表面大孔型粘胶基活性碳纤维的制备及致孔机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
课题研究成功制备了一种具有较高强度的粘胶基活性碳纤维。具体研究了以下内容:
     (1)制备了具有一定强度的大孔活性碳纤维。首先,分别采用粘胶基预氧化丝和粘胶基碳纤维为原料,经浓度为0.1mol/L的NaCl和H_3PO_4混合溶液浸渍预处理后,分别在700℃、800℃、900℃以及1000℃采用物理-化学活化法,用水蒸气活化制备出了表面富含大孔的活性碳纤维,发现活化温度对粘胶基活性碳纤维成孔及得率、密度、表面截面形貌、比表面积、纤维拉伸强度等性能具有极大的影响,随着活化温度升高,得率、密度及拉伸强度呈下降趋势,而纤维表面大孔数量、比表面积及含氧基团比例则逐渐升高。其中在900℃活化所得的活性碳纤维,表面大孔分布、比表面积、孔径分布以及强度等综合性能优于其他温度段制备出的样品。并且,采用粘胶基碳纤维制备出的活性碳纤维强度要高于粘胶基预氧化丝活化所得的样品。同时我们还探讨了不同盐溶液对孔成形的影响。发现经浓度为0.1mol/L的NaH_2PO_4溶液浸渍预处理后所制备出的活性碳纤维表面大孔的形状及大小分布较均匀,纤维表面大孔沿纤维的径向排列,而且其比表面积比经Na_2HPO_4或Na_3PO_4处理获得的活性碳纤维高,但强度要比后两者略低。
     (2)探讨了活性碳纤维表面大孔产生的机理。通过FTIR、XPS、TGA、XRD、SEM等多种分析手段,我们发现加入的浸渍预处理剂发挥了类似催化剂作用,即引入催化活性点,并增加了其结构的不均匀性。浸渍预处理剂也增加了活化中心数目,而活化中心正是碳纤维和气化剂反应时的场所。因此浸渍预处理是表面大孔出现的关键。此外,活性碳纤维表面大孔的出现还受温度及其原料结构等因素控制。
     (3)建立了活性碳纤维孔结构的模型。根据活性碳纤维表面及截面形貌图,发现活化过程是沿纤维径向由表及里进行的,由此提出了一种新型活性碳纤维的结构模型,即表面活性碳纤维-芯部碳纤维的结构。
     本研究工作在推进表面型大孔活性碳纤维的研究、指导大孔型活性碳纤维的生产和扩大其应用范围等方面具有一定指导作用。
Macroporous rayon-based activated carbon fibers(RACF) with high strength were successfully developed.The details are as follows:
     (1) Macroporous activated carbon fibers with high strength were developed by employing different materials and pretreatment conditions.Firstly,rayon-based oxidized fiber and rayon-based carbon fibers were respectively pretreated by impregnation mix solution with 0.1mol/L sodium chloride(NaCl) and phosphoric acid(H_3PO_4).Then,the treated fibers were activated by water vapor at 800,900 and 1000℃respectively.We found that activation temperature impacted on the structure and properties of RACF,e.g. yield,density,surface and cross-section topography,specific surface area and fiber tensile strength.The yield,density and fiber tensile strength have obvious descend trends,whereas the numbers of macropores on fiber sufaces,specific surface area and oxygen-containing groups ratio have ascend trends with the increase of activation temperature.Compared with samples at other activation temperatures,the samples activated at 900℃have best comprehensive properties,in terms of macropore size distribution,specific surface area and strength.Moreover,the strength of activated carbon fiber developed by rayon-based carbon fiber was higher than that by rayon-based oxidized fibers.We also discussed the effects of different impregnation solutions such as NaH_2PO_4,Na_2HPO_4 and Na_3PO_4 on the resulting RACF.We found that RACF treated by NaH_2PO_4 possessed macropores with uniform distribution along the fiber axis.And compared to those RACFs treated by Na_2HPO_4 or Na_3PO_4,RACF treated by NaH_2PO_4 exhibited higher specific surface area,but a little poorer tensile strength.
