棉花生殖发育相关基因簇的结构和功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉花是具有战略意义的农作物,如何提高棉花产量、改善棉花品质,历来受到了研究者的高度重视。由于棉花的经济价值主要通过其生殖器官的发育好坏体现,因此对其生殖发育进行深入研究,将是实现培育高产优质棉花的重要突破口。本论文根据以往的研究,推断在紧密连锁且同在生殖器官中特异表达的arf1和nodulin-like基因附近存在着一个与生殖发育相关的基因簇。从这一推断着手,开展了相应的研究,以期能够深入认识棉花的生殖发育机理,为高产优质棉花的培育提供坚实的理论依据和物质基础。
     首先,根据已知的arf1和nodulin-like基因设计了三对PCR引物,通过PCR池筛法对棉花18R BAC文库进行了筛选,获得了两个包含这两个基因的BAC克隆G2-J-15和G128-K-15,通过酶切鉴定其插入片段大小分别为38kb和90kb。选取了插入片段较小的G2-J-15进行了全序列测序。
     通过对G2-J-15的全序列测序和相关生物信息学分析发现,在短短的38kb序列中一共分布了7个基因,平均每5kb就存在一个基因,说明该基因簇位于基因富集区。除了已知的arf1和nodulin-like基因外,通过基因结构预测和BLAST,还发现了未在棉花中克隆过的GhGolS(肌醇半乳糖苷合酶基因)、GhAPm(AP复合体μ亚基基因)、GhPsbP(PSII放氧复合体外周蛋白基因)和GhNeuF(中性β-呋喃果糖苷酶基因),此外,还发现了一个未在任何物种中发现过的未知基因。对这5个新基因进行了一系列的生物信息学分析,了解了它们的基因结构,对蛋白质的性质、结构和功能也有了一定的了解。对这些基因进行生物信息学分析,发现了一个非常有趣的现象,即GhGolS、GhAPm和GhNeuF在棉花基因组中的排列顺序和方向与其在拟南芥中同源基因的排列顺序和方向一模一样,甚至棉花GhAPm和GhNeuF基因之间间隔了两个基因,而拟南芥中与之同源的基因之间同样间隔了两个基因。该基因簇在结构上异常的保守性预示着该基因簇的功能可能也非常保守,对棉花的生长发育起着至关重要的作用。
     利用real-time PCR对这5个棉花中新发现的基因进行了时空表达研究,建立了各基因的时空表达模型。结果发现除GhPsbP基因由于是棉花PSII OEC的外周蛋白而在叶片中特异表达以外,其它四个基因都在棉花生殖相关组织中特异表达:GhGolS基因在花药和35dpa棉纤维中特异表达,GhAPm基因在30dpa棉纤维中呈优势表达,未知基因在花药中的表达量最高,GhNeuF基因在花药和25dpa棉纤维中的表达量最高。结合以前arf1和nodulin-like基因在棉花生殖器官中特异表达的研究结果,证实了该区域所存在的由7个基因组成的紧密功能基因簇正如前面所推论的那样与棉花生殖发育相关。
     通过反转录PCR克隆得到了GhGolS和GhAPm的cDNA,其全长分别为1816和1590bp。GhGolS前面的基因结构预测结果除了错将一段90bp的外显子预测为内含子外,其结果与GhGolS的cDNA基本一致,GhAPm的基因结构预测结果则和其cDNA克隆完全一致。
     针对GhGolS和未知基因构建了过表达载体,构建了沉默棉花GhGolS和未知基因的RNAi载体,构建了沉默拟南芥AtGolS2和中性β-呋喃果糖苷酶基因的RNAi载体,构建了同时沉默拟南芥针AtGolS2、AP复合体μ亚基基因和中性β-呋喃果糖苷酶基因的RNAi载体,将其分别转化棉花和拟南芥,获得了拟南芥的T1代转基因植株的种子,而针对T0代转基因棉花的筛选也在进行。各类转基因植株的获得为对该基因簇进行深入研究,了解其在棉花生殖发育过程中所起的作用,奠定了良好的基础。
     本论文发现了一段与棉花生殖发育相关的功能基因簇,该基因簇包含了7个基因且相互间紧密连锁,对其进行了一定的研究,为今后进一步深入研究棉花生殖发育的相关机理奠定了基础,也可能会为将来高产优质棉花的培育提供新的理论基础和解决方案。
Cotton is a kind of strategic crop, it is always a focus that how to improve cotton yield and quality. The development of cotton reproductive organ directly affect the economic value of cotton, so studying cotton reproductive development in-depth is a very important breakout for breeding high yield good quality cotton. Base on the research ago, we know that arf1 and nodulin-like genes is very close to each other in genome, and they both express in cotton reproductive organ specificly, so we deduce that there is a gene cluster correlative with cotton reproductive development around arf1 and nodulin-like genes. Aiming at this problem, we carry on a series of researches, the target is understanding the mechanism of cotton reproductive development deeply, providing theory basis and physical foundation for breeding high yield good quality cotton.
     First of all, we designed three pairs PCR primers base on arf1 and nodulin-like genes, and use these primers to screen cotton 18R bacterial artificial chromosome library by PCR pool screen. At last, we got two BAC clones include this two genes, G2-J-15 and G128-K-15. Restriction endonuclease analysis shows that the inserting segments of these BAC clones are 38kb and 90kb respectively, and we finished the sequencing of G2-J-15 BAC clone.
     The sequencing and bioinformatics analysis of G2-J-15 show that there are seven genes in the inserting segment, average 5kb lies a gene, we can conclude this gene cluster locates in a gene rich area. Except for arf1 and nodulin-like genes, by gene structure prediction and BLAST, we found four gene never be cloned in cotton, include GhGolS(galactinol synthase gene), GhAPm(clathrin adaptor complexes medium subunit family gene), GhPsbP(photosystem II reaction center PsbP family gene) and GhNeuF (neutral beta-fructofuranosidase gene), and a new gene it never be cloned in any species. By a series of bioinformatics analysis, we had understood their gene structure and protein character, furthermore, we got some information about their protein structure and function. By these bioinformatics analysis, we found a very interesting phenomenon that the arrangement and direction of GhGolS, GhAPm and GhNeuF in cotton genome is the same with their homologous genes in Agrobacterium tumefaciens, even there are two genes between GhAPm with GhNeuF, and also there are two genes between their homologous genes in Agrobacterium tumefaciens. The conservative structure of this gene cluster maybe indicate the function of this gene cluster is conservative too, and the gene cluster is necessary for cotton development.
     We studied the spatio-temporal expression pattern of these gene by real-time PCR, the result indicates that except for GhPsbP expresses in leaf specifically, the other four genes all express in cotton reproductive tissues specifically: GhGolS expresses in anther and 35dpa fiber specifically, GhAPm is predominant in 30dpa fiber, the expression of unknown gene is highest in anther, and the expression of GhNeuF is highest in 25dpa fiber. Contacting the spatio-temporal expression pattern of arf1 and nodulin-like gene, we had proved our supposition is correct, this gene cluster is correlative with cotton reproductive development.
