棉花生长素应答因子的克隆及其功能初步分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉花是一种重要的全球性的经济作物。棉花纤维以其好的保暖性、保湿性、透气性等不可为其它纤维代替的优点,越来越受到世界各国的重视。同时人们对纤维品质的追求,也越来越高。随着分子生物学的发展,利用基因工程改良棉纤维品质展现了广阔的前景。如通过分离鉴定棉纤维发育相关的基因,并导入棉花中,使其过量或缺失表达,影响纤维的发育。虽然对棉花纤维的改良已有很多成功的例子,但是还未见从生长素响应因子(ARF,auxin response factor)方面的报道。
     生长素在植物的生长和发育过程中起着关键的作用。据报道,生长素促进纤维细胞的伸长。纤维原始细胞在开花前3天到前2天,可以由于IAA的刺激从而获得细胞延伸的生理能力。开花前后可以由于外施IAA,明显增加胚珠的纤维数量。ARF是生长素信号转导途径中的关键因子,它可以接受生长素传递的信号,启动或是抑制下游基因的表达。
     本研究通过电子克隆技术和生物信息学知识,结合RACE技术,克隆到了一个棉花中的新ARF基因,命名为ARF3(GENBANK登录号为:EF467605),并根据已知的序列,通过RT-PCR的方法获得了棉花中ARF10基因含完整读码框的cDNA序列。将以上获得的cDNA序列克隆到pCAMBIA1301表达载体上,构建了pCAMBIA1301-ARF3和pCAMBIA1301-ARF10植物表达载体。在农杆菌GV3101介导下,通过真空渗透转化技术转化模式植物拟南芥,得到了批量的转基因植株。ARF3转基因植株经抗性筛选,得到了12株T1代转基因植株;ARF10转基因植株经抗性筛选,得到11株T1代转基因植株。PCR检测证明,目的基因已成功导入模式植物拟南芥中;RT-PCR检测目的基因在转基因植株中得到表达。对转基因植株表型的观察,在得到转基因植株纯合子之后进行。
Cotton is an important global economic crop. The cotton fiber is the main product, which has become more and more important for its advantages. Compared to other fibers, it has better traping body heat,better keeping moisture and permeable. In view of these nature advantages, the world has paid more and more attention to the quality of the cotton fiber. As the development of molecular biology,the use of genetic engineering to improve the quality of the cotton fiber has a good prospect of application and extension. For example, through seperating the aim sequence from the cotton genome and conducting it into the cotton, we find the fiber of the transgenic cottons is influenced. Though there have been many successful examples of cotton fiber improvement using genetic engineering technology, the report of ARFs influence on cotton fiber is still not reported recently.
     The auxin plays an important role in the process of plant upgrowth. It is reported auxin can promote the elongation of cotton fiber cell three days or two days before blossoming, the fiber cell can get elonggation ability throungh IAA-stimulation. Adding to IAA before blooming previously increases the cotton fiber quantity. ARF is the key factor in auxin signal transduction pathway, which can receive the signals caused by auxin and activate or repress the expression of the backward genes.
     In this research,through electronic cloning technology and bioinformation knowledge, we have seperated a new ARF gene by RACE technology, named ARF3. The GenBank accession number is EF467605. We have also got the whole cDNA sequence of ARF10 by RT-PCR method. We connect the two cDNA sequences to plant expression vector pCAMBIA1301, named pCAMBIA1301-ARF3 and pCAMBIA1301-ARF10. By vacuum infiltration technology, the two plant expression vectors have been transmitted into Arabidoposis thaliana. We have got many transgenic plants. The PCR detection proves the sequnece has successfully recombined with the genome of Arabidoposis thaliana. We have also proved its expression by the method of RT-PCR.We will take note of the phenotype of the transgenic plants after we get homozygotes.
引文
1. 卞海云,周治国,陈兵林,蒋光华.棉纤维加厚发育期间纤维素生物合成研究进展[J].棉花学报,2004,(06).
    2. 常立,石大兴,王米力.生长素信号转导研究进展.亚热带植物科学,2003,32(2):69-71.
    3. 陈松,周宝良.基因工程改良棉纤维研究进展,中国农学通报,2003,19(1): 62-65.
    4. 杜雄明,潘家驹,汪若海.棉纤维细胞分化和发育.棉花学报,2000,12(4): 212-217.