     (2) We discussed the mechanism of macropore development on surfaces of RACF by using FTIR, XPS,TGA,XRD and SEM.We found that the introduction of impregnation solutions can introduce catalytically active points and the number of activation centers,thus enhance the structural irregularity. These activation centers can provide places for the reactions between carbon fibers and gasification agents. It can be concluded that the introduction of impregnation solutions is the key for the macropore emergence on RACF.Moreover,both the pore numbers and sizes could be controlled by the concentration of the solutions.In addition,the emergence of macropores on RACF surfaces was affected by other factors such as temperature and the structure of raw materials.
     (3) We proposed a model for macroporous RACF.According to RACF's surfacial and cross-sectional topography,activation process develops along the radial of the fibers,namely from the surface to the inside. RACFs produced in this study contain the microstructure of activated carbon fiber in skin and that of carbon fibers in core.
引文
[1]Suzuki M,Activated carbon fiber:fundamentals and applications,Carbon,1994,32:577-586.
    [2]Brasquet C,Cloirec Le P,Adsorption onto activated carbon fibers:Applications to water and air treatment,Carbon,1997,35:1307-1313.
    [3]Pelekani C,Snoeyink V L,Competitive adsorption in natural water:role of activated carbon pore size,Water Research,1999,5(33):1209-1219.
    [4]立本英机,立部郁夫,活性碳的应用技术,东南大学出版社,2002,56.
    [5]Rodriguez R F,Molina S M,Gonzalez M T,Carbon,Studies of the oxidation mechanism of sulphur-containing gases on wet activated carbon fibre,1995,33(1):15
    [6]Ryu S K,Jin H,Gondy D,Porous structure of polyarylamide-based activated carbon fibres,Carbon,1993,31:841.
    [7]Wigmans T,Industrial aspects of production and use of activated carbons,Carbon,1989,27:13.
    [8]张引枝,樊彦贞,贺福,添加剂种类对活性炭纤维中孔结构的影响,碳素技术,1997,(4):11.
    [9]黄正宏等.KOH活化与CO_2活化的ACF结构,碳素,2005,(1):23.
    [10]王艳飞,二次碳化、二次活化对活性碳纤维结构的影响,化工新型材料,2007,35(7):62.
    [11]张双全,罗雪岭,用复合添加剂调变活性炭孔隙制备中孔活性炭,中国矿业大学学报,2007,36(4):35.
    [12]陈东生,李永贵,中孔活性碳纤维研究,高科技纤维与应用,1999,24(2):18.
    [13]Qiao W M,Sun Y,Modification of commercial activated carbon through gasifcation by impregnated metal salts to develop mesoporous structures,New carbon materials,2005,20(3):199.
    [14]许景文,炭素纤维与活性炭纤维,离子交换与吸附,1991,7(1):56-65.
    [15]戴星,朱本松,活化工艺对活性炭纤维结构的影响,北京服装学院学报(自然科学版),2002,22(2):11.
    [16]Kuhl,Rodriguez R F,Molina S M,Gonzalez M T,The use of steam and CO_2 as activating agents in the preparation of activated carbons.Carbon,1995,33(1):15-23.
    [17]Ryu S K,Jin H,Gondy D,Activation of carbon fibres by steam and carbon dioxide,Carbon,1993,31(5):841-842.
    [18]Yiannis A.,Richard C,Synthesis formation and characterization of micron-sized glassy carbon spheres of controlled pore structure,Carbon,1989,7(2):265-283.
    [19]张引枝,樊彦贞,贺福,王茂章,张碧江,炭黑添加剂对活性炭纤维中孔率的影响,炭素技术,1997,(6):5-11.
    [20]马建标,李晨曦,功能高分子材料,北京化学工业出版社,2000.
    [21]Gregg S J,Sing K S,Adsorption,Surface Area and Porosity,Academic Press 1982(second-edition).