     We had gotten the cDNA of GhGolS and GhAPm by RT-PCR, the length are 1816bp and 1590bp respectively, the gene structure prediction of GhGolS is not exactly, the gene structure prediction software treated a 90bp exon as intron, however, the prediction result is the same with cDNA approximately, on the other hand, the gene structure prediction result of GhAPm is the same with cDNA exactly.
     We have constructed the overexpression vectors of GhGolS and unknown gene, the RNAi vectors of silencing cotton GhGolS and unknown gene, the RNAi vectors of silencing Agrobacterium tumefaciens AtGolS2 and neutral beta-fructofuranosidase gene, and the RNAi vector of silencing Agrobacterium tumefaciens AtGolS2, clathrin adaptor complexes medium subunit family gene and neutral beta-fructofuranosidase gene together. Transferred these vectors to cotton and Agrobacterium tumefaciens respectively, and got the Agrobacterium tumefaciens T1 seeds, and the cotton T0 seeds is being screened. All of these will help us to understand the function of this gene cluster in cotton reproductive development.
     This paper found a gene cluster is correlative with cotton reproductive development, this gene cluster includes seven gene, and this gene is close to each other, we carry on a series of research, all of these is the foundation for studying cotton reproductive development deeply, and maybe will providing new theory and technique for breeding excellent cotton varieties.
引文
1. 冯福祯.棉花雄性不育种质简介.中国棉花,1988,15(3):15-16.
    2. 郭媖,郭旺珍,张天真.一个新的棉纤维表达蛋白 cDNA 的克隆、表达及功能初步分析. 棉花学报,2006,18(2):67-73.
    3. 侯磊,肖月华,李先碧,等.棉花洞 A 雄性不育系花药发育的 mRNA 差别显示.遗传学报,2002,29(4):359-363.
    4. 黄晋玲.棉花晋 A 细胞质雄性不育系的遗传研究.太原:山西农业大学,2003.
    5. 刘少林,靖深荣,郭立平.棉花线粒体基因组和叶绿体基因组与细胞质雄性不育关系的 RAPD研究// 李竞雄,周洪生. 作物雄性不育及杂种优势研究进展. 北京:中国农业出版社,1996.
    6. 潘家驹,阂留芳,刘 康.陆地棉芽黄基因应用于杂种棉的研究.南京农业大学学报,1998,21(3):7-14.
    7. 潘瑞炽,植物生理学,北京,高等教育出版社,2001.
    8. 任茂智.棉花 nodulin-like 和 arf1 基因及其启动子的分离和功能分析[博士学位论文].北京:中国农业科学院生物技术研究所,2004a.
    9. 任茂智,陈全家,张锐,等.棉花腺苷酸核糖基化作用因子 1(arf1)的结构特征、替换剪接和遗传表达分析.遗传学报,2004b(8):850-857.
    10. 任茂智,陈全家,张锐,等.棉花 nodulin—like 基因及其启动子的结构特征和遗传表达.植物学报:英文版,2004c (12) : 1424-1433.
    11. 任茂智,陈全家,李丽,等.一个棉花生殖器官优势表达基因的启动子功能分析.中国科学:C 辑,2005(1): 22-28.
    12. 孙杰,李艳军,李园莉,等.棉花纤维特异表达基因 GhF1 的分离及鉴定.棉花学报,2005,17(5):259-263.
    13. 王学德,潘家驹.我国棉花细胞质雄性不育系育性恢复的遗传基础:Ⅱ.恢复基因与育性增强基因间的互作效应.遗传学报,1997(3):271-277.
    14. 王学德,张天真,潘家驹.细胞质雄性不育棉花小孢子发生的细胞学观察和线粒体 DNA 的RAPD 分析. 中国农业科学,1998,31(2) :70-75.
    15. 王学德.细胞质雄性不育棉花线粒体蛋白质和 DNA 的分析.作物学报,2000,26(1):35-39.
    16. 吴巧雯.棉花 Gh18Rorf392 基因的克隆和表达以及 ATPase 基因克隆的研究[博士学位论文].北京:中国农业科学院生物技术研究所,2007.
    17. 翟中和、王喜忠、丁明孝,细胞生物学,北京,高等教育出版社,2000.
    18. 张慧军,王寰宇,石跃进,等.雄性不育基因对棉花的遗传转化.棉花学报,2007,19(4):261-266.
    19. 张天真,冯义军,潘家驹.我国发现的四个棉花核不育系的遗传分析.棉花学报,1992,4(1):1-8.
    20. 张震林,刘正銮,周宝良,等.转兔角蛋白基因改良棉纤维品质研究.棉花学报,2004,16(2):72-76.
    21. Adelroth, P, Lindberg, K, and Andreasson, L E. Studies of Ca2+ binding in spinach photosystem II using 45Ca2+, Biochemistry, 1995, 34, 9021-9027.
    22. Andersson, B, Critchley, C, Ryrje, I J, Jansson, C, Larsson, C, and Anderson, J M. Modification of the chloride requirement for photosynthetic O2 evolution The role of the 23 kDa polypeptide. FEBS Lett. 1984, 168, 113-117.
    23. Andersson, B. & ?kerlund, H.-E. Proteins of the oxygen evolving complex. -In Topics in Photosynthesis (J. Barber, ed.), 1987(8): 379-420. Elsevier. Amsterdam.
    24. Andersson, B and Franze′n, L. G. in New Comprehensive Biochemistry: Molecular Mechanisms in Bioenergetics (Ernster, L., ed) 1992(23): 121-143, Elsevier Science Publishers B.V., Amsterdam.
    25. Akabori K, Imaoka A, Toyoshima Y. The role of lipids and 17-kDa protein in enhancing the recovery of O2 evolution in cholate-treated thylakoid membranes. FEBS Lett 1984, 173: 36-40.
    26. Appeldoorn, N J G, De Bruijn, S M, Koot-Gronsveld, E A M, Visser, R G F, Vreugdenhil, D & van der Plas. Developmental changes of enzymes involved in conversion of sucrose to hexose-phosphate during early tuberisation of potato. L H W. Planta. 1997, 202, 220-226.
    27. Appeldoorn, N J, Sergeeva, L, Vreugdenhil, D, Van Der Plas, L H and Visser, R G. In situ analysis of enzymes involved in sucrose to hexose-phosphate conversion during stolon-to-tuber transition of potato. Physiol Plant 2002, 115(2): 303-310.
    28. Avigad G, Dey PM. Carbohydrate metabolism: storage carbohydrates. In: Dey PM, Harborne JB (eds) Plant biochemistry. Academic Press, San Diego, 1997, 143-204.
    29. Bachmann M, Matile P, Keller F. Metabolism of the raffinose family oligosaccharides in leaves of Ajuga reptans L. Cold acclimation, translocation, and sink to source transition: discovery of chain elongation enzyme. Plant Physiology 1994, 105: 1335-1345.
