棉花咖啡酸-O-甲基转移酶基因(GhCOMT)的克隆、表达及功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉花纤维是从胚珠外表皮细胞分化而来的单细胞,是纺织工业的重要原料,具有重要的经济价值。棉花体内通过苯丙氨酸途径进入木质素特异途径合成木质素,这条代谢途径涉及许多酶的参与,其中咖啡酸-O-甲基转移酶(caffeic acid-O-methyltransferase, COMT)是木质素特异途径中的一个关键酶,可催化咖啡酸,5-羟基松柏醛和5-羟基松柏醇甲基化分别生成阿魏酸、芥子醛和芥子醇,参与S-木质素的合成。本研究从以下几个方面对咖啡酸-O-甲基转移酶进行分析:
     (1)本研究以陆地棉徐州142为材料,克隆了3个木质素合成关键酶基因GhCOMT1(GenBank登录号为FJ479708)、GhCOMT2(GenBank登录号为FJ479709)和GhCOMT3(GenBank登录号为FJ848869)并将GhCOMT1/2/3基因构建到原核表达载体pET-28a中,转化至大肠杆菌BL21(DE3)中。用0.2 mmol/L IPTG诱导融合蛋白表达,再经过蛋白标记亲和层析柱(His TrapTM HP)纯化分别得到GhCOMT1/2/3融合蛋白,用SDS-PAGE和Western blotting检测纯化效果,鉴定表达产物,目的蛋白相对分子量分别为39.748 kD,40.062 kD,39.119 kD,检测结果与预期一致。
     (2)本研究构建了由棉纤维组织特异性启动子E6驱动的GhCOMT1基因正义、反义表达载体;同时克隆了GhCOMT1基因的一段417 bp高度保守区序列,构建了GhCOMT1基因的RNAi干扰载体,并将上述载体转入农杆菌菌株LBA4404中。经测序表明,目的基因成功整合至表达质粒中。
     (3)构建GhCOMT1基因的瞬时表达载体,以pMD-T-GhCOMT1质粒为模板,获得GhCOMTl基因目的片段,然后将其连接到瞬时表达载体pRTL2-GUS/NIa中,获得35S启动子驱动的pGUS-GhCOMT1融合表达载体,将pGUS-GhCOMT1转化到棉花胚珠中进行培养,经检测表明构建的瞬时表达载体可在棉纤维细胞中高效表达。并利用透射电镜观察了培养棉纤维细胞横截面,结果显示pGUS-GhCOMT1基因对棉纤维细胞壁的增厚有显著的影响。
     通过对棉花咖啡酸-O-甲基转移酶基因(GhCOMT)初步研究的结果显示,GhCOMT基因在棉纤维发育过程中起着十分重要的作用,从而对从分子水平改良纤维品质提供新的候选目的基因,并为研究棉花纤维发育调控的分子机理提供理论基础。
Cotton fiber is a single and highly elongated epidermal cell of the outer integument of the ovule. Lignin in cotton is synthesized via the lignin specific biosynthesis pathway which is just downstream of the common phenylpropanoid pathway, and many enzymes are involved in this process. Caffeic acid-3-O-methyltransferase (COMT) is a key enzyme of lignin specific pathway and catalyzes caffeic acid,5-Hydrocy-coniferyl aldehyde and 5-Hydrocy-coniferyl-coniferyl alcohol to produce ferulaic acid sinapyl aldehyde and sinapyl alcohol. It participates into the pathway of synthesizing S-lignin. Here we examined the role of GhCOMT in cotton development.
     1. In this study, full-length cDNAs of a key enzyme genes GhCOMT1/2/3(GenBank accession no.FJ479708, FJ479709, FJ848869), related to lignin metabolism in cotton (Gossypium hirsutum, cv. Xuzhou 142.) were isolated. And the GhCOMT1/2/3 genes were inserted into the pET-28a vector to construct recombinant vector pET-28a-GhCOMT1/2/3, which were then transformed into E.coli BL21(DE3) strain. After induction and expression, the target proteins were purified by using His TrapTM HP to get degenerated protein, SDS-PAGE and Western blotting detection were then employed to identify target proteins which had the molecular mass about 39.748kD,40.062 kD, and 39.119 kD respectively, the results were consistent with expectation.