    [22]Freeman J J,Gimblett,Studies of activated charcoal cloth.Ⅴ.Modification of pore structure by impregnation with certain transition metal salts and oxo-complexes,Carbon,1989,27(1):7
    [23]Boer J H,Heuve A,Linsen B G,Studies on pore systems in catalysts Ⅳ.The two causes of reversible hysteresis.Journal of Catalysis,1964,3(3):268-273.
    [24]Boer J G,Linsen H B.Studies on pore systems in catalysts:Ⅶ.Description of the pore dimensions of carbon blacks by the t method,Journal of Catalysis,1965,4(6):649-653.
    [25]Linsen B G,Boer de J H,Studies on pore systems in catalysts:Ⅵ.The universal t curve,Journal of Catalysis,1965,4319
    [26]Barrett E P,Joyner L G,Amer J,Assessment of the porosity of solids from thermogravimetry and nitrogen adsorption data,Chemical Science,1951,73:373
    [27]Dubinin M M.Physical adsorption of gases and vapors in micropores.In:Cadenhead DA,Danielli J F,Rosenberg M D(Eds.),Progress in Surface and Membrance Science,Academic Press,1975,1-70.
    [28]Mark P C,Characterization of gas phase adsorption capacity of untreated and chemically activated carboncloths,Urbana,Illinois,USA:University of Illinois at Urbana-Champaign.1995.
    [29]李国希,活性碳纤维微孔结构分析方法,新型碳材料,2001,16(1):76-79.
    [30]Ravikovitch P I,Hailer G L,Neimark A V.Density functional theory model for calculating poresize distributions:pore structure of nanoporous catalysts,Advances in Colloid and Interface Science,1998,76:203-226.
    [31]Dombrowski R J,Hyduke D R,Lastoskie C M.,Poresize analysis of activated carbons from argon and nitrogen porosimetry using density functional theory,Langmuir,2000,16:5041-5050.
    [32]Lastoskie C,Gubbins K E,Quirke N,Pore size distribution analysis of microporous carbons:a density functional theory approach,The Journal of Physical Chemistry,1993,97(8):4876-4796.
    [33]王启芬,PAN纤维的结构对纤维强度的影响,智能材料,2006,(5):37-39
    [34]Merraoui M,Aoshima M,Kaneko K,Microporesize distribution of activated carbon fiber using the density functional theory and other methods,Langmuir,2000,16:4300-4304.
    [35]Economy J,Daley M,Hippo E J,Tandon D,Elucidating the pore structure of activated carbon fibers through direct imaging using scanning tunneling microscopy(STM),Carbon,1995,33(3):344.
    [36]Huang Q,Huang Y Q,Pan D,A study on the surface structures of viscose-based activated carbon fiber by FTIR spectro-scopy and XPS,Journal of Donghua University,2004,21(1):57-62.
    [37]曾凡龙,潘鼎,粘胶活性碳纤维预浸剂的热分解作用及效能评选,材料科学与工程学报,2004,(5):5-9.
    [38]乔志军,李家俊,赵乃勤,高温热处理对活性碳纤维微孔及表面性能的影响,新型碳材料,2004,19(1):53-56.
    [39]Chen Y H,Wu Q L,Rayon-based activated carbon fibers treated with both alkali metal salt and Lewis acid,Microporous and Mesoporous Materials,2008,109(1-3):138-146.
    [40]张利波,彭金辉等,磷酸活化烟草杆制备中孔活性碳的研究,化学工业与工程技术,2006,27(2): 1-5.
    [41]贺福,碳纤维及其应用技术,北京,化学工业出版社,2004,(11),61-64
    [42]符若文,方明锋,汤丽鸳等,磷酸活化粘胶基活性破纤维的生产,炭素技术,2001(5):10
    [43]Tandon D,Economy J,Hippo E J,Elucidating the porous structure of activated carbon fibers using direct and indirect methods,Carbon,1996,34(10):1191.