    30. Balibrea Lara ME, Garcia MCG, Fatima T, Ehness R, Lee TK, Proels R, Tanner W, Roitsch T. Extracellular invertase is an essential component of cytokinin-mediated delay of senescence. The Plant Cell 2004(16): 1276-1287.
    31. Baral J B, Lu Ying-zhi, Zhang Jin-fa, et al. High resolution mapping of fertility restorer genes for cytoplasmic male sterility in cotton. Proceedings of the 2004 Beltwide Cotton Conference. San Antonio, TX: National Cotton Council of Ameica, 2004:1057-1060.
    32. Barber, J, Nield, J, Morris, E P, Zheleva, D, and Hankamer, B. The structure, function and dynamics of photosystem two. Physiol Plant. 1997, 100: 817-827.
    33. Barber J. Water, water everywhere, and its remarkable chemistry. Biochim Biophys Acta 2004, 1655: 123-132.
    34. Basra a S, Malik C P. Development of the cotton fiber. Int Rev Cytol, 1984, 89: 65-113.
    35. Barois, N and Bakke, O. The adaptor protein AP-4 as a component of the clathrin coat machinery: a morphological study. Biochem J, 2005(385): 503-510.
    36. Baroja-Fernandez E, Munoz FJ, Saikusa T, Rodriguez-Lopez M, Akazawa T, Pozueta-Romero J. Sucrose synthase catalyzes the de novo production of ADPglucose linked to starch biosynthesis inheterotrophic tissues of plants. Plant Cell Physiol. 2003, 44:500–509.
    37. Bentsink, L., C. Alonso-Blanco, D. Vreugdenhil, et al., Genetic analysis of seed-soluble oligosaccharides in relation to seed storability of Arabidopsis. Plant Physiol, 2000. 124(4): p. 1595-1604.
    38. Black M, Corbineau F, Grzesik M, Guy P, Come D. Carbohydrate metabolism in the developing and maturing wheat embryo in relation to its desiccation tolerance. Journal of Experimental Botany 1996, 47: 161-169.
    39. Boehm, M and Bonifacino, J S. Adaptins: the final recount. Mol Biol Cell. 2001(12): 2907-2920.
    40. Boll, W, Ohno, H, Songyang, Z, Rapoport, I, Cantley, L C, Bonifacino, J S and Kirchhausen, T. Sequence requirements for the recognition of tyrosine-based endocytic signals by clathrin AP-2 complexes. EMBO J 1996, 15(21): 5789-5795.
    41. Bondarava, N., P. Beyer, and A. Krieger-Liszkay, Function of the 23 kDa extrinsic protein of Photosystem II as a manganese binding protein and its role in. BBA - Bioenergetics, 2005, 1708(1): 63-70.
    42. Bonifacino, J S and Lippincott-Schwartz, J. Coat proteins: shaping membrane transport. Nat Rev Mol Cell Biol, 2003(4): 409-414.
    43. Bonifacino, J S and Traub, L M. Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu Rev Biochem 2003, 72: 395-447.
    44. Bonifacino, J S and Glick, B S. The mechanisms of vesicle budding and fusion. Cell, 2004, 116:153-166.
    45. Borisjuk, L, Rolletschek, H, Radchuk, R, Weschke, W, Wobus, U and Weber, H. Seed development and differentiation: a role for metabolic regulation. Plant Biol (Stuttg) 2004, 6(4): 375-386.
    46. Brenac P, Horbowicz M, Downer SM, Dickerman AM, Smith ME, Obendorf RL. Raffinose accumulation related to desiccation tolerance during maize (Zea mays L.) seed development and maturation. Journal of Plant Physiology 1997a, 150: 481-488.
    47. Brenac P, Smith ME, Obendorf RL. Raffinose accumulation in maize embryos in the absence of a fully functional Vp1 gene product. Planta 1997b, 203: 222-228
    48. Calderone V, Trabucco M, Vujicic A, Battistutta R, Giacometti GM, Andreucci F, Barbato R, Zanotti G. Crystal structure of the PsbQ protein of photosystem II from higher plants. EMBO Rep 2003, 4: 900-905.
    49. Chopra, J, Kaur, N & Gupta, A K. Changes in the activities of carbon metabolizing enzymes with pod development in lentil (Lens culinaris L.). Acta Physiol Plant. 2003, 25, 185-191.
    50. Chen JQ, Black CC. Biochemical and immunological properties of alkaline invertase isolated from sprouting soybean hypocotyls. Arch Biochem Biophys. 1992, 295:61-69.
    51. Chiou, T.J. and D.R. Bush, Sucrose is a signal molecule in assimilate partitioning. Proc Natl Acad Sci U S A, 1998, 95(8): 4784-4788.
    52. Collins, B M, McCoy, A J, Kent, H M, Evans, P R and Owen, D J. Molecular architecture and functional model of the endocytic AP2 complex. Cell, 2002(109): 523-535.
    53. Cosgrove D J. Relaxation in a high-stress environment: The molecular bases of extensible cell walls and cell enlargement. Plant Cell, 1997, (9): 1031-1041
    54. Cunningham SM, Nadeau P, Castonguay Y, Laberge S, Volenec JJ. Raffinose and stachyose accumulation, galactinol synthase expression, and winter injury of contrasting alfalfa germplasms. Crop Science 2003, 43: 562-570.
    55. Debus, R J. The manganese and calcium ions of photosynthetic oxygen evolution. Biochim Biophys Acta 1992, 1102(3): 269-352.
    56. Delaney, S K, Orford S J, Martin-Harris, M. et al. The fiber specificity of the cotton FSltp4 gene promoter is regulated by an AT-Rich promoter region and the AT-Hook transcription factor GhAT1. Plant Cell Physiol, 2007, 48(10): 1426-1437.
    57. De Las Rivas J, Balsera M, Barber J. Evolution of oxygenic photosynthesis: genome-wide analysis of the OEC extrinsic proteins. Trends Plant Sci. 2004(9): 18-25.
    58. De Las Rivas, J., P. Heredia, and A. Roman, Oxygen-evolving extrinsic proteins (PsbO,P,Q,R): bioinformatic and functional analysis. Biochim Biophys Acta, 2007, 1767(6): 575-582.
    59. Dell'Angelica, E C, Ohno, H, Ooi, C E, Rabinovich, E, Roche, K W and Bonifacino, J S. AP-3: an adaptor-like protein complex with ubiquitous expression. EMBO J 1997, 16(5): 917-928.
    60. Diner, B A, and Babcock, G T. in Oxygenic Photosynthesis: The Light Reactions (Ort, D. R., and Yocum, C. F., eds.) 1996, 213-247, Kluwer Academic Press, Dordrecht, The Netherlands.
    61. Downie, B, Gurusinghe S, Dahal P, et al., Expression of a GALACTINOL SYNTHASE gene in tomato seeds is up-regulated before maturation desiccation and again after imbibition whenever radicle protrusion is prevented. Plant Physiol, 2003, 131(3): 1347-1359.
