,贾永健,等.2005.不同地区辣椒疫霉菌遗传多样性的RAPD分析.植物病理学报,35(4):340-344.
    60.孙秀山,封海胜,万书波,等.2001.连作花生田主要微生物类群与土壤酶活性变化及其交互作用.作物学报,27(5):617-621.
    61.谭悠久,彭讳,黄永春.2011.土壤放线菌的选择性分离及其代谢产物抗菌活性评价.植物保护,37(1):120-123.
    62.涂璇,薛泉宏,张宁燕,等.2007.辣椒疫病生防放线菌筛选及其对辣椒根系微生物区系的影响.西北农林科技大学,35(6):141-146.
    63.王得元,李颖,王恒明.2006.抗疫病辣椒新品种福康2号.园艺学报,33(3):691.
    64.王光华,周克善,张秋生,等.2003.拮抗细菌BRF-1对几种植物病原真菌的抗生效果.中国生物防治,19(2):73-77.
    65.王麟.2008.海洋酵母菌种资源库的建立及特殊类型海洋酵母菌的多样性研究.中国海洋大学博土论文.
    66.王益民,唐文华.1998.几丁质酶基因和β-1,3葡聚糖酶基因的克隆及双价基因在枯草芽孢杆菌B-908中的表达.植物病理学报,03:423-426.
    67.吴金水,林启美.2006.土壤微生物生物量测定方法及其应用.北京.气象出版社.
    68.武华国.2000.辣椒疫病病原特征特性、病害循环及其防治措施.湖南农业科学,(5):35-36.
    69.肖烨,易图永,魏林,等.2007.木霉菌对几种植物病原菌的拮抗作用.湖南农业大学学报(自然科学版),33(1):72-75.
    70.徐刘平,郭坚华.2007.生防菌NJ02防治辣椒疫霉病效果及对辣椒根围微生物群落的影响.江苏农业科学,1:59-62.
    71.薛超,黄启为,凌宁,等.2011.连作土壤微生物区系分析、调控及高通量研究方法.土壤学报,48(3):612-618.
    72.闫淑珍,刘维红,方洁.2005.小单孢菌E2菌株对辣椒疫霉的抑制及抗菌物质的初步测定.植物保护学报,32(4):383-386.
    73.颜艳伟,张红,刘露.1995.连作花生田根际土壤优势微生物的分离和鉴定.微生物学报,51(6):835-842.
    74.严占勇,肖崇刚,易龙,等.2005.防治辣椒疫病的芽孢菌株的筛选及其抑菌效果的测定.中国蔬菜,6:18-20.
    75.燕嗣皇,吴石平,陆德清,等.2005.木霉生防茵对根际微生物的影响与互作.西南农业学报,18(1):40-46.
    76.杨明英,曹继芬,李向东,等.2009.云南辣椒疫病的分子诊断及其病原茵群体特征研究.植物病理学报,39(3):297-303.
    77.杨永华,姚健,华晓梅.2000.农药污染对土壤微生物群落功能多样性的影响.微生物学杂志,20(2):23-25.
    78.姚栗,李辉,程池.2006.23株曲霉属菌种的形态学复核鉴定研究.食品与发酵工业,32(12):37-43.
    79.易龙,肖崇刚,张迎芳,等.2009.辣椒疫病拮抗放线菌的筛选及防治试验初报.中国蔬菜,12:28-32.
    80.易图永,谢丙炎,张宝玺,等.2002.辣椒疫病防治研究进展.中国蔬菜,5:52-55.
    81.尹敬芳,张文华,李健强,等.2007.辣椒疫病生防茵的筛选及其抑菌机制初探.植物病理学报,37(1):88-94.
    82.尹淑丽,麻耀华,张丽萍,等.2012.不同生防茵对黄瓜根际土壤微生物数量及土壤酶活性的影响.北方园艺,01:10-14.
    83.余建新,韩春茂.2002.益生菌的作用机制及临床应用前景.中国微生态学杂志,14(6):371-372.