    5. 郭媖,郭旺珍,张天真.一个新的棉纤维表达蛋白 cDNA 的克隆、表达及功能初步分析[J].棉花学报,2006,(02).
    6. 郭旺珍,孙敬,张天真.棉花纤维品质基因的克隆与分子育种.科学通报,2003,48(5):410-416.
    7. 干学德,朱玉贤,季道藩,等.棉纤维相关 cDNA 的克隆及其在 4 个纤维突变体中的结构变异.科学通报,2000,45(17):1852-1857.
    8. 侯萍.几种新的基因克隆技术简介[J].生命科学,1997,(01).
    9. 胡根海,喻树迅.棉花基因克隆研究进展.棉花学报,2005,17(4):240-244.
    10. 蒋素梅,陶均,李玲.早期生长素响应蛋白在生长素信号转导中的作用.植物生理学通讯,2005.(11).
    11. 刘宇飞.棉纤维起始相关基因的 cDNA 片段克隆及分析.中国农业大学,2004.
    12. 刘洋,何心尧,马红波,吴泳历,杨佑明.用 CTAB-PVP 法提取棉花各组织总 RNA的研究[J].中国农业大学学报,2006,(01).
    13. 刘继华,杨洪博,曹鸿鸣.棉纤维发育与产量及品质的关系[J].中国棉花,1995,(05).
    14. 罗明,李名扬,侯磊,肖月华,张正圣,裴炎,季道藩.棉花纤维发生相关 AFLP标记[J].遗传学报,2001,(07).
    15. 罗达.中国科学家在棉花纤维发育研究领域取得最新进展.分子植物育种,2006,(z1).
    16. 李永起,陈良兵.棉花纤维发育的分子研究进展.分子植物育种,2004,(01).
    17. 李啸浪,胡新文,刘晓丽,郭建春.热带地区拟南芥栽培技术及基因转化体系的构建.热带作物学报,2005,(03).
    18. 秦治翔,杨佐明.棉纤维次生壁增厚相关基因的 cDNA 克隆与分析.作物学报,2003,29:860-866.
    19. 汤庆峰,文启凯,田长彦,张巨松,马黎春.棉花纤维品质的形成机理及影响因子研究进展.新疆农业科学,2003,(04).
    20. 陶灵虎,阮锡根,刘稳生.棉纤维发育过程中细胞壁超微结构变化的研究.生物物理学报,1993,(01) .
    21. 王素会,杜雄明.两个棉纤维发育突变体分子生物学研究进展.棉花学报,2003 ,15(6):376-379.
    22. 王全英.如何提高棉纤维的品质.山西农业,2006,(15).
    23. 王淑民,等.棉花实夜蛾属对拟除虫菊酯的抗药性及其治理.世界农业,1994,(7):31-33.
    24. 吴蓓,吴建勇.生长素反应因子. 植物生理学通讯,2005,41(3).
    25. 徐楚年,余炳生,张仪,等.棉花四个栽培种纤维发育的比较研究.北京农业大学学报,1988,14(2):113-119.
    26. 徐楚年,张仪,余炳生,等.棉花四个栽培种纤维发育早期扫描电镜比较研究.北京农业大学学报,1987,13(3):255-262.
    27. 徐楚年.棉花纤维发育学.北京农大自编教材,1998,29-43,55-59.
    28. 肖结凝,黄学林,黄霞等.芒果生长素反应因子类蛋白cDNA克隆和表达.生物工程学报,2004,20(1): 59-62.
    29. 杨佑明,徐楚年.棉纤维发育的分子生理机制.植物学通报 2003,20(1):1-9.
    30. 张立桢.基于过程的棉花生长发育模拟模型.南京农业大学,2003.
    31. 张圣章.棉纤维细胞发育研究进展.植物生理学通讯,1982,(6): 1-7.
    32. 张天真.棉花纤维品质分子育种的现状及展望.棉花学报,2000,12(6): 321-326.
    33. 朱勇清,许可香,陈晓亚.棉花 li 突变体生长素极性运输的减弱[J].植物生理与分子生物学学报,2003,(01).
    34. 朱乾浩,棉纤维品质改良的分子生物学基础[J].棉花学报.2000,(03).
    35. 朱玉贤,姬生健,卢迎春.棉纤维发育过程中特异表达基因的大规模克隆与功能分析.2000 年度首都青年科学家论坛一生物技术与现代化农业论文集,2002, P5.
    36. 赵炜,郑佐华,毛裕民.全长 cDNA 的获得—RACE 及其他方法进展.生命科学,1999,11(2):92-96.