    [44]唐龙贵,赵书经,碳化温度对聚丙烯晴基碳纤维结构与性能的影响,西北纺织工学院学报,1992,(3):58-62.
    [45]Zhang L,Yu S J,Feng H M,PVA-based activated carbon fibers with lotus root-like axially porous structure,Carbon,2006,44(10):2059-2068.
    [46]Bale H D,Schmidt P W,Small-Angle X-Ray-Scattering Investigation of Submicroscopic Porosity with Fractal Properties,Physical Review Letters,1984,53(6):596.
    [47]Miyamoto J I.,Kanoh H,Kaneko K,The addition of mesoporosity to activated carbon fibers by a simple reactivation process.Carbon,2005,43(4):855-857.
    [48]Phan N H,Rio S,Faur C,Le Coq L,Le Cloirec P,Nguyen TH.Production of fibrous activated carbons from natural cellulose(jute,coconut) fibers for water treatment applications,Carbon,2006,44(12):2569-2577.
    [49]Kim B J,Park S J,A study on pore-opening behaviors of graphite nanofibers by a chemical activation process,Colloid and Interface Science,2007,306(454).
    [50]Carrasco M,Influence of relative humidity on the photocatalytic oxidation(PCO) of toluene by TiO2loaded on activated carbon fibers:PCO rate and intermediates accumulation.Applied Catalysis B:Environmental,2008,79(2):171-178.
    [51]Toles,Lee J C,Pore formation in carbon-coated ceramic fiber filter media.Colloids and Surfaces A:Physicochemical and Engineering Aspects,2004,241(1-3):185-190.
    [52]陈糅,方智利,刘中华,万荣惠,用磷酸活化褐煤制备活性炭,煤炭科学技术,2004,32(11):55-58
    [53]Solum M S,Pugmire R J,Jagtoyen M,Derbyshire F,Evolurion of Carbon Structure in Chemically Activated Wood,Carbon,1995,33(9):1247-1254.
    [54]Marit J,Frank D,Some considerations of the origins of porosity in carbons from chemically activated wood.Carbon,1993,31(7):1185-1192.
    [55]Marit J,Frank D,Activated carbons from yellow poplar and white oak by H_3PO_4 activation,Carbon,1998,36(7-8):1085-1097.
    [56]刘玉新,颗粒材料孔结构形态的测量和表征,中国粉体技术,2000,6(4):21-23.
    [57]Toks C.Rimmera S,Hower J C,Production of activated carhons from a washington lignite using phosphoric acid activation,Carbon,1996,34(11):1419-1426.
    [58]Zhang S J,Li X Y,Chen J P,Preparation and evaluation of a magnetite-doped activated carbon fiber for enhanced arsenic removal,Carbon,2010(48):60-67.
    [59]Christopher A T,Wayne E M,Mitchell M J,Surface functional groups on acid activated nutshell carbons.Carhon,1999,37(8):1207-1214.
    [60]Francisco C M,Miguel A,Alvarez M,Carlos M C,Microporous activated carbons from a bituminous coal,Fuel,1996,75(8):966-970.
    [61]Laine J,Calafat A,Labady M,The Preparation of activated carbon from coconut hull by chemical activation with phosphoric acid,Carbon,1989,27(2):191-195.
    [62]Molina S M.,RodRiguez R F,Caturla F,Selles M J,Porosity in granular carbon activated with phosphoric acid,Carbon,1995,33(8):1105-1113.
    [63]Puziy A M,Poddubnaya O I,Martinez-Alonso A,Suarez-Garcia F,Tascon J M,Synthetic Carbons activated with phosphoric acid Ⅰ:surface chemistrv and ion binding properties,Carbon,2002,40(9):1493-1505.
    [64]Badalyan A,Bromball R,Pendleton P,Skinner W,An assessment of activated carbon cloth microporosity change due to chemical activation,Carbon,2009,(47):114-124.
    [65]Brasquet C,Rousseau B,Estrade S H,Cloirec Le P,Observation of activated carbon fibres with SEM and AFM correlation with adsorption data in aqueous solution,Carbon,2000,38(3):407.
