细菌纤维素杂化纳米材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究了细菌纤维素分子作用域大小,在此基础上设计细菌纤维素一维无机纳米杂化纤维。探讨杂化纤维微观结构对其性能影响并开展杂化纤维的应用研究。主要内容如下:
     1.采用液体簧振动力学谱方法对细菌纤维素凝胶进行挥发过程中实时检测,测量的物理量是衬底和沉积在衬底上面的待测样品组成的复合系统的共振频率(f)与内耗(Q-1)随时间(t)或温度(T)的变化。实验结果表明:细菌纤维素凝胶系统中的水分子在纤维素分子作用下可分为无序水、过渡态水和有序水,并分析出纤维素分子作用域大小。
     2.通过细菌纤维素分子模板效应,在细菌纤维素纳米纤维表面进行Pt4+原位化学还原反应,制备出燃料电池用Pt/BCF电催化剂。采用SEM、TEM、XRD对Pt/BCF电催化剂的微观结构进行表针。TEM和XRD分析结果表明:3-4 nm Pt纳米晶均匀分散于细菌纤维素纳米纤维表面。循环伏安法测试表明:Pt/BCF催化活性高达34.8 m2/g。由细菌纤维素膜和杂化纤维组装成燃料电池的输出功率达12.1mW/cm2,显示出细菌纤维素膜在燃料电池领域有较大应用潜力。
     3.通过细菌纤维素分子模板效应,在细菌纤维素纳米纤维表面进行Ag+原位化学还原反应,制备Ag/BCF饮用水高效杀菌剂。采用SEM、TEM、XRD对Ag/BCF杀菌剂的微观结构进行表针。Ag/BCF的TEM照片显示了1.5 nm银纳米晶均匀的附着在细菌纤维素表面。结合XRD和UV-vis等分析结果,探测出纳米银在细菌纤维素表面生长机制。饮用水的微生物去除实验表明:Ag/BCF杂化纤维素可快速实现饮用水的微生物去除。
     4.通过细菌纤维素分子模板效应,在细菌纤维素纳米纤维表面进行Pd2+和Cu2+原位化学还原反应,制备Pd-Cu/BCF二元化学脱氮催化剂。采用TEM、XRD、XPS和FTIR等测试手段对Pd-Cu/BCF催化剂的微观结构进行表针。Pd-Cu/BCF杂化纤维的化学脱氮实验和循环使用实验结果显示出Pd-Cu/BCF催化剂具有优异的催化活性和使用寿命。
     5.采用细菌纤维素的分子印迹效应,实现了TiO2纳米晶在细菌纤维素纳米纤维表面的均匀排布。结合微观测试和氮吸脱附实验结果,阐述并初步证实了TiO2纳米晶在纳米纤维表面的生长机制。通过TiO2/BCF和商业化催化剂P25的光催化性能测试,结果表明TiO2/BCF杂化纤维的光催化性能明显优于P25,显示出TiO2/BCF杂化纤维用于光催化降解有机废水的巨大优势。
     6.利用细菌纤维素分子配位效应,实现CdS纳米晶在细菌纤维素纳米纤维表面的均匀生长。依据CdS/BCF微观分析结果,阐明了CdS纳米晶在纤维表面的生长机制。CdS/BCF杂化纤维的XRD分析结果表明,CdS纳米晶在细菌纤维素分子力诱导下,实现了立方晶型向六方晶型的低温转变。在可见光激发下测试了CdS/BCF、P25和CdS粉末光催化性能,催化反应速率常数分别为0.012min-1、0.0104 min-1和0.00013 min-1。CdS/BCF杂化纤维循环使用测试表明:其循环使用5次后,依然保持较高的催化活性,显示其具有较大的工业应用潜力。
This thesis mainly studies the design, synthesis and characterization of the novel bacterial cellulose (BC) based hybrid nanofiber. The relationship between the nanofiber microstructure and properties was investigated. The preliminary application of the hybrid nanofiber was reported. The main content is described below.
     1. The mechanical spectrum of BC gels during evaporate were measured by the reed-vibration mechanical spectrum for liquids (RMS-L). The physics parameters about the complex resonance frequency and internal friction dependent temperature or time were measured by RMS-L. From the experimental results, we can conclude that the order water, transition-state water and free water present in BC gels.