    84.张慧,杨兴明,冉炜.2008.土传棉花黄萎病拮抗菌的筛选及其生物效应.土壤学报,45(6):1095-1101.
    85.张政兵,高必达,程毅,等.2007.辣椒疫霉菌的致病力研究.现代农业科技,8:40-42.
    86.张卓,张松柏,彭静,等.2011.辣椒疫病生防菌的初步筛选.辣椒杂志,4:38-40.
    87.曾凡正,高阳,李进伟,等.2012.花生油生物精炼法去除黄曲霉毒素的研究.中国油脂,37(1):6-10.
    88.郑小波,陆家云.1990.华东、东北地区疫霉种的分布及交配型.南京农业大学学报,13(3):61—64.
    89.郑小波.疫霉菌及其研究技术.北京:中国农业出版社,1997.
    90.周培,黄锦法,陆贻通.2002.微生态制剂SC27对作物生长和土壤环境的影响.上海交通大学学 报,20(4):332-336.
    91.周永强,薛泉宏,杨斌,等.2008.西北农林科技大学学报,36(4):143-150.
    92. Ahmed, A.S., Perez-Sanche,z C.1999. Evaluation of Trichoderma harzianum for controlling root rot caused by Phytophthora capsicum in pepper plants. Plant Pathology,48(1):58-65.
    93. Anith, K., Radhakrishnan, N.V.2003. Screening of antagonistic bacteria for biological control of nursery wilt of black pepper (Piper nigrum). Microbiogical Research,158 (2):87-91.
    94. Anitha, K.N., Radhakrishnana, N.V., Manomohandasa, T.P.,2003. Screening of antagonistic bacteria for biological control of nursery wilt of black pepper (Piper nigrum). Microbiological Research,158(2): 91-97.
    95. Baker, K.F.1987. Evolving concepts of biological control of plant pathogens. Annual Review of Phytopatholigy,25:67-85.
    96. Bacon, C.W., Yates, I.E., Hinton, D.M., et al.2001. Biological control of Fusarium moniliforme in maize. Environmental Health Perspectives,109:325-332.
    97. Bai, Y., D'aoust, F., Smith, et al.2002. Isolation of plant-growth-promoting Bacillus strains from soybean root nodules. Canadian Journal of Microbiology,48(3):230-238.
    98. Baker, K.F.1987. Evolving concepts of biological control of plant pathogens. Annu. Rev. Phytopathol, 25:67-85.
    99. Bano, N., Musarrat, J.2003. Characterization of a new Pseudomonas strain NJ-15 as a potential biocontrol agent. Curr Mierobiol,6:324-328.
    100. Berka, R.M., Dunn-coleman, N., Ward, H.1992. Industrial enzymes from Aspergillus Species. Boston, 155-202.
    101. Celine, J., Francois, V., Claude, A., et al.2007. Soil health through soil disease suppression:Which strategy from descriptors to indicators. Soil Biology & Biochemistry,39:1-23.
    102. de Cal, A., Sagasta, E.M., Melgarejo P.1988. Antifungal substance produced by Penicillium frequents and their relationship to the biocontrol of Monilinia laxa. Phytopathology,78(7):888-893.
    103.de Cal, A., Pascual S., Melgarejo P.1997. Rapid laboratory method for assessing the biological control potential of Penicillium oxalicum against Fusarium wilt of tomato. Plant Pathology,46:699-707.
    104.de Cal, A., Garcia-Lepe, R., Pascual, S.1999. Effects of timing and method of application of Penicillium oxalicum on efficacy and duration of control of Fusarium wilt of tomato. Plant Pathoogy,48: 260-266.
    105. Dusabenyagasani M., Dostatler, D., Hamelin, R.C.1999. Genetic diversity among Fusarium gramineanm strains from Ontario and Quebec. Canadian Journal of Plant Pathology,21:308-314.
    106. Fang, J.G., Tsao, P.H.1995. Efficacy of Penicillium funiculosum as a biological agent gainst Phytophthora root rots of azalea and citrus. Phytopathology,85(8):871-878.