     2. To investigate the function of GhCOMT1 gene, in the present study, we constructed the sense and anti-sense expression vectors of GhCOMT1 gene, and the coding region of the gene was placed under the E6 promoter in either sense or anti-sense orientation. In addition, a 450 bp fragment of GhCOMT1 was also cloned, and this fragment was inserted into plant vector to construct RNAi expression vector of GhCOMT1. These constructs were then transformed into Agrobacterium LBA4404. The sequencing result of different recombinant expression vectors showed that the GhCOMT1 gene has been correctly constructed.
     3. In this study transient expression vector of cotton GhCOMT1 gene was constructed. Firstly, the GhCOMT1 gene cDNA was obtained from pGEM-T-GhCOMT1 by PCR, then inserted into transient expression vector pRTL2-GUS/NIa. The transient expression vector pGUS-GhCOMTl is driven by 35S promoter with GUS reporter gene and the target gene, which expressed simultaneously and formed a fusion protein. Secondly, the vector pGUS-GhCOMT1 was transformed into cotton ovule by using PDS-1000/He biolistic particle delivery system. The results indicated that the transient expression vector pGUS-GhCOMT1 could be expressed efficiently in the epidermal cells of cotton fibre.
     Based on this data, we suggest that GhCOMT may play an important role in the morphogenesis and secondary wall thickening of cotton by positively/negatively regulating the structure of cell wall in growing course. Our study presents important experimental evidence for the function of lignin and provides gene candidates for genetic improvement of cotton fiber quality.
引文
[1]郭旺珍,孙敬,张天真.棉花纤维品质基因的克隆与分子育种[J].科学通报,2003,48(5):410-417.
    [2]孟钊红.陆地棉GhSH1a基因克隆及功能的初步分析[D].山西:山西大学生物技术研究所硕士学位论文,2006,96pp.
    [3]秦超,倪志勇,闫洪颖,吕萌,郝晓燕,范玲.棉花GhCCR4基因的瞬时表达研究[J].棉花学报,2010,22(1):10-16.
    [4]Amarjit S B, Malik C P. Development of cotton fibre [J]. International Review of Cytology.1984, 89:65-113.
    [5]Arpat A B, Waugh M, Sullivan J P, et al. Functional genomics of cell elongation in developing cotton fibers[J]. Plant Molecular Biology,2004,54:911-929.
    [6]Delanghe E A L, Lint development. In Cotton Physiology, Mauney J R, Stewart J M, Eds. The cotton Foundation:Memphis, TN,1986. pp 325-349.
    [7]郭媖,郭旺珍,张天真.一个新的棉纤维表达蛋白cDNA的克隆、表达及功能初步分析[J].棉花学报,2006,18(2):67-73.
    [8]Itoh T. Fine structure and formation of cell wall of developing cotton fiber[J]. Wood Research, 1974,56:49-61.
    [9]李伟,熊谨,陈晓阳,木质素代谢的生理意义及其遗传控制研究进展[J].西北植物学报,2003,23(4):675-681.[10] Guo D, Chen F, Inoue K, et al. Down-regulation of caffeic acid 3-O-methyltransferase and caffeoyl coenzyme A 3-O-methyltransferase in transgenic alfalfa:impacts on lignin structure and implications for the biosynthesis of G and S lignin[J]. Plant Cell,2001,13:73-88. [11] Toquin V, Grausem B, Geoffroy P, et al. Structure of the tobacco caffeic acid O-methyltransferase (COMT) II gene:identification of promoter sequences involved ingene inducibility by various stimuli[J]. Plant Molecular Biology,2003,52(3):495-509. [12] Humphreys J.M, Hemme M.R, Chapple C, New routes for lignin biosythsis defened by biochemical characterization of recombinant ferulate-5-hydroxylase, a multifunctional cytochrome P450-defendant monooxygenase[J]. Proceedings of the National Academy of Sciences,1999, 96(18):10045-10050. [13] Osakabe K, Tsao C C, Li L, et al. Coniferylaldehyde 5-hydroxylation and methylation direct syringyl lignin biosynthesis in angiosperms[J]. Proceedings of the National Academy of Sciences, 1999,96(16):8955-8960. [14] Bugos R C, Vincent L C, Campell W.H. cDNA clonging, sequcnce analysis and seasonal expression of lignin-bispecific caffeic/5-hydroxyferulic acid O-methyltransferase of aspen[J]. Plant Molecular Biology,1991,17(6):1203-1205.