     2. In-situ deposition of Pt nanoparticles on bacterial cellulose fiber (BCF) for a fuel cell application was studied. The Pt/BC under different experimental conditions was characterized by using SEM, TEM, EDS, XRD and TG techniques. TEM images and XRD patterns both lead to the observation of spherical metallic platinum nanoparticles with mean diameter of 3-4 nm well impregnated into the BC fibril. TG curves revealed these Pt/BC composite materials had the high thermal stability. The electrosorption of hydrogen was investigated by CV. It was found that Pt/BCF catalysts have high electrocatalytic activity in the hydrogen oxidation reaction. The single cell performance of Pt/BCF was tested at the temperature of 30℃under non-humidified conditions. Preliminary tests on a single cell indicate that renewable BC is a good prospect to be explored as membrane in fuel cell field.
     3. Ag nanoparticles with an average diameter of 1.5 nm were well dispersed on BC nanofibers via a simple in situ chemical-reduction between AgNO3 and NaBH4 at relatively low temperature. Our proposed growth mechanism indicates that Ag nanoparticles were homogenously anchored onto BC fibers by coordination with BC-containing hydroxyl groups. The bare BCF and as-prepared Ag/BCF hybrid nanofibers were characterized by a range of analytical techniques including TEM, XRD, and UV-vis. The results reveal that Ag nanoparticles were homogeneously precipitated on the BCF surface. The results indicate that Ag/BCF hybrid nanofibers are promising candidate materials for functional antimicrobial agents.
     4. Pd-Cu nanoparticles were prepared in BCF by immersing BCF in a mixture solution of PdCl2 and CuCl2 in water and followed reduction of absorbed metallic ion inside of BCF to the metallic Pd-Cu nanoparticles using sodium borohydride. The bare BCF and the composites were characterized by a range of analytical techniques including SEM, TEM, XRD, FTIR and XPS. The results reveal that the Pd-Cu nanoparticles were homogeneously precipitated on the BCF surface. The Pd-Cu/BCF was used as a catalyst for water denitrification, which showed that it has high catalytic activity.
     5. Large quantities of uniform BC nanofibers coated with TiO2 nanoparticles can be easily prepared by surface hydrolysis with molecular precision, resulting in the formation of uniform and well-defined hybrid nanofiber structures. The mechanism of arraying spherical TiO2 nanoparticles on BC nanofibers and forming well-defined, narrow mesopores are discussed in this paper. The BC/TiO2 hybrid nanofibers were used as photocatalyst for methyl orange degradation under UV irradiation, and they showed higher efficiency than that of commercial photocatalyst P25.
     6. Nanocrystals of CdS were achieved via a simple hydrothermal reaction between CdCl2 and thiourea at relatively low temperature. The prepared BCF and the CdS/BCF hybrid nanofibers were characterized by TEM, XRD, TGA, UV-vis, and XPS. The results reveal that the CdS nanoparticles were homogeneously deposited on the BCF surface and stabilized via coordination effect. The CdS/BCF hybrid nanofibers demonstrated high-efficiency photocatalysis with 82% methyl orange degradation after 90 min irradiation and good recyclability. The results indicate that the CdS/BCF hybrid nanofibers are promising candidate as robust visible light responsive photocatalysts.
引文
[1]郝常明,罗讳.细菌纤维素——一种新兴的生物材料.纤维素科学与技术,2002,10:56.
    [2]Charpentier P A, Maguire A, Wan W K, Surface modification of polyester to produce a bactreial cellulose-based vascular prosthetic device. Appl. Surf. Sci,2005,252:6360.
    [3]Svensson A, Nicklasson E, Harrah T. Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials,2005,26:419.
    [4]Rachkov A, Minoura N towards. Biochimica Biophysica Acta,2001,1544:255
    [5]Brown A J, An acetic ferment which forms cellulose. Journal of Chemical Society, 1886,49:432.
    [6]Valla S, Kjosbakken J, Cellulose-negative mutants of Acetobacter xylinum. Journal of General Microbiology,1982,128:1401.