    62. Ehrmann J Jr, Kolek A, Kod_ousek R, Zapletalova J, Lisova S, Murray PG, Drabek J, Kolar Z. Identification of the gene for beta-fructofuranosidase of Bifidobacterium lactis DSM10140(T) and characterization of the enzyme expressed in Escherichia coli. Curr Microbiol. 2003, 46:391-397.
    63. Enami I, Yoshihara S, Tohri A, Okumura A, Ohta H, Shen JR. Crossreconstitution of various extrinsic proteins and photosystem II complexes from cyanobacteria, red algae and higher plants. Plant Cell Physiol 2000, 41: 1354-1364.
    64. Farrant JM. Mechanisms of desiccation tolerance in angiosperm resurrection plants. In: Jenks MA, Wood AJ, eds. Plant desiccation tolerance. Wallingford, UK: CAB International. 2007.
    65. Farrar J. Regulation of shoot-root ratio is mediated by sucrose. Plant Soil 1996, 185:13-19.
    66. Feng Chun-da, Guo Jie-hua, Nie Yi-chun, et al. Cytoplasmic nuclear male sterility in cotton: comparative RFLP analysis of mitochondrial DNA. Proceedings of the 2000 Beltwide Cotton Conference. San Antonio, TX: National Cotton Council of Ameica, 2000: 5l1-5l2.
    67. Feng Chun-da, Stewart J M, Zhang Jin-fa. STS markers linked to the Rf1 fertility restorer gene of cotton. Theor Appl Genet, 2005, 110(2): 237-243.
    68. Frelichowski J E, Jr, Palmer M B, Main D, et al. Cotton genome mapping with new microsatellites from Acala 'Maxxa' BAC-ends. Mol Genet Genomics, 2006, 275(5): 479-491.
    69. Fridman, E, Pleban, T and Zamir, D. A recombination hotspot delimits a wild-species quantitativetrait locus for tomato sugar content to 484 bp within an invertase gene. Proc Natl Acad Sci U S A 2000, 97(9): 4718-4723.
    70. Fridman, E, Carrari, F, Liu, Y S, Fernie, A R and Zamir, D. Zooming in on a quantitative trait for tomato yield using interspecific introgressions. Science 2004, 305(5691): 1786-1789.
    71. Gaidarov, I, Chen, Q, Falck, J R, Reddy, K K and Keen, J H. A functional phosphatidylinositol 3,4,5-trisphosphate/phosphoinositide binding domain in the clathrin adaptor AP-2 alpha subunit. Implications for the endocytic pathway. J Biol Chem 1996, 271(34): 20922-20929.
    72. Geigenberger, P. Response of plant metabolism to too little oxygen. Curr Opin Plant Biol 2003, 6(3): 247-256.
    73. Ghanotakis, D F, Babcock, G T, and Yocum, C F. Calcium reconstitutes high rates of oxygen evolution in polypeptide depleted Photosystem II preparations. FEBS Lett. 1984a, 167, 127-130.
    74. Ghanotakis DF, Topper JN, Yocum CF. Structural organization of the oxidizing side of photosystem II: Exogenous reductants reduce and destroy the Mn-complex in photosystem II membranes depleted of the 17 and 23 kDa polypeptides. Biochim Biophys Acta 1984b, 767: 524-531.
    75. Ghanotakis DF, Topper JN, Babcock GT, Yocum CF. Water-soluble 17 and 23 kDa polypeptides restore oxygen evolution activity by creating a high-affinity binding site for Ca21 on the oxidizing side of Photosystem II. FEBS Lett 1984c, 170: 169-173.
    76. Ghanotakis, D F and Yocum, C F. Photosystem II and the oxygen-evolving complex. Annu Rev Plant Physiol Plant Mol Biol. 1990, 41, 255-276.
    77. Gibson SI. Plant sugar-response pathways. Part of a complex regulatory web. Plant Physiol. 2000, 124:1532-1539.
    78. Gibson, S I. Control of plant development and gene expression by sugar signaling. Curr Opin Plant Biol 2005, 8(1): 93-102.
    79. Goetz M, Roitsch T. The different pH optima and substrate specificities of extracellular and vacuolar invertases from plants are determined by a single amino-acid substitution. Plant J. 1999, 20:707-711.
    80. Goetz, M, Godt, D E, Guivarc’h, A, Kahmann, U, Chriqui, D & Roitsch, T. Proc Natl Acad Sci USA, 2001, 98, 6522-6527.
    81. Handley LW, Pharr DM, McFeeters RF. Relationship between galactinol synthase activity and sugar composition of leaves and seeds of several crop species. Journal of the American Society of Horticultural Science 1983, 108: 600-605.
    82. Hankamer B, Barber J, and Boekema E J. Structure and membrane organization of photosystemⅡ in green plants. Annu. Rev. Plant Physiol 1997, 48, 641-671.
    83. Hanson M R. Plant mitochondrial mutations and male sterility. Annu Rev Genet, 1991, 25: 461-486.
    84. Haritatos E, Keller F, Turgeon R. Raffinose oligosaccharide concentrations measured in individual cell and tissue types in Cucumis melo L. leaves: implications for phloem loading. Planta 1996, 198: 614-622.
    85. Herbers, K. & Sonnewald. Molecular determinants of sink strength. U. Curr. Opin. Plant Biol. 1998(1): 207-216.
    86. Hillier W, Babcock GT. Photosynthetic reaction centers. Plant Physiol 2001, 125: 33-37.
    87. Hoekstra FA, Wolkers WF, Buitink J, Golovina EA, Crowe JH, Crowe LM. Membrane stabilization in the dry state. Comparitive Biochemistry and Physiology 1997, 117A, 335-341.
    88. Homann, P H. The chloride and calcium requirement of photosynthetic water oxidation: effects of pH, Biochim Biophys Acta, 1988, 934, 1-13.
    89. Honing, S, Griffith, J, Geuze, H J and Hunziker, W. The tyrosine-based lysosomal targeting signal in lamp-1 mediates sorting into Golgi-derived clathrin-coated vesicles. EMBO J 1996, 15(19): 5230-5239.
    90. Horbowicz M, Obendorf RL. Seed desiccation tolerance and storability: dependence of flatulence-producing oligosaccharides and cyclitols. Review and survey. Seed Science Research 1994, 4: 385-405.
    91. Hovav R, Udall J A, Hovav E, et al. A majority of cotton genes are expressed in single-celled fiber. Planta, 2008, 227(1): 319-329.
    92. Humphries J A, Walker A R, Timmis J N, et al. Two WD-repeat genes from cotton are functional homologues of the Arabidopsis thaliana TRANSPARENT TESTA GLABRA1 (TTG1) gene. Plant Mol Biol, 2005, 57(1): 67-81.
    93. Ifuku K, Nakatsu T, Kato H, Sato F. Crystal structure of the PsbP protein of photosystem II from Nicotiana tabacum. EMBO Rep 2004, 5: 362-367.