    107. Forster, H., Adaskaveg. J.E., Kim, D.H.1998. Effect of Pliospliite on tomoto and pepper plants and on snsceptibiliy of pepper to Phytophthora root and crown rotin hiydroponic culture. Plant Disease,82(10): 1165-1170.Fry, W.E., Goodwin, S.B., Matuszak, J.M., Spielman, L.J., Milgroom, M.G., Drenth, A.1992. Population genetics and intercontinental migrations of phytophthora infestans. Annal Review Haytopathol, 30:107-29.
    108. Gevens, A.J., Donahoo, R.S., Lamour, K.H., et al.2008. Characterization of Phytophthora capsici causing foliar and pod blight of snap bean in Michigan. Plant Disease,92(2):201-209.
    109. Gil, J.J.2005. Production of an anti-fungal substance for biological control of Phytophthora capsici causing Phytophthora blight in red-pepper by Streptomyces halstedil. Biotechnology Letters,27(3): 201-205.
    110. Glosier, B.R., Ogundiwin, E.A., Sidhu, G.S., et al.2008. A differential series of pepper (Capsicum annuum) lines delineates fourteen physiological races of phytophthora capsici. Euphytica,162(1):23-30.
    111. Gravel, V., Martinez, C., Antoun, H., et al.2006. Control of green house tomato root rot [Pythium ultimun] in hydroponic systems, using plant-growth-promoting microorganisms. Canadian Journal of Plant Pathology,28:475-483.
    112. Hamel C,Vujanovic V,Jeannotte R, et al.Negative feedback on a perennial crop:fusarium crown and root rot of asparagus is related to changes in soil microbial community structure[J].Plant and Soil,2005,268(1):75-87.
    113.Harman, G.E.2004. Trichoderma species-opportunistic, avirulent plant symbionts. Nature Riviews Microbiology,2:43-56.
    114. Hord, M.T., Ristaino, J.B.1991. Effects of physical and chemical factors on the germination of oospores of Phytophthora capsici in vitro. Phytopathology,81(12):1541-1546.
    115. Jackinson, D.S., Ladd, J.N.1981. Microbial biomass in soil:measurement and turnover. In:Paul E.A., Ladd J.N. eds. Soil Biochemistry, New York:Marcel Dekker INC.,4145-471.
    116. Jacobson, C.B., Pastemak, J.J., Glick, B.R.1994. Partial purification and characterization of 1-aminocyclopropane-l-carboxylate deaminase from the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Canadian Journal of Microbiology,40(12):1019-1025.
    117. Joo, G.J.2005. Production of an anti-fungal substance for biological control of Phytophthora capsici causing phytophthora blight in red-peppers by Streptomyces halstedii. Biotechnology Letter, 27(3):201-205.
    118. Kaare, J., Carsten, S.J., Vigdis, T., et al.2001. Pesticide effects on bacterial diversity in agricultural soils-a review. Biology and Fertility of Soil,33(6):443-453.
    119. Kennedy, A.C., Smith, K.L.1995. Microbial diversity and sustainability of agricultural soils. Plant Soil,23(2):69-79.
    120. Kexiang, G., Xiaoguang, L., Yonghong, L.2002. Potential of T. harzianum and T. atroviride to control Botryosphaeria berengeriana f. sp. Piricola, the cause of apple ring rot. Journal of Phytopathology, 150(4-5):271-276.
    121. Kim, B., Lee, J.Y., Hwang, B.K.2000. In vovi control and in virtro antifungal activity of rhamnolipid B a glycolipid antibiotic,against Phytophthora capsici and Colletotrichum orbiculare. Pest Management Science,56(12):1029-1035.
    122. Kim, E.S., Hwang, K.1992. Virulence to Korea pepper cultivars of Phytophthora capsici from different geographic areas. Plant Disease,76:486-489.
    123. Kimble, K.A., Grogan, R.G.1960. Resistance to Phytophthora root rot in pepper. Plant Disease Reporter,44:872-873.
    124. Klich M.A.2002. Identification of common Aspergillus species. Netherlands:Ponsen & Looijen,5-10.
    125. Koenig, R.L., Ploetz, R.C., Kistler, H.C.1997. Fusarium oxysporum f. sp. cubense consists of a small number of divergent and globally distributed clonal lineages. Phytopathohogy,87(9):915-923.