    [7]Brown A J, An acetic ferment which forms cellulose. Journal of Chemical Society, 1886,49:432.
    [8]Massion C R, Menzies R F, Bacterial cellulose for osmometer membrane. Nature,1946, 157:74.
    [9]Nishi Y, Uryu M, Yamanaka S, et al. The structure and mechanical properties of sheets prepared from bacterial cellulose. Journal of Materials Science,1990,25:2997.
    [10]Yamanaka S, Watanabe K, Kitamura N, et al. The structure and mechanical properties of sheets prepared from bacterial cellulose. Journal of Materials Science,1989,24: 3141.
    [11]Milstein O, Gersonde R, Huttermann A, et al. J. Macromol. Sci, Pure Appl. Chem.. 1996,33:685.
    [12]Tonouchi N, Tsuchida T, Yoshinaga F, Beppu T, Characterization of the biosynthetic pathway of cellulose from glucose and fructose in Acetobacter xylinum. Bioscience Biotechnology and Biochemistry,1996,60:1377.
    [13]Iguchi M, Yamanaka S, Budhiono A. Bacterial cellulose——a masterpiece of nature's arts. Journal of Materials Science,2000,35:261.
    [14]Jonas R, Farah L F. Production and application of microbial cellulose. Polymer Degradation and Stability,1998,59:101.
    [15]Imai T, Sugiyama J. Nanodomains of Ⅰ α and Ⅰ β cellulose in algal microfibrils. Macromolecules.1998,31:6275.
    [16]Kono H, Erata T, Takai M. Determination of the through-bond carbon-carbon and carbon-proton connectivities of the native cellulose in the solid state. Macromolecules. 2003,36:5131.
    [17]Li G K, Li X F, Jiang Y, et al. Size effects of nano-crystalline cellulose. Chinese Chemical Letters.2003,14(9):977.
    [18]马霞.发酵生产细菌纤维素及其作为医学材料的应用研究:[D].天津科技大学,2003
    [19]贾士儒,欧竑宇.细菌纤维素的生物合成及其应用.化工科技市场.2001,(2):21.
    [20]贾士儒,欧竑宇,傅强.新型生物材料——细菌纤维素.食品与发酵工业.2000,27(1):54.
    [21]Zaar K. Visualization of pores (export sites) correlated with cellulose production in the envelop of the gram-negative bacterium Acetobacter xylinum. J. Cell Biology.1979,80: 773.
    [22]Seifert M, Hesse S, Kabrelian V, et al. Controling the water content of never dried and reswollen bacterial cellulose by the addtion of water-soluble polymers to the culture medium. Journal of Polymer Science, Part A:Polymer Chemistry.2004,42(3):463.
    [23]Seifert M, Hesse S, Kabrelian V, et al. Controling the water content of never dried and reswollen bacterial cellulose by the addtion of water-soluble polymers to the culture medium. Journal of Polymer Science, Part A:Polymer Chemistry.2004,42(3):463.
    [24]Watanabe K, Tabuchi M, Morinaga Y, et al. Structure features and properties of bacterial cellulose produced in agitated culture. Cellulose.1998,5:187.
    [25]Hendrikx R H, Hompes L L, Beckers S D. Modified cellulose product. WO 200023516,2000
    [26]王先秀.新型的微生物合成材料—醋酸菌纤维素.中国酿造.1999,1:1.
    [27]Kenji T, Masashi F, Mitsuo T, et al. Synthesis of Acetobacter xylinum bacterial cellulose composite and its mechanical strength and biodegradability. Mokuzai Gakkaishi.1995,41(8):749-757
    [28]W. Czaja, A. Krystynowicz, S. Bielecki, Microbial cellulose-the natural power to heal wounds. Biomaterials,2006,27:145.
    [29]J. D. Fontana, A. M. Desouza, C. K. Fontana, et al. Acetobacter cellulose pellicle as a temporary skin substitute. Application of Biochemistry and Biotechnology,1990,25: 253.