    37. 赵瑞海,韩春丽,张旺锋.棉纤维超分子结构及与纤维品质的关系.棉花学报,2005,(02).
    38. Aiyangar GS. Origin and development of lint and fuzz in cotton. Ind J Agr Sci, 1951, 21:293-312.
    39. Ashverya Laxmi, Laju K. Paul, Janny L. Peters and Jitendra P. Khurana.Arabidopsis constitutive photomorphogenic mutant, bls1, displays altered brassinosteroid response and sugar sensitivity. Plant Molecular Biology, 2004, 56(2):185-201.
    40. Abel, S.and Theologis, A. Early genes and auxin action. Plant Physiol, 1996, 111:9–17.
    41. Andrawis A M, Solomon M, Delmer D P, 1993. Cotton fiber annexins: a potential role in the regulation of callose synthase. Plant J, 3:763-772.
    42. Basra AS, Saha S. Cotton Fibers: Developmental biology, quality improvement, and textile processing. New York: Food Products Press, 1999, 47-63.
    43. Basra AS, Malik CP Development of the cotton fiber. Intemational Review of Cytology, 1984, 87:65-113.
    44. Basra AS. Cotton Fibers: Developmental Biology, Quality Improvement, and Textile processing.New York: Food Products Press, 1999.
    45. Beasley CA. Development morphology of cotton flowers and seed as seen with the scanning electron microscope. American Journal of Botany, 1975, 62: 584-592.
    46. Bechtold N,Ellis J,Pelletier G. In plant Agrobacterium-mediated gene transfer by infiltration of Arabidoposis thaliana plants. Acid.Sci. Paris, life sciences 1993, 316:(1) 194-199.
    47. Benkova E, Michniewicz M, Sauer, et al. Efflux-dependent auxin gradients as a common module for plant organ formation. Cell, 2003, 115(5):591-602.
    48. Berlin JD. The outer epidermis of the cotton seed. In: Mauney Jlt, Stewart JM, (eds). Cotton Physiology. Memphis TN: The Cotton Foundation, 1986, 375-414.
    49. Blakeslee J J, Peer W A, Murphy A S. Auxin transport. Curr Opin Plant Biol, 2005, 8(5):494-500.
    50. Carpita NC, Delmer DP. Protection of Cellulose Synthesis in Detached Cotton Fibers by Polyethylene Glycol. Plant Physiol. 1980, 66(5):911-916.
    51. Chen JJ, Janet DR, Wang SM. Generation of longer cDNA frgments from serial analysis of geneexpression tags for gene identification. PNAS, 2000, 97: 349-353.
    52. Colon-Carmona, A., Chen, D.L., Yeh, K.C. and Abel, S. Aux/IAA proteins are phosphorylated by phytochrome in vitro.Plant Physio. 2000, 124: 1728–1738.
    53. Delmer D P, Solomon M, Read S M, Direct photolabeling with[32P]UDP-glucose for identification of a subunit of cotton fiber callose synthase. Plant Physiol, 1991, 95:556-563.
    54. Desfeux C, Steven J, Clough, and rew F. Female reproductive are the primary target of Agrobacterium-mediated transformation by the Arabidoposia floral-dip methed. Plant Physiol. 2000, 123: 895-904.
    55. Dolan L, Linstead P, Kidner C et al. Cell fate in plants. Lessons from the Arabidopsis root. Symp Soc Exp Biol, 1998, 51:11-17.
    56. Friml J. Auxin transport-shaping the plant. Curr Opin Plant Biol, 2003, 6(1):7-12.
    57. Friml J, Palme K. Polar auxin transport--old questions and new concepts? Plant MolBiol, 2002, 49(3-4):273-284.
    58. Gee, M.A., Hagen, G. and Guilfoyle, T.J. Tissue-specific and organ-specific expression of the auxin-responsive transcripts, SAURs and GH3, in soybean. Plant Cell, 1991, 3: 419–43.
    59. Gretchen Hage, Tom Guilfoyle. Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Molecular Biology, 2002, 49: 373–385.
    60. Guilfoyle TJ, Hagen G, Ulmasov T, Murfett J (1998b). How does auxin turn on genes? Plant Physiology, 1998, 341–347.
    61. Guilfoyle TJ and Hagen G. Auxin response factors. J plant Grwoth Regul. 2001, 20: 281-291.
    62. Guilfoyle TJ, Ulmasov T, Hagen G. The ARF family of transcription factors and their role in plant hormone-responsive transcription. Cell Mol Life Sci. 1998, 54(7):619-627.