    [66]Endo M,Furuta T,Minoura F,Kim C,Oshida K,Dresselhaus G,Visualized observation of pores in activated carbon fibers by HRTEM and combined image processor,Supra molecular Science,1998,5(3-4):261.
    [67]汪政德,张茂林,梅海燕,毛细凝聚和吸附-脱附回路的物理化学解释,新疆石油地质,2003,(7):25-31.
    [68]杜建芬,杨晓松,孔介质毛细凝聚对凝析气藏露点的影响研究,天然气工业,2001,43(3):29-34.
    [68]GuoT,Influence of relative humidity on the photocatalytic oxidation(PCO) of toluene by TiO_2 loaded on activated carbon fibers:PCO rate and intermediates accumulation,Applied Catalysis B:Environmental,2008.79(2):171-178.
    [69]Hussein M Z,Tarmizi R S,Zainal H Z,lbrahim R and Badri M,Preparation and characterization of active carbon from oil palm shells,Carbon,1996,34(11):1447-1449.
    [70]Hu Z H,Srinivasan M P,Ni Y M,Novel activation process for preparing highly microporous and mesoporous activated carbons,Carbon,2001,39(6):877-886..
    [71]倪朝晖,潘鼎,季涛,工艺条件对粘胶基活性碳纤维比表面积与收率的影响,产业用纺织品,2009,(2):25-29.
    [72]高强,于万樵,季涛,朱正芳,活性碳纤维结构设计及功能控制,产业用纺织品,2007,(2):48-52.
    [73]蒋丽云,季涛,活性碳纤维拉伸性能试验方法的研究与探讨,产业用纺织品,2006,(8):24-27.
    [74]孙彤,冯殿义,孙劲光,应用数据挖掘研究活性碳纤维吸附和解吸性能,辽宁工程技术大学学报,2004,(6):23-29.
    [75]曾凡龙,潘鼎,两种铵盐催化剂和不同活化工艺对粘胶基活性碳纤维的影响,合成纤维, 2004,(2)43-47
    [76]曾凡龙,潘鼎,粘胶活性碳纤维预浸剂的热分解作用及效能评选,材料科学与工程学报,2004,(5):5-9.
    [77]钱明娟,潘鼎,大孔活性碳纤维的初探,化工新型材料,2004,(6):12-14.
    [78]贺福,杨永岗,中孔活性碳纤维,化工新型材料,2004,(1):1-7.
    [79]Lopez G J,Martinez V F,Rodriguez R F,Preparation and characterization of active carbon from olive stones,Carbon,2007,18(6):413-418.
    [80]李全明,王浩,KOH活化法制备PAN基活性碳纤维的研究,合成纤维,2003(S1).
    [81]曾凡龙,潘鼎,粘胶基活性碳纤维新工艺研究,材料科学与工程学报,2003,(5):19-24.
    [82]张薇,杨卫娟,周俊虎,吕洪坤,刘建忠,岑可法,钠盐对选择性非催化还原反应促进作用的实验研究,中国电机工程学报,2008,(35):21-26.
    [83]Walker P L,Frusinko,Austin L G,Gas reactions of carbon,Advan.catalysis,1959,11:133.
    [84]Qiao Z J,Li J J,Pore size and surface properties of activated carbon fibers modified by high temperature treatment,New carbon materials,2004,19(1):53-56
    [85]Kawakami M,Mizutani Y,Ohyabu T,Reaction Kinetics of Coke and Some Carbonaceous Materials with CO_2 and Coke Strength after Reaction.Steel Res lnt,2004,75(2):93.
    [86]郭培民,张临峰,赵沛,碳气化反应的催化机理研究,钢铁,2008,(2):37-42.
    [87]Junichi H,Mikihito U,Toshihide H,Katsuhiko M,Vincent G,Synthesizing activated carbons from resins by chemical activation with K_2CO_3,Carbon,2002,40:2747-2752.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700