    [30]W. Czaja, M. Kawecki, A. Krystynowicz, et al. Application of bacterial cellulose in treatment of second and third degree burns. In Abstracts of Papers,227th ACS National Meeting, Anahein, CA, United States,2004. Washington, DC:American Chemical Society,2004,150.
    [31]N. Ahalya, T.V. Ramachandra, R.D. Kanamadi, Biosorption of heavy metals, Res. J. Chem. Environ.2003,7:71.
    [32]M. Seifer, S. Hesse, Controlling the water content of never dried and reswollen bacterial cellulose by the addition of water solluble polymers to the culture medium. Journal of Polymer Science:Part A:Polymer Chemistry,2004,42:463.
    [33]C, Wiegand, P, Elsner, U. C. Hiple, Protease and ROS activities influenced by a composite of bacterial cellulose and collagen type I in vitro. Cellulose,2006,13:689.
    [34]D. Ciechanska, Multifunctional Bacterial Cellulose/Chitosan Composite Materials for Medical Applications. Fibres and Textiles,2004,12:69.
    [35]Yang J Z, Yu J W, Sun D P, et al. Preparation novel Ag/bacterial cellulose hybrid nanofibers for antimicrobial wound dressing. Advanced Materials Research,2011,153: 1771.
    [36]Maneerung T, Tokura S, Rujiravanit R. Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydrate Polymers.2008,72: 43.
    [37]Pinto R, Marques P, Pascoal C. Antibacterial activity of nanocomposites of silver and bacterial or vegetable cellulosic fibers. Acta Biomaterialia,2009,5:2279.
    [38]Svensson A, Nicklasson E, Harrah T, et al. Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials.2005,26:419.
    [39]U. A. Stock, J. P. Vacanti, Tissue engineering:Current state and Prospects. Annual Review of Medicine,2001,52:43.
    [40]时东陆,生物材料与组织工程,北京:清华大学出版社,2004.219.
    [41]Hong L, Wang Y L, Jia S R, et al. Hydroxyapatite/bacterial cellulose composites synthesized via a biomimetic route. Materials Letters.2006,60:1710.
    [42]Y L Wang, S N Zhang, Y W Mai, Preparation and Thermo-Mechanical Characterization of Hydroxyapatite/Bacterial Cellulose Nanocomposites. Nanotechnol. Precision Engineering,2009,7:95.
    [43]Wang Y L,Hong L, Jia S R, et al.Synthesis and characterization of hydroxyapatite-bacterial cellulose nanocomposites. Composites Science and Technology.2006,66:1825.
    [44]L. Hong, Y. L. Wang, S. R. Jia, Y. Huang, C. Gao, Y. Z. Wan, Hydroxyapatite/bacterial cellulose composites synthesized via a biomimetic route. Materials Letters,2006,60:1710.
    [45]A. Stacy, Hutchens, S. Roberto, Benson, R. Barbara, Evans, H. M. O'Neillc, C. J. Rawn, Biomimetic synthesis of calcium-deficient hydroxyapatite in a natural hydrogel. Biomaterials 2006,27:4661.
    [46]S. Shi, S. Chen, X. Zhang, W. Shen, X. Li, W. L Hu, H. P. wang. Biomimetic mineralization synthesis ofcalcium-deficient carbonate-containing hydroxyapatite in a three-dimensional network of bacterial cellulose. J Chem Technol Biotechnol 2009:84: 285.
    [47]J. Li, Y.Z. Wan, L. F. Li, H. Liang, J. H. Wang, Preparation and characterization of 2,3-dialdehyde bacterial cellulose for potential biodegradable tissue engineering scaffolds. Materials Science and Engineering,2009,29:1635.
    [48]L Raymond, J F Revol, R H Marchessault, in situ synthesis of ferrites in ionic and neutral cellulose gels. Polymer,1995,36:5035.
    [49]Shah J, Brown R M Jr. Towards electronic paper displays made from microbial cellulose [J]. Appl. Microbiol. Biotechnol..2005,66:352.
    [50]Sourty E, Ryan D H, Marchessault R H. Ferrite-loaded membranes of microfibrillar bacterial cellulose prepared by in situ precipitation. Chem. Mater..1998,10:1755.