    63. Hai-Bin Wei, Bai-Ming Cui., Yan-Li Ren. Research Progresses on Auxin Response Factors. Journal of Integrative Plant Biology. 2006, 48 (6):622-627.
    64. Haigler CH, Rao NR, Roberts EM, Huang JY, Upchurch DR, Trolinder NL Cultured Ovules as Models for Cotton Fiber Development under Low Temperatures.Plant Physiol. 1991, 95(1):88-96.
    65. Harmer SE, Orford SJ, Timmis JN. Characterisation of six alpha-expansin genes in Gossypium hirsutum (upland cotton).Mol Genet Genomics. 2002, 268(1):1-9.
    66. Hoshino E, Sasaki Y, Mori K, Okazaki M, Nisizawa K, Kanda T. Electron microscopic observation of cotton cellulose degradation by exo- and endo-type cellulases from Irpex lacteus. J Biochem (Tokyo). 1993,114(2):236-245.
    67. Inukai Y, Sakamoto T, Ueguchi-Tanaka M, Shibata Y, Gomi K, Umemura I, Hasegawa Y, Ashikari M, Kitano H, Matsuoka M. Crown rootless1, which is essential for crown root formation in rice, is a target of an Auxin Response Factor in auxin signaling.Plant Cell. 2005, 7(5):1387-1396.
    68. Ji SJ, Lu YC, Feng JX, Wei G, Li J, Shi YH, Fu Q, Liu D, Luo JC, Zhu YX. Isolation and analyses of genes preferentially expressed during early cotton fiber development by subtractive PCR and cDNA array. Nucleic Acids Res. 2003, 31(10):2534-2543.
    69. John M E.Characterization of a cotton (Gossypium hirsutum L.) fiber mRNA (Fb-B6). Plant Physiol, 1995, 107:1477-1478.
    70. John M E, Keller G. Characterization of mRNA for a proline-rich protein of cotton fiber. Plant Physiol, 1995, 108:669-676.
    71. KAWAI M,et al.Isolation of a cotton CAP gene:a homologue of adenylylcyclase-associated protein highly exPressed during fibet elongation[J].Plant cell Physiol,1998,39: 1380-1383.
    72. Kim, H., Triplett, B., Cotton fiber growth in planta and in vitro models for plant cell elongation and cell wall biogenesis, Plant Physiology, 2001, 127: 1361-1366.
    73. Kim HJ, Triplett BA. Cotton fiber growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis.Plant Physiol. 2001, 127(4):1361-1366.
    74. Kiyoshi Tatematsu, Satoshi Kumaga, Hideki Mut Atsuko Sato, Masaaki K.Watahiki, Renee M. Harper, Emmanuel Liscum, and Kotaro T. Yamamot. MASSUGU2 Encodes Aux/IAA19, an Auxin-Regulated Protein That Functions Together with the Transcriptional Activator NPH4/ARF7 to Regulate Differential Growth Responses of Hypocotyl and Formation of Lateral Roots in Arabidopsis thaliana .The Plant Cell, 2004, 16, 379–393.
    75. Liscum E, Reed JW. Genetics of Aux/IAA and ARF action in plant growth and development. Plant Mol Biol. 2002, 49:387-400.
    76. Li C H, Zhu Y Q, Meng Y L, et al. Isolation of genes preferentially expressed in cotton fibers by cDNA fiber arrays and RT-PCR. Plant science, 2002, 163: 1113 -1120.
    77. Luo M, Xiao YH, Hou L, Luo XY, Li DM, Pei Y. Cloning and expression analysis of a LIM-domain protein gene from cotton (Gossypium hirsuturm L.). Yi Chuan Xue Bao. 2003, 30(2):175-182.
    78. Mallory AC, Bartel DP, Bartel B.MicroRNA-directed regulation of Arabidopsis Auxin Response Factor 17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell. 2005, 17(5):1360-1375.
    79. Mattsson J, Ckurshumova W, Berleth T. Auxin signaling in Arabidopsis leaf vascular development. Plant Physiol, 2003, 131:1327-1339.
    80. Meinert MC, Delmer DP. Changes in Biochemical Composition of the Cell Wall of the Cotton Fiber during Development .Plant Physiol. 1977, 59(6):1088-1097.