    94. Ifuku, K., Y. Yamamoto, T.-A. Ono, et al., PsbP protein, but not PsbQ protein, is essential for the regulation and stabilization of photosystem II in higher plants. Plant physiology, 2005, 139(3): 1175-1184.
    95. Inan Haab C, Keller F. Purification and characterization of the raffinose oligosaccharide chain elongation enzyme, galactan: galactan galactosyltransferase (GGT): from Ajuga reptans leaves. Physiologia Plantarum 2002, 114: 361-371.
    96. Iraqi D, Tremblay FM. Analysis of carbohydrate metabolism enzymes and cellular contents of sugars and proteins during spruce somatic embryogenesis suggests a regulatory role of exogenous sucrose in embryo development. J Exp Bot. 2001, 52:2301–2311.
    97. Ishihara, S, Yamamoto, Y, Ifuku, K and Sato, F. Functional analysis of four members of the PsbP family in photosystem II in Nicotiana tabacum using differential RNA interference. Plant Cell Physiol 2005, 46(12): 1885-1893.
    98. Jansson, S. he light-harvesting chlorophyll a/b-binding proteins. Biochim Biophys Acta 1994, 1184, 1-19.
    99. Ji Sheng-jian, Lu Ying-chun, Feng Jian-xun, et al. Isolation and analyses of genes preferentially expressed during early cotton fiber development by subtractive PCR and cDNA array. Nucleic Acids Res, 2003, 31(10): 2534-2543.
    100. Ji, X, Van den Ende, W, Van Laere, A, Cheng, S and Bennett, J. Structure, evolution, andexpression of the two invertase gene families of rice. J Mol Evol 2005, 60(5): 615-634.
    101. Kashino Y, Lauber WM, Carroll JA, Wang Q, Whitmarsh J, Satoh K, Pakrasi HB. Proteomic analysis of a highly active photosystem II preparation from the cyanobacterium Synechocystis sp. PCC 6803 reveals the presence of novel polypeptides. Biochemistry 2002, 41: 8004-8012.
    102. Keller F, Pharr DM. Metabolism of carbohydrates in sinks and sources: galactosyl-sucrose oligosaccharides. In: Zamski E, Schaffer AA, eds. Photoassimilate distribution in plants and crops: source-sink relationships. New York: Marcel Dekker, 1996, 157-183.
    103. Kim, J Y, Mahe, A, Guy, S, Brangeon, J, Roche, O, Chourey, P S and Prioul, J L. Characterization of two members of the maize gene family, Incw3 and Incw4, encoding cell-wall invertases. Gene 2000, 245(1): 89-102.
    104. Kirchhausen, T., Adaptors for clathrin-mediated traffic. Annu Rev Cell Dev Biol, 1999, 15: 705-732.
    105. Kirchhausen, T. Clathrin. Annu Rev Biochem, 2000(69): 699-727.
    106. Koch K. Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Current Opinion in Plant Biology. 2004 (7): 235-246.
    107. Koster KL, Leopold AC. Sugars and desiccation tolerance in seeds. Plant Physiology 1988, 88: 829-832.
    108. Kuhlbrandt, W, Wang, D N and Fujiyoshi, Y. Atomic model of plant light-harvesting complex by electron crystallography. Nature 1994, 367(6464): 614-621.
    109. Kuwabara, T, Miyao, M, Murata, T and Murata, N. The function of 33-kDa protein in the photosynthetic oxygen-evolution system studied by reconstitution experiments. Biochim Biophys Acta 1985, 806, 283-289.
    110. Levitt DG. The mechanism of the sodium pump. Biochim Biophys Acta. 1980, 604:321-345.
    111. Lewin, D A and Mellman, I. Sorting out adaptors. Biochim Biophys Acta 1998, 1401(2): 129-145.
    112. Li, L, Strahwald, J, Hofferbert, H R, Lubeck, J, Tacke, E, Junghans, H, Wunder, J and Gebhardt, C. DNA variation at the invertase locus invGE/GF is associated with tuber quality traits in populations of potato breeding clones. Genetics 2005, 170(2): 813-821.
    113. Li Xue-bao, Fan Xiao-ping, Wang Xiu-lan, et al. The cotton ACTIN1 gene is functionally expressed in fibers and participates in fiber elongation. Plant Cell, 2005, 17(3): 859-875.
    114. Li Yuan-li, Sun Jie, Xia Gui-xian. Cloning and characterization of a gene for an LRR receptor-like protein kinase associated with cotton fiber development. Mol Genet Genomics, 2005, 273(3): 217-224.
    115. Lin TP, Huang NH. The relationship between carbohydrate composition of some tree seeds and their longevity. Journal of Experimental Botany 1994 (45): 1289-1294.
    116. Liu J-JJ, Krenz DC, Galvez AF, de Lumen BO. Galactinol synthase (GS): increased enzyme activity and levels of mRNA due to cold and desiccation. Plant Science, 1998(134): 11-20.
    117. Liu Li-wang, Guo Wang-zhen, Zhu Xie-fei, et al. Inheritance and fine mapping of fertility restoration for cytoplasmic male sterility in Gossypium hirsutum L. Theor Appl Genet, 2003,106(3): 461-469.
    118. Marks, M S, Woodruff, L, Ohno, H and Bonifacino, J S. Protein targeting by tyrosine- and di-leucine-based signals: evidence for distinct saturable components. J Cell Biol 1996, 135(2): 341-354.
    119. Marks, M S, Ohno, H, Kirchnausen, T and Bonracino, J S. Protein sorting by tyrosine-based signals: adapting to the Ys and wherefores. Trends Cell Biol 1997, 7(3): 124-128.
    120. Mayfield SP, Rahire M, Frank G, Zuber H, Rochaix JD. Expression of the nuclear encoding oxygen-evolving enhancer 2 is required for high levels of photosynthetic oxygen evolution in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 1987, 84: 749-753.
    121. Mayes, S R, Cook, K M, Self, S J, Zhang, Z, and Barber, J. Deletion of the gene encoding the photosystem-ii 33-kda protein from synechocystis sp pcc-6803 does not inactivate water-splitting but increases vulnerability to photoinhibition. Biochim Biophys Acta 1991, 1060, 1-12.
    122. McCaskill, A. and R. Turgeon, Phloem loading in Verbascum phoeniceum L. depends on the synthesis of raffinose-family oligosaccharides. Proc Natl Acad Sci U S A, 2007, 104(49): 19619-19624.
    123. Miller, A F and Brudvig, G W. Manganese and calcium requirements for reconstitution of oxygen-evolution in manganese-depleted photosystem II membranes. Biochemistry 1989, 28, 8181-8190.
    124. Miller, M E & Chourey, P S. The maize invertase-deficient miniature-1 seed mutation is associated with aberrant pedicel and endosperm development. Plant Cell, 1992(4): 297-305.
    125. Miyao M, Murata N. Role of the 33-kDa polypeptide in preserving Mn in the photosynthetic oxygen-evolving system and its replacement by chloride ions. FEBS Lett 1984a, 170: 350-354.