    [51]Park S K, Han J I, Kim W K, et al. Control of conductivity in neuron type conducting polymer device. Thin Solid Films,2001,393:393.
    [52]Kim D H, Park M R, Lee G H, Preparation of high quality ITO films on a plastic substrate substrate using RF magnetron sputtering. Surface Coating and Technologe, 2006,201:927.
    [53]Lee C J, Moon D G, Han J I. Proceedings of SID'04, P.1005, May 23-28,2004, seattle, washington USA
    [54]Shah J, Brown R M, Towards electronic paper displays made from microbial cellulose. Applied Microbiology and Biotechnology,2005,66:352.
    [55]Brown R M, Austin T X, Shah J, et al. Compostions methods and syetems for making and using electronic paper. US patent0079386,2005
    [56]C Legnani, C Vilani, V L Calil, Bacterial cellulose membrane as flexible substrate for organic light emitting devices. Thin Solid Films,2008,517:101.
    [57]J Z Yang, J W Yu, D P Sun, Preparation of high quality ITO film on a microbial cellulose membrane using RF magnetron sputtering. Chinese Journal of Chemical Engineering. (Accept)
    [58]Evans B R, O'Neill H M, Malyvanh Y P, et al. Woodward J.Palladium-bacterial cellulose membranes for fuel cells. Biosens Bioelectron.2003,18:917.
    [59]张秀菊,陈文彬,林志丹,容建华,细菌纤维素负载TiO2复合材料的制备及其在印染废水处理方面的应用.化工新型材料,2010,38:100.
    [60]张秀菊,陈文彬,林志丹,细菌纤维素负载稀土掺杂二氧化钛复合膜的制备和光催化性能.材料研究学报.2010,24:540.
    [61]X Li, S. Y. Chen, W. L. Hu, In situ synthesis of CdS nanoparticles on bacterial cellulose nanofibers. Carbohydrate Polymers 2009,76:509.
    [62]Patel U D, Suresh S, Complete dechlorination of pentachlorophenol using palladized bacterial cellulose in a rotating catalyst contact reactor. Journal of Colloid and Interface Science,2008,319:462.
    [63]F. Magneh, J. Portas, H. Akeham, A Calorimetric Investigation of Moisture in Textile Fibers, J. Am. Chem. Soc.1947,69:1896.
    [64]K. Gelin, A. Bodin, P. Gatenholm, Characterization of water in bacterial cellulose using dielectric spectroscopy and electron microscopy, Polym.2007,48:7623.
    [65]D.Klemm, B. Heublein, H. P. Fink, Cellulose:Fascinating Biopolymer and Sustainable Raw Material, Angew. Chem. Int. Ed.2005,44:3358.
    [66]应学农杨震黄以能,液态力学谱中复杨氏模量的测量方法,国家发明专利,200510040643.X
    [67]黄以能张晋鲁应学农;玻璃化转变机制的串模型与液态低频力学谱研究,物理学进展2006,26:359
    [68]X. N. Ying, Y. H. Yuan, L.Zhang, Y. N. Huang,2006 Rev. Sci. Instrum.77 053902
    [69]衣宝廉.燃料电池-原理、技术、应用.北京:化学工业出版社.2003
    [70]Cho Y H, Park H S, Jung D S, et al. Effect of platinum amount in carbon supported platinum catalyst on performance of polymer electrolyte membrane fuel cell. Journal of Power Sources,2007,172:89.
    [71]Zhang J L, Tang Y H, Song C J, et al. Polybenzimidazole-membrane-based PEM fuel cell in the temperature range of 120-200℃. Journal of Power Sources,2007,172:163.
    [72]王学松.现代膜技术及其应用指南.北京:化学工业出版社.2005.
    [73]Polak P L, Mousinho A P, Ordonez N, et al. Deposition of polymeric perfluored thin films in proton ionic membranes by plasma processes. Applied Surface Science,2007, 132:213.
    [74]Weissmann M, Coutanceau C, Brault P, et al. Direct chemical deposition of platinum on ionic conductive membranes and evaluation of the electrocatalytic activity. Electrochimica Acta,2007,9:1097.