    [15]Pellegrini L O G, Geoffroy P, Fritig B, Molecular cloning and expression of a new class of diphenol-O-methyltransferases induced in tobacco leaf infection or clicitor treatment[J]. Plant Physiol,1993,103(2):501-509.
    [16]Heath R, Huxley H, Stone B, cDNA cloning and differential expression of three caffeic acid O-methyltransferase homologues from perennial ryegrass(Lolium perenne) [J]. Journal of Plant Physiol,1998,153:649-657.
    [17]Chung N J, Zhang X D, Kreamer A, et al. Median absolute deviation to improve hit selection for genome-scale RNAi screens[J]. Journal of biomolecular screening,2008,13(2):149-158.
    [18]Rastogi S, Dwivedi U N. Manipulation of lignin in plants with special reference to O-methyltransferase[J]. Plant Science,2008,174(3):264-277.
    [19]Ma Q H, Xu Y.Characterization of a caffeic acid 3-O-methyltransferase from wheat and its function in lignin biosynthesis [J], Biochimie,2008,90(3):515-524.
    [20]魏建华,宋艳茹.木质素生物合成途径及调控的研究进展[J].植物学报,2001,43(8),771-779.
    [21]Zein I, Wenzel G, Andersen J, et al. Low level of linkage disequilibrium at the COMT(caffeic acid O-methyltransferase)locus in European maize(Zea mays L.)[J]. Genetic Resources and Crop Evolution,2007,54(1):139-148.
    [22]薛永常,李金花,卢孟柱,等.木质素单体生物合成途径及其修订[J].林业科学,2003,39(6),146-153.
    [23]Ye Z H, Varner J E. Differential expression of two O-methyltransferase in lignin biosynthsis in Zinnia elegans[J]. Plant Physiol,1995,108(2):459-467.
    [24]Zhong R, Morrisom H, Negrel J. Dual methylation pathways in lignin biosynthesis[J]. Plant Cell, 1998,10(12):2033-2045.
    [25]Rastogi S, Dwivedi U. Down-Regulation of Lignin Biosynthesis in Transgenic Leucaena leucocephala Harboring O-Methyltransferase Gene[J]. Biotechnol Prog,2006,22(3):609-616.
    [26]Magalie P, Caroline D, Denise G. Variation in lignin and cell wall digestibility in caffeic acid O-methyltransferase down-regulated maize half-sibprogenies in field experiments [J]. Molceular Breeding,2006,18(3):253-261.
    [27]Amor Y, Haigler C H, Johnson S, et al. A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose[J]. Proceedings of the National Academy of Sciences,1995,92:9353-9357.
    [28]Lapierre C, Pollet B, Petit C M, et al. Structural alterations of lignins in transgenic poplar with depresse cinnamyl alcohol dehydrogenase or caffeic acid O-methyltransferase activity have an opposite impact on the efficiency of industrial kraft pulping[J]. Plant Physiol,1999,119(1): 153-164.
    [29]Sewalt V J H, Ni W, Blount J W, et al. Reduced lignin content and altered lignin composition in transgenic tobacco down-regulated in expression of phenylalanine ammonia-lyase or cinnamate 4-hydroxylase[J]. Plant physiol,1997,115(1):41-50.
    [30]Tsai C J, Popko J L, Mielke M R, et al. Suppression of O-methyltransferase gene by homologous sense transgene in quaking aspen causes red-brown wood phenotypes[J]. Plant Physiol,1998, 117(1):101-112.
    [31]Ni W, PaivaN L, Dixon R. Reduced lignin in transgenic plants containing an engineered caffeic acid O-methyltransferase antisense gene[J]. Transgenic Research,1994,3(2):120-126.
    [32]Juergen P, Achim G, Juergen A, et al. Molecular Composition of Leaves and Stems of Genetically Modified Bt and Near-Isogenic Non-Bt Maize-Characterization of Lignin Patterns[J]. Journal of Environmental Quality,2005,34:1508-1518.
    [33]Pinchon G, Chabannes M, Lapierre C, et al. Simultaneous down-regulation of caffeic/5-hydroxy ferulic acid-O-methyltransferase I and cinnamoyl coenzyme A reductase in the progeny from a cross between tobacco lines homozygous for each transgene:consequences for plant development and lignin, synthesis[J]. Plant Physiol,2001,126(1):145-155.