    126. Miyao M, Murata N. Calcium ions can be substituted for the 24-kDa polypeptide in photosynthetic oxygen evolution. FEBS Lett 1984b, 168: 118-120.
    127. Miyao, M, and Murata, N. The Cl? effect on photosynthetic oxygen evolution: interaction of Cl? with 18-kDa, 24-kDa and 33-kDa proteins. FEBS Lett. 1985, 180, 303-308.
    128. Miyao, M and Inoue, Y. Enhancement by chloride ions of photoactivation of oxygen evolution in manganese-depleted photosystem II membranes. Biochemistry 1991, 30, 5379-5387.
    129. Murata N, Miyao M. Extrinsic membrane proteins in the photosynthetic oxygen-evolving complex. Trends Biochem Sci 1985, 10: 122-124.
    130. Nakatsu, F and Ohno, H. Adaptor protein complexes as the key regulators of protein sorting in the post-Golgi network. Cell Struct Funct, 2003(28): 419-429.
    131. Nield, J, Kruse, O, Ruprecht, J, da Fonseca, P, Buchel, C and Barber, J. Three-dimensional structure of Chlamydomonas reinhardtii and Synechococcus elongatus photosystem II complexes allows for comparison of their oxygen-evolving complex organization. J Biol Chem 2000, 275(36): 27940-27946.
    132. Nishizawa, A., Y. Yabuta, E. Yoshida, et al., Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress. Plant J, 2006, 48(4): 535-47.
    133. Obendorf RL. Oligosaccharides and galactosyl cyclitols in seed desiccation tolerance. Seed Science Research 1997, 7, 63-74.
    134. Ohno, H, Stewart, J, Fournier, M C, Bosshart, H, Rhee, I, Miyatake, S, Saito, T, Gallusser, A, Kirchhausen, T and Bonifacino, J S. Interaction of tyrosine-based sorting signals with clathrin-associated proteins. Science, 1995(269): 1872-1875.
    135. Ohno, H, Fournier, M C, Poy, G and Bonifacino, J S. Structural determinants of interaction of tyrosine-based sorting signals with the adaptor medium chains. J Biol Chem 1996, 271(46): 29009-29015.
    136. Ohno, H. Clathrin-associated adaptor protein complexes. J Cell Sci, 2006a. 119(18): 3719-3721.
    137. Ohno, H. Physiological roles of clathrin adaptor AP complexes: lessons from mutant animals. J Biochem, 2006b(139): 943-948.
    138. Ottow, E.A., M. Brinker, T. Teichmann, et al., Populus euphratica displays apoplastic sodium accumulation, osmotic adjustment by decreases in calcium and soluble carbohydrates, and develops leaf succulence under salt stress. Plant Physiol, 2005, 139(4): 1762-1772.
    139. Owen, D J and Evans, P R. A structural explanation for the recognition of tyrosine-based endocytotic signals. Science 1998, 282(5392): 1327-1332.
    140. Owen, D J and Luzio, J P. Structural insights into clathrin-mediated endocytosis. Curr Opin Cell Biol, 2000, 12: 467-474.
    141. Owen, D J, Collins, B M and Evans, P R. Adaptors for clathrin coats: structure and function. Annu Rev Cell Dev Biol, 2004(20): 153-191.
    142. Park Y H, Alabady M S, Ulloa M, et al. Genetic mapping of new cotton fiber loci using EST-derived microsatellites in an interspecific recombinant inbred line cotton population. Mol Genet Genomics, 2005, 274(4): 428-441.
    143. Pearse, B M and Robinson, M S. Clathrin, adaptors, and sorting. Annu Rev Cell Biol 1990, 6: 151-171.
    144. Peterbauer T, Richter A. Biochemistry and physiology of raffinose family oligosaccharides and galactosyl cyclitols in seeds. Seed Science Research 2001, 11: 185-197
    145. Peterbauer T, Mucha J, Mach L, Richter A. Chain elongation of raffinose in pea seeds—isolation, characterization, and molecular cloning of a multifunctional enzyme catalyzing the synthesis of stachyose and verbascose. Journal of Biological Chemistry 2002, 277: 194-200.
    146. Peters, S., S.G. Mundree, J.A. Thomson, et al., Protection mechanisms in the resurrection plant Xerophyta viscosa (Baker): both sucrose and raffinose family oligosaccharides (RFOs) accumulate in leaves in response to water deficit. J Exp Bot, 2007, 58(8): 1947-1956.
    147. Reddy A, Maley F. Studies on identifying the catalytic role of Glu-204 in the active site of yeast invertase. J Biol Chem. 1996, 271:13953-13957.
    148. Robinson, M S. Coats and vesicle budding. Trends Cell Biol 1997, 7(3): 99-102.
    149. Robinson, M S and Bonifacino, J S. Adaptor-related proteins. Curr Opin Cell Biol 2001, 13(4): 444-453.
    150. Robinson, M S. Adaptable adaptors for coated vesicles. Trends Cell Biol, 2004(14): 167-174.
    151. Rodionov, D G and Bakke, O. Medium chains of adaptor complexes AP-1 and AP-2 recognize leucine-based sorting signals from the invariant chain. J Biol Chem, 1998, 273(11): 6005-6008.
    152. Rohde, G, Wenzel, D and Haucke, V. A phosphatidylinositol (4,5)-bisphosphate binding site within mu2-adaptin regulates clathrin-mediated endocytosis. J Cell Biol 2002, 158(2): 209-214.
    153. Roitsch T. Source–sink regulation by sugar and stress. Current Opinion in Plant Biology 1999(2): 198-206.
    154. Roitsch, T, Balibrea, M E, Hofmann, M, Proels R & Sinha, A K. Extracellular invertase: key metabolic enzyme and PR protein. J Exp Bot. 2003, 54, 513-524.
    155. Roitsch, T & Gonzalez, M C. Function and regulation of plant invertases: sweet sensations. Trends Plant Sci. 2004(9): 606-613.
    156. Rook F, Gerrits N, Kortstee A, van Kampen M , Borrias M, Weisbeek P, Smeekens S. Sucrose-specific signalling represses translation of the Arabidopsis ATB2bZIP transcription factor gene. Plant J 1998(15):253-263.
    157. Ross, H A, Davies, H V, Burch, L R, Viola, R & McRae, D. changes in carbohydrate content and sucrose degrading enzymes in tuberizing stolons of potato (Solanun tuberosum). Physiol Plant. 1994, 90, 748-756.
    158. Rova, M, Franzén, L G, Fredriksson, P O and Styring, S. Photosystem II in a mutant of Chlamydomonas reinhardtii lacking the 23 kDa PsbP protein shows increased sensitivity to photoinhibition in the absence of chloride. Photosynth Res. 1994, 39, 75-83.
    159. Rova, E M, Mc Ewen, B, Fredriksson, P O and Styring, S. Photoactivation and photoinhibition are competing in a mutant of Chlamydomonas reinhardtii lacking the 23-kDa extrinsic subunit of photosystem II. J Biol Chem 1996, 271(46): 28918-24.