    126. Lamour, K.H., Hausbeck, M.K.2000. Mefenoxam insensitivity and the sexual atage of Phytophthora capsici in Michigan cucurbit fields[J].Phytopathology,2000,90(4):396-400.
    127. Larena, I., Melgarejo, P., de Cal, A.2002. Production, survival, and evaluation of solid-substrate inoculate of Penicillium oxalium, a biocontrol agent against Fusarium wilt of tomato. Phytopathology, 92(8):863-869.
    128. Lee, J.Y., Hwang, B.K.2002. Diversity of antifungal actinomycetes in various vegetative soils of Korea. Canadian Journal of Microbiology,48(5):407-417.
    129. Lee, J.Y., Moon, S.S., Hwang, B.K.2003. Isolation and in vitro and in vivo activity against Phytophthora capdici and Volletoteichum orbiculare of phenazine-1-caroxylic acid from Pseudomonas aeruginosa strain GC-B26. Pest Management Science,59:872-882.
    130. Leonian, L.H.1922. Stem and fruit blight of Peppers caused by Phytophthora capsici sp. Nov. Phytopathology,12(9):401-408.
    131. Levy, M., Romao, J., Marchetti, M., et al.1991. DNA finger-printing with a dispersed repeated sequence resolves pathotype diversity in the rice blast fungus.Plant Cell,3(1):95-102.
    132. Maguson, M., Craford, D.I.1992. Comparison of extraeellular peroxidase and esterase-deficient mutants of Streptomyces viridosporus T7A. Applied Environmental Microbiology,8:1070-1072.
    133. McDonald, B.A., Martinez, J.P.1990. Restriction fragment length polymophism in Septoria tritici occur at a high frequency. Current Genetics,17(2):133-138.
    134. Milkova, L., Vitanov, M., Daskalov, D.1988. Phytostop- a new cultivar resistant to Phytophthora capsicl.Capsicum Newletter,7:62.
    135. Miller, J.S.,Johnson, D.A.2000. Competitive fitness of Phytophthora infestans isolates under semiarid field conditions. Phytopathology,90(3):220-227.
    136. Neilands, J.B.1995. Siderophores:Structure and function of microbial iron compounds. J. Biol. Chem.,270(45):26723-26726.
    137. Nishiyama, M., Shiomi, Y., Suzuki, S., et al.1999. Suppression of growth of Ralstonia solanacearum, tomato bacterial wilt agent, on/in tomato seedlings cultivated in a suppressive soil. Soil Science Plant Nutrition,45(1):79-87.
    138. Okamoto, H., Sato, M., Sato, Z., et al.1998. Biocontrol of Phytophthora capsici by Serratia marcescens F-1-1 and analysis of biocontrol mechanisms using transposon-insertion mutants. Annals of the Phytopatholocial Society of Japan,64(4):28-295.
    139. O'Sullivan, D.J., O'Gara, F.1992. Traits of fluorescent Pseudomonas spp.involved in suppression of plant root pathogen. Microbiological Review,56(4):662-676.
    140. Pan, Ch.M., Guo, Q.R.2000. An effect of VAM fungus on the growth of core and micro-ecological environment of core rhizosphere. Soil and Environmental Sciences,9(4):304-306.
    141.Parra, G., Ristaino, J.B.2001. Resistance to mefenoxam and metalaxyl among field isolates of Phytophthora capsici causing Phytophthora blight of bell pepper.Plant Disease,85(10):1069-1075.
    142. Pitt, J.I., Hocking. A.D.1997.Fungi and Food Spoilage.London, U.K.,13-19.
    143. Rajkumar, M., Lee, W.H., Lee, K.J.2005. Screening of bacterial antagonists for biological control of Phytophthora blight of pepper. Journal of Basic Microbiology,45(1):55-63.