    [34]Pinchon G, Maury S, Hoffman L, et al. Repression of O-methyltransferase genes in transgenic tobacco affects lignin synthesis and plant growth[J]. Phytochemistry,2001,57(7):1167-1176.
    [35]ZHAO H Y, WEI J. Advances in Research on Lignin Biosynthesis and Its Genetic Engineering[J]. Journal of Plant,2004,30(4):361-370.
    [36]Ranocha P, Chabannes M, Chamayou S, Laccase down-regulation causes alterations inphenolic metabolism and cell wall structure in poplar[J]. Plant Physiol,2002,129(1):145-155.
    [37]Piquemal J, Chamayou S, Nadaud I, et al. Down-regulation of caffeic acid Omethyl-transferase in maize revisited using a transgenic approach [J]. Plant Physiol,2002,130(4):1675-1685.
    [38]Jean H, Magallanes-cedeno. Adaptation of Cotton Shoot Apex Culture to Agrobacterium-Mediated Transformation[J]. Plant Molecular Biology Reporter,1998,16:1-10.
    [39]Smart LB, Vojdani F, Wan CY, et al. Regulation of genes involved in cell elongation during cotton (Gossypium hirsutum) fiber development[J]. Plant Physiology,1996,111(2):648.
    [40]O'Malley D M, Whetten R W, Bao W. The role of laccase in lignification[J]. Plant Journal,1993, 4(5):751-757.
    [41]Douglas C J. Phenylpropanoid metabolism and lignin biosynthesis:from weeds to trees [J]. Trends Plant Science,1996,10:1360-1385.
    [42]Dean J F D, Eriksson K E L. Biotechnological modification of lignin structure and composition in forest trees[J]. Holzforschung,1992,46(22):135-147..
    [43]Vignols F, Rigau J, Torres M A, et al. The brown midrib3 (bm3) mutation in maize occurs in the gene encoding caffeic acid O-methyltransferase[J]. Plant Cell,1995,7(4):407-416.
    [44]李波,倪志勇,王娟,等.木质素生物合成关键酶咖啡酸-O-甲基转移酶基因(COMT)的研究进展[J].分子植物育种,2010,8(1):117-124.
    [45]倪志勇,吕萌,李波,等.棉花咖啡酸-O-甲基转移酶基因的克隆及特征分析[J].中国农业科学,2010,43(6):1117-1126.
    [46]倪志勇,李波,吕萌,等.棉花肉桂醇脱氢酶基因的克隆与分析[J].华北农学报,2010,25(2):23-29.
    [47]倪志勇,马文静,吕萌,等.棉花肉桂醇脱氢酶基因GhCAD6的克隆及正义、反义与RNAi干扰载体的构建[J].华北农学报,2009,24(6):20-26.
    [48]Fan L, Shi W J, Hu W R, et al.Molecular and biochemical evidence for phenylpropanoid synthesis and presence of wall-linked phenolics in cotton fibers[J]. Journal of Integrative Plant Biology, 2009,51(7):626-637.
    [49]Westafer J M, Brown M R. Electron microscopy of the cotton fiber:New observations on cell wall formation[J].Cytobios,1976,15:111-138.
    [50]Boerjan W, Ralph J, Baucher M. Lignin biosynthesis[J]. Annual Review of Plant Biology,2003, 54(1):519-546.
    [51]Ye Z H, Zhong R Q, Himmelsbach D S. Caffeoyl coenzymeA O-methyltransferase and lignin biosynthesis[J]. Phytochemistry,2001,57(7):1177-1185.
    [52]Zhong R Q, Morrison W H.Ye Z H. Dual methylation pathways in lignin biosynthesis [J]. The Plant Cell,1998,10(12):2033-2046.
    [53]Zubieta C, He X Z, Noel J P. Structures of two natural product methyltransferases reveal the basis for substrate specificity in plant O-methyltransferases[J]. Nature Structural Biology,2001,8(3): 271-279.
    [54]单黎然,杨振,安宁,等.泛素样小蛋白4(SUMO4)的克隆、原核表达、纯化及鉴定[J].西北农林科技大学学报,2008,36(9):11-16.
    [55]Bonner G, Lafer E M, Sousa R. Characterization of a set of T7 RNA polymerase active site mutants[J]. The Journal of Biological Chemistry,1994,269(40):25120-25128.