    160. Rutherford, A W, Zimmerman, J L, and Boussac, A. Oxygen evolution-in The Photosystems: Structure, Function and Molecular Biology (Barber, J., ed) 1992(11): 179-229, Elsevier Science Publishers B.V., Amsterdam.
    161. Salerno, G L and Curatti, L. Origin of sucrose metabolism in higher plants: when, how and why? Trends Plant Sci 2003, 8(2): 63-69.
    162. Samuel Y S, Cheung F, Lee J J, et al. Accumulation of genome-specific transcripts, transcription factors and phytohormonal regulators during early stages of fiber cell development in allotetraploid cotton. Plant J, 2006, 47(5): 761-775.
    163. Saxena I, Brown J R. Are the reversibly glycosylated polypeptides implicated in plant cell wall biosynthesis of nonprocessive b-glycosyltransferases? . Trends Plant Sci, 1999 (4): 6-7.
    164. Schmid, S L. Clathrin-coated vesicle formation and protein sorting: an integrated process. Annu Rev Biochem 1997, 66: 511-548.
    165. Schnable P S, Wise R P. The molecular basis of cytoplasmic male sterility and fertility restoration. Trends in Plant Science, 1998, 3(5): 175-180.
    166. Seaman, M N, Ball, C L and Robinson, M S. Targeting and mistargeting of plasma membraneadaptors in vitro. J Cell Biol 1993, 123(5): 1093-1105.
    167. Seidler, A., The extrinsic polypeptides of Photosystem II. Biochimica et biophysica acta, 1996, 1277(1-2): 35-60.
    168. Sergeeva, L I, Keurentjes, J J, Bentsink, L, Vonk, J, van der Plas, L H, Koornneef, M and Vreugdenhil, D. Vacuolar invertase regulates elongation of Arabidopsis thaliana roots as revealed by QTL and mutant analysis. Proc Natl Acad Sci U S A 2006, 103(8): 2994-2999.
    169. Shen JR and Inoue Y. Binding and functional properties of two new extrinsic components, cytochrome c-550 and a 12-kDa protein, in cyanobacterial photosystem II. Biochemistry. 1993, 32: 1825-1832.
    170. Sherson SM, Alford HL, Forbes SM, Wallace G, Smith SM. Roles of cell-wall invertases and monosaccharide transporters in the growth and development of Arabidopsis. J Exp Bot. 2003, 54:525-531.
    171. Shi Yong-hui, Zhu Sheng-wei, Mao Xi-zeng, et al. Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. Plant Cell, 2006, 18(3): 651-664.
    172. Smeekens JCM. Sugar-induced signal transduction in plants. Ann Rev Plant Physiol Plant Mol Biol. 2000, 51:49-81.
    173. Sondergaard, T.E., A. Schulz, and M.G. Palmgren, Energization of transport processes in plants. roles of the plasma membrane H+-ATPase. Plant Physiol, 2004, 136(1): 2475-2482.
    174. Sonnewald U, Brauer M, von Schaewen A, Stitt M, Willmitzer L. Transgenic tobacco plants expressing yeast-derived invertase in either the cytosol, vacuole or apoplast: a powerful tool for studying sucrose metabolism and sink source interactions. The Plant Journal 1991(1): 95-106.
    175. Ssruan Y L, Llewellyn D J, Furbank R T. The control of single-celled cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinated expression of sucrose and Kt transporters and expansin. Plant Cell, 2001, (13): 47-63.
    176. Stephens, D J, Crump, C M, Clarke, A R and Banting, G. Serine 331 and tyrosine 333 are both involved in the interaction between the cytosolic domain of TGN38 and the mu2 subunit of the AP2 clathrin adaptor complex. J Biol Chem 1997, 272(22): 14104-14109.
    177. Stephens, D J and Banting, G. Specificity of interaction between adaptor-complex medium chains and the tyrosine-based sorting motifs of TGN38 and lgp120. Biochem J 1998, 335 (3): 567-572.
    178. Sturm A, Chrispeels MJ. cDNA cloning of carrot extracellular b-fructosidase and its expression in response to wounding and bacterial infection. Plant Cell. 1990(2): 1107-1119.
    179. Sun WQ, Irving TC, Leopold AC. The role of sugar, vitrification and membrane phase transition in seed desiccation tolerance. Physiologia Plantarum1994, 90: 621-628.
    180. Sun Yan, Allen R D. Functional analysis of the BIN 2 genes of cotton. Mol Genet Genomics, 2005a, 274(1): 51-59.
    181. Sun Yan, Veerabomma S, Abdel-Mageed H A, et al. Brassinosteroid regulates fiber development on cultured cotton ovules. Plant Cell Physiol, 2005b, 46(8): 1384-1391.
    182. Taji T, Ohsumi C, Iuchi S, Seki M, Kasuga M, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K. Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. The Plant Journal 2002, 29: 417-426.
    183. Takatsu, H, Futatsumori, M, Yoshino, K, et al., Similar subunit interactions contribute to assembly of clathrin adaptor complexes and COPI complex: analysis using yeast three-hybrid system. Biochem Biophys Res Commun, 2001, 284(4): 1083-1089.
    184. Tamura, N and Cheniae, G. Photoactivation of the water-oxidizing complex in Photosystem II membranes depleted of Mn and extrinsic proteins. I. Biochemical and kinetic characterization. Biochim. Biophys. Acta 1987, 890, 179-194.
    185. Tang, G Q, Luscher, M and Sturm, A. Antisense repression of vacuolar and cell wall invertase in transgenic carrot alters early plant development and sucrose partitioning. Plant Cell 1999, 11(2): 177-189.
    186. Tapernoux-Luthi EM, Bohm A, Keller F. Cloning, functional expression, and characterization of the raffinose oligosaccharide chain elongation enzyme, galactan:galactan galactosyltransferase, from common bugle leaves. Plant Physiology 2004, 134: 1377-1387.
    187. Tetlow IJ, Morell MK, Emes MJ. Recent developments in understanding the regulation of starch metabolism in higher plants. Journal of Experimental Botany. 2004, 55: 2131-2145.
    188. Thornton LE, Ohkawa H, Roose JL, Kashino Y, Keren N, Pakrasi HB. Homologs of plant PsbP and PsbQ proteins are necessary for regulation of photosystem II activity in cyanobacterium Synechocystis 6803. Plant Cell. 2004, 16: 2164-2175.
    189. Traub, L M, Bannykh, S I, Rodel, J E, Aridor, M, Balch, W E and Kornfeld, S. AP-2-containing clathrin coats assemble on mature lysosomes. J Cell Biol 1996, 135(6 Pt 2): 1801-1814.
    190. Traub L M. Common principles in clathrinmediated sorting at the Golgi and the plasma membrane. Biochim Biophys Acta, 2005(1744): 415-437.
    191. Trowbridge, I S, Collawn, J F and Hopkins, C R. Signal-dependent membrane protein trafficking in the endocytic pathway. Annu Rev Cell Biol 1993, 9: 129-161.