    81. Okushima Y, Overvoorde PJ, Arima K, Alonso JM, Chan A, Chang C, Ecker JR, Hughes B, Lui A, Nguyen D, Onodera C, Quach H, Smith A, Yu G, Theologis A. Functional genomic analysis of the Auxin Response Factor gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19.Plant Cell. 2005, 17(2):444-463.
    82. ORFORD S J,et al.Specific expression of an expansin gene during elongation of cotton fibers [J]. Biochem.Biophysica Acta, 1998, 1398:342-346.
    83. ORFORD S J, et al.Characterization of a cotton gene expressed late in fiber cellelongation [J]. Theor Appl Genet,1999, 98:757-764.
    84. Reed JW. Roles and activities of Aux/IAA proteins in Arabidopsis. Trends Plant Sci., 2001, 6: 420-425.
    85. Reinhardt D, Pesce ER, Stieger P, et al. Regulation of phyllotaxis by polar auxin transport. Nature, 2003, 426(6964):255-260.
    86. Reinhardt D, Pesce ER, Stieger P, Mandel T, Baltensperger K, Bennett M, Traas J, Friml J, and Kuhlemeier C. Regulation of phyllotaxis by polar auxin transport. Nature. 2003, 426:255-260.
    87. Sabatini S, Beis D, Wolkenfelt H, Murfett J, Guilfoyle T, Malamy J, Benfey P, Leyser O, Bechtold N, Weisbeek P, and Scheres B. An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell.1999, 99: 463-472.
    88. Sato Y, Nishimura A, Ito M, Ashikari M, Hirano HY, Matsuoka M. Auxin response factor family in rice.Genes GenetSyst. 2001, 76(6):373-380.
    89. S. B. Tiwari, G. Hagen, T. J. Guilfoyle, Aux/IAA proteins contain a potent transcriptional repression domain. Plant Cell, 2004, 16, 533–543.
    90. Suo J, Liang X, Pu L, Zhang Y, Xue Y. Identification of GhMYB109 encoding a R2R3 MYB transcription factor that expressed specifically in fiber initials and elongating fibers of cotton (Gossypium hirsutum L.).Biochim Biophys Acta. 2003, 1630(1):25-34.
    91. Tian CE, Muto H, Higuchi K, Matamura T, Tatematsu K, Koshiba T, Yamamoto KT.Disruption and overexpression of auxin response factor 8 gene of Arabidopsis affect hypocotyl elongation and root growth habit, indicating its possible involvement in auxin homeostasis in light condition.Plant J. 2004, 40(3):333-343.
    92. Tian C, Muto H, Higuchi M, et al. Disruption and overexpression of auxin response factor 8 gene of Arabidopsis affect hypocotyl elongation and root growth habit, indicating its possible involvement in auxin homeostasis in light condition. Plant J., 40, 2004, 333–343.
    93. Tiwari SB, Hagen G, Guilfoyle T. The roles of auxin response factor domains in auxin-responsive transcription.Plant Cell. 2003, 15(2):533-543.
    94. Tiwari SB, Hagen G.,Guilfoyle T . The roles of auxin response factor domains in auxin-responsive transcription. Plant Cell, 2003, 15:533-543.
    95. Wang S, Wang JW, Yu N, Li CH, Luo B, Gou JY, Wang LJ, Chen XY. Control of plant trichome development by a cotton fiber MYB gene.Plant Cell. 2004, 16(9):2323-2334.
    96. Weijers D, Benkova E, Jager KE, Schlereth A, Hamann T, Kientz M, Wilmoth JC, Reed JW, Jurgens G. Developmental specificity of auxin response by pairs of ARF andAux/IAA transcriptional regulators.EMBO J. 2005, 24(10):1874-1885.
    97.Yatsu LY, Espelie KE, Kolattukudy PE. Ultrastructural and Chemical Evidence That the Cell Wall of Green Cotton Fiber Is Suberized. Plant Physiol. 1983, 73(2):521-524.
    98. ZHU Y Z,Ji S T,Lu Y C,et al. Current atatus and progresses in Chinese cotton genetic research.Cotton science,2002, 14(sup):36.
    99. Z. Jeffrey CHEN , Ming-hua MEI , Naeem H. SYED , Osama S. S.HASSAN , David M. STELLY , Peggy S. THAXTON. Genome Analysis and Gene Expression Profiling of Fiber Development, 棉花学报 ,2002, (z1).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700