    144. Raper, K.B., Fennell, D.I.1965. The Genus Aspergillus.Baltimore:Williams & Wilkins,7-9.
    145. Roehr, M., Kubicek, C.P., Kominek, J.1992. Industrial acids and other small molecules. Boston, Butterworth-Heinemann,91-131.
    146. Rong, X., William, S.K.1998. Fluorescent pseudomonad pyoverdines bind and oxidize ferrous ion. Appl Environ Microbiol,64(4):1472-1476.
    147. Scher, F.M.1988. Colonization of soybean root by Psendomonas and Serratia spesies:relationship to bacteria motility, chemotaxis and generation time. Phytopathology,78:1055-1059.
    148. Sid, A., Ezziyyani, M., Egea-Gilabert, C., et al.2003. Selecting bacterial strains for use in the biocontrol of diseases caused by Phytophthora capsici and Alternaria alternata in Sweet Pepper Plants, 47(4):569-574.
    149. Silveira, E.B., Mariano, R.L., Michereff, S.J., et al.1995. Antagomism of Bacillus spp. against Pseudomonas solanacerum and effect on tomato seedling growth. Fit Pathologia Brasileira,20(4):605-612.
    150. Simoes, D.C.M., McNeil, D., Kristiansen, B., et al.1997. Purification and partial characterization of a 1.57 kDa therm ostable esterase from Bacillus stearothermophilus. FEMS Microbiology Letters,147: 151-156.
    151. Smith, P.G., Kimbel, K.A., G-rogan, R.G.1967. Inheritance of resistance in pepper to Phytophthora root rot. Phytopathology,57:377-379. 152. Sriprasertsak, P.1999. Expression of the chimeric pea pSPAL2 promoter in transgenic tobacco in response to fungal ingress and injury. Ann. of the Phytopathological Socity of Japan,65(2):123-130.
    153. Tang, W.H.1996. Advances in biological control of plant diseases:proceeding of the international workshop on biological control of plant diseases.Beijing:China Agricultural University Press.
    154. Timothy, P., Brian, N.T., Pascale, G., et al.2000. A novel antifungal furanone from Pseudomonas aureofaciens, a biological agent of fungal plant pathogens..J. Chem. Ecol,26(6):1515-1524.
    155. Tran, H., Kruijt, M., Raijmakers, J.M.2008. Diversity and activity of biosurfactant-producing Pseudomonas in the rhizosphere of black pepper in Vietnam. Journal of Applied Microbiology,104(3): 839-851.
    156. Tyler, J.A., Valerie, G., Hani, A., et al.2008. Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biology and Biochemistry,40(7):1733-1740.
    157. Van, P.R., Niemann, G.J.1991. Schippers B. Induced resistance and Phytoalexin accumulation in biological control of Fusarium wilt of Carnation by Pseudomonas sp. strain WCS417r. Phytopathology,81: 728-734.
    158. Vazquez, M.M., Cesar, S., Azeon, R., et al.2000. Interactions between arbucular mycorrhizal fungi and other microbial inoculants (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population and enzyme activites in the rhizosphere of maize plants. Applied Soil Ecology,15:261-272.
    159. Walker, S.J., Bosland, P.W.1999. Inheritance of Phytopbthora root rot and foliar blight resistance in pepper. Journal of American Science for Horticultural Science,124(1):14-18.
    160. Weller, D.M.1998. Biological control of soil-borne plant pathogens in the rhizosphere with bacteria. Annual Review of Phytopathology,26:397-407.
    161. Whipps, J.M.2000. Microbial interactions and biocontrol in the rhizosphere. Journal of Experimental Botany,52:487-511.
    162. Whipps, J.M.2004. Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Canadian Journal of Botany,82:1198-1227.
    163. Weid I.D., Paiva E., Nobrega A.2000. Diversity of Paenibacillus polymyxa strains isolated from the rhizosphere of maize planted in Cerrado soil. Research in Microbiology,151:369-381.
    164. Zenova, G.M., Zvyagintsev, D.G.2000. Actinomycetes of the genus Micromonospora in meadow ecosystems. Microbiology,71(5):570-574.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700