    192. Tu Li-li, Zhang Xian-long, Liang Shao-guang, et al. Genes expression analyses of sea-island cotton (Gossypium barbadense L.) during fiber development. Plant Cell Rep, 2007, 26(8): 1309-1320.
    193. Turgeon R. Phloem loading and plasmodesmata. Trends in Plant Science 1996, 1: 418-423.
    194. Turgeon R, Medville R. Phloem loading. A re-evaluation of the relationship between plasmodesmatal frequencies and loading strategies. Plant Physiology 2004, 136: 3795-3803.
    195. Udall J A, Flagel L E, Cheung F, et al. Spotted cotton oligonucleotide microarrays for gene expression analysis. BMC Genomics, 2007, 8: 81-88.
    196. Unger C, Hardegger M, Lienhard S, Sturm A. cDNA cloning of carrot (Daucus carota) soluble acid beta-fructofuranosidases and comparison with the cell wall isoenzyme. Plant Physiol. 1994, 104:1351–1357.
    197. Vargas W, Cumino A, Salerno GL. Cyanobacterial alkaline/neutral invertases. Origin of sucrosehydrolysis in the plant cytosol? Planta. 2003, 216:951-960.
    198. Vaughn, M.W., G.N. Harrington, and D.R. Bush, Sucrose-mediated transcriptional regulation of sucrose symporter activity in the phloem. Proc Natl Acad Sci U S A, 2002, 99(16): 10876-10880.
    199. Verhaest, M, Lammens, W, Le Roy, K, De Coninck, B, De Ranter, C J, Van Laere, A, Van den Ende, W and Rabijns, A. X-ray diffraction structure of a cell-wall invertase from Arabidopsis thaliana. Acta Crystallogr D Biol Crystallogr 2006, 62(Pt 12): 1555-1563.
    200. Vermaas, W, Styring, S, Schr?der, W, and Andersson, B. Photosynthetic water oxidation: The protein framework. Photosynth. Res. 1993, 38, 249-263.
    201. Vijn I, Smeekens S. Fructan: More than a reserve carbohydrate? Plant Physiol. 1999, 120:351-360.
    202. Viola, R, Roberts, A G, Haupt, S, Gazzani, S, Hancock, R D, Marmiroli, N, Machray, G C & Oparka, K J. Tuberization in potato involves a switch from apoplastic to symplastic phloem unloading. Plant Cell. 2001, 13, 385-398.
    203. von Schaewen A, Stitt M, Schmidt R, Sonnewald U,Willmitzer L. Expression of yeast-derived invertase in the cell wall of tobacco and Arabidopsis leads to accumulation of carbohydrate and inhibition of photosynthesis and strongly influences growth and phenotype of transgenic tobacco plants. EMBO Journal 1990(9): 3033-3043.
    204. Wang, Fei, Stewart J M, Zhang Jin-fa, Molecular markers linked to the Rf2 fertility restorer gene in cotton. Genome, 2007, 50(9): 818-824.
    205. Wang Hai-yun, Yu Yi, Chen Zhi-ling, et al. Functional characterization of Gossypium hirsutum profilin 1 gene (GhPFN1) in tobacco suspension cells. Characterization of in vivo functions of a cotton profilin gene. Planta, 2005, 222(4): 594-603.
    206. Wang Jian-lin, Lee Jinsuk-J, Tian Lu, et al. Methods for genome-wide analysis of gene expression changes in polyploids. Methods in Enzymology, 2005, 395: 570-596.
    207. Warchol M, Perrin S, Grill JP, Schneider F. Characterization of a purified beta-fructofuranosidase from Bifidobacterium infantis ATCC 15697. Lett Appl Microbiol. 2002, 35:462–467.
    208. Weaver D B, Weaver J B. Inheritance of pollen fertility restoration in cytoplasmic male-sterile upland cotton. Crop Science, 1977, 17: 197-199.
    209. Wilbur, J D, Hwang, P K and Brodsky, F M. New faces of the familiar clathrin lattice. Traffic, 2005(6): 346-350.
    210. Williams LE, Nelson SJ, Hall JL. Solute/proton co-transport in plasma membrane vesicles from Ricinus cotyledons, and a comparison with other tissues. Planta. 1992(22):541-550.
    211. Winter H, Huber SC. Regulation of sucrose metabolism in higher plants: localization and regulation of activity of key enzymes. Critical Reviews of Biochemistry and Molecular Biology. 2000, 35: 253-289.
    212. Wu Ai-min, Ling Chen, Liu Jin-yuan. Isolation of a cotton reversibly glycosylated polypeptide (GhRGP1) promoter and its expression activity in transgenic tobacco. J Plant Physiol, 2006a, 163(4): 426-435.
    213. Wu Ai-min, Liu Jin-yuan. Isolation of the promoter of a cotton beta-galactosidase gene (GhGal1) and its expression in transgenic tobacco plants. Sci China C Life Sci, 2006b, 49(2): 105-114.
    214. Xu J, Avigne WT, McCarty DR, Koch KE. A similar dichotomy of sugar modulation and development expression affects both paths of sucrose metabolism: evidence from maize invertase gene family. Plant Cell 1996(8):1209-1220.
    215. Yin Jian-mei, Guo Wang-zhen, Yang Lu-ming, et al. Physical mapping of the Rf1 fertility-restoring gene to a 100 kb region in cotton. Theor Appl Genet, 2006, 112(7): 1318-1325.
    216. Zhang Jin-fa, Stewart J M. CMS-D8 restoration in cotton is conditioned by one dominant gene. Crop Science,2001a, 41: 283-288.
    217. Zhang Jin-fa, Stewart J M. Inheritance and genetic relationships of the D8 and D2-2 restorer genes for cotton cytoplasmic male sterility. Crop Science, 2001b, 41: 289-294.
    218. Zhang Jin-fa, Stewart J M, Wang Tong-hui. Linkage analysis between gametophytic restorer Rf2 gene and genetic markers in cotton. Crop Science, 2005, 45(1): 147-156.
    219. Zhang Jin-fa, Stewart J M. Identification of molecular markers linked to the fertility restorer genes for CMS-D8 in cotton. Crop Science, 2004, 44(4): 1209-1217.
    220. Zhao Guang-rong, Liu Jin-yuan. Solation of a cotton RGP gene: a homolog of reversibly glycosylated polypeptide highly expressed during fiber development. Biochim Biophys Acta, 2002, 1574: 370-374.
    221. Zhao Guang-rong, Liu Jin-yuan, Du Xiong-ming. Molecular cloning and characterization of cotton cDNAs expressed in developing fiber cells. Biosci Biotechnol Biochem, 2001, 65(12): 2789-2793.
    222. Zhu, Y, Traub, L M and Kornfeld, S. ADP-ribosylation factor 1 transiently activates high-affinity adaptor protein complex AP-1 binding sites on Golgi membranes. Mol Biol Cell 1998, 9(6): 1323-1337.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700