    [56]Chamderlin M, Mcgrath J, et al.New RNA polymerase from Eschericha coli infected with bateriaphageT7[J]. Nature,1970,228(5268):227-231.
    [57]Van Dyke M W, Sirito M, Sawadogo M.Single-step purification of bacterially expressed polypeptides containing an oligohistidine domain[J]. Gene,1992,11(1):99-104.
    [58]张付云,白雪芳,杜昱光,等.烟草SKP1基因cDNA的克隆分析及原核表达[J].作物学报,2007,33(4):693-696.
    [59]董娜,张增艳,辛志勇.病原诱导的小麦ERF转录因子TaERF1b的原核表达及纯化[J].植物遗传资源学报,2008,9(3):283-287.
    [60]Fire A, Xu S Q, Montgomery M K, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans[J]. Nature,1998,391(19):806-811.
    [61]Smith N A, Singh S P, Wang MB, et al. Total silencing by intron-spliced hairpin RNAs[J]. Nature,2000,407:319-320.
    [62]Chuang C F, Meyerowitz E M. Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences,2000,97:4985-4990.
    [63]康国章,肖向红,王永华,等.小麦淀粉GBSSH基因的克隆、反义和RNAi载体的构建[J].华北农学报,2008,23(1):7-11.
    [64]朱红林,沙爱华,符秀梅,等.转录调控基因GmLECl的cDNA克隆及其植物表达载体的构建[J].华北农学报,2009,24(1):64-68.
    [65]Baucher M, Chabbert B, Pilate G, et al. Red xylem and higher lignin extractability by down-regulating a cinnamyl alcohol dehydrogenase in poplar[J]. Plant Physiol,1996,112: 1479-1490.
    [66]LI B, NI Z Y, FAN L. Research progresses on the genes encoding the key enzymes caffeic acid-3-O-Methyltransferase (COMT) in biosynthetic pathway of lignin[J]. Molecular Plant Breeding,2010,8(1):117-124.
    [67]Rastogi S, Dwivedi U N. Manipulation of lignin in plants with special reference to O-methyltransferase[J]. Plant Science,2008,174(3):264-277.
    [68]Mette M F, Aufsatz W, Winden J, et al. Transcriptional silencing and promoter methylation triggered by double-stranded RNA[J]. EMBO Journal,2000,19:5194-5520.
    [69]Sijen T, Vijn I, Rebocho A, et al. Transcriptional and posttranscriptional gene silencing are mechanistically related[J]. Current Biology,2001,11:436-444.
    [70]Chan SW-L, Zilberman D, Xie Z, et al. RNA silencing genes control de novo DNA methylation[J]. Science,2004,303:1336.
    [71]黄冰艳,吉万全,郭蔼光,等.转录后基因沉默(PTGS)及其在作物遗传改良中的应用[J].中国生物工程杂志,2005,25(5):1-5.
    [72]Wesley S V, Helliwell C A, Smith N A, et al. Construct design for efficient, effective and high-throughput gene silencing in plants[J]. Plant Journal,2001,27:581-590.
    [73]王雷,种康,许智宏.植物功能基因组学研究的有效工具-RNAi技术[J].植物生理学通讯,2003,39(6):705-710.
    [74]Neil A S, Surinder P S, Wang M B, et al. Total silencing by intron spliced hairpin RNAs[J]. Nature,2001,407:319-320.
    [75]Hammond S M, Bernstern E, Beach D. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells[J]. Nature,2000,404(16):293-296.
    [76]JEFFERSON R A. GUS fusions:beta-glucuronidase as a sensitive and versatile gene fusion markerin higher plants[J]. EMBO Journal,1987,6:3901-3907.
    [77]LESLIE E S, MEYEROWITZ E M. Molecular dissection of the agamous control region shows that cis elements for spatial regulation are located intragenically[J]. Plant Cell,1997,9(3):355-365.
    [78]闫洪颖,胡文冉,范玲.新疆特早熟陆地棉纤维细胞发育过程的超微结构观察[J].棉花学报,2009,21(6):456461.
    [79]Von Arnim A G, Deng X W, Stacey M G. Cloning vectors for the expression of green fluorescent protein fusion proteins in transgenic plants[J]. Gene,1998,221:35-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700