    [75]Klemm D, Schumann D, Udhardt U, et al. Bacterial synthesized cellulose artificial blood vessels for microsurgery. Progress in Polymer Science,2001,26:1561.
    [76]Svensson A, Nicklasson E, Harrah T, et al. Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials,2005,26:419.
    [77]Bae S, Shoda M, Bacterial cellulose production by fed-batch fermentation in molasses medium. Biotechnology Progress,2004,20:1366.
    [78]Evans B R, O'Neill H M, Malyvanh Y P, et al. Palladium-bacterial cellulose membranes for fuel cells. Biosensors and Bioelectronics,2003,18:917.
    [79]Pinto R J B, Marques P A, Martins M A, etal. Electrostatic assembly and growth of gold nanoparticles in cellulosic fibres. Journal of Colloid Interface Science,2007,312: 506.
    [80]Yang J Z, Sun D P, Li J, et al. In-situ deposition of platinum nanoparticles on bacterial cellulose membranes and evaluation of PEM fuel cell performance. Electrochimica Acta,2009,54:6300.
    [81]Seo M H, Choi S M, Kim H J, et al. A polyoxometalate-deposited Pt/CNT electrocatalyst via chemical synthesis for methanol electrooxidation. Journal of Power Sources,2008,179:81
    [82]Verde Y, Nunez G A, Yoshida M M, Active area and particle size of Pt particles synthesized from (NH4)2PtCl6 on a carbon support. Catalysis Today,2005,107:826.
    [83]Liu Z L, Ling X Y, Su X D, Preparation and characterization of Pt/C and PtRu/C electrocatalysts for direct ethanol fuel cells. Journal of Power Sources,2005,149:1.
    [84]Prabhuram J, Zhao T S, Wong C W, Guo J W, Synthesis and physical electrochemical characterization of Pt/C nanocatalyst for polymer electrolyte fuel cells. Journal of Power Sources,2004,134:1.
    [85]Thompson S D, Jordan L R, Forsyth M, Platinum electrodeposition for polymer electrolyte membrane fuel cells. Electrochimica Acta,2001,46:1657.
    [86]Weissmann M, Coutanceau C, Brault P, Direct chemical deposition of platinum on ionic conductive membranes and evaluation of the electrocatalytic activity. Electrochemistry Communication,2007,9:1097.
    [87]周鑫,活性碳纤维负载纳米铂催化材料的制备.中山大学化学硕士学位论文,2007.
    [88]Bi Y P, Lu G X, Control growth of uniform platinum nanotubes and their catalytic properties for methanol electrooxidation. Electrochemistry Communication,2009,1: 45
    [89]Guo D J, Qiua X P, Chen L Q, et al. Multi-walled carbon nanotubes modified by sulfated TiO2-A promising support for Pt catalyst in a direct ethanol fuel cell. Carbon,2009,47:1680
    [90]Thompson S D, Jordan L R, Forsyth M, Platinum electrodeposition for polymer electrolyte membrane fuel cells. Electrochimica Acta,2001,46:1657.
    [91]Teng Z H, Wang G, Wu B, et al.High activity Pt/C catalyst for methanol and adsorbed CO electro-oxidation, Journal of Power Sources,2007,164:105.
    [92]Ma H C, Xue X Z, Liao J H, et al. Effect of borohydride as reducing agent on the structures and electrochemical properties of Pt/C catalyst, Applied Surface Science, 2006,252:8593
    [93]Niu J J, Wang J N, Activated carbon nanotubes supported catalyst in fuel cells. Electrochimica Acta,2008,53:8058.
    [94]Huang H X, Chen S X, Yuan C, Platinum nanoparticles supported on activated carbon fiber as catalyst for methanol oxidation. Journal of Power Sources,2008,175:166.
    [95]Evans B R, O'Neill H M, Malyvanh Y P, et al. Palladium-bacterial cellulose membranes for fuel cells. Biosens Bioelectron,2003,18:917.
    [96]李余增.热分析.北京:清华大学出版社.1987
    [97]王世华,杨红征,译.差热分析.北京:北京师范大学出版社.1981
    [98]孙东平,一种采用细菌纤维素膜制备燃料电池膜电极的方法.200810022130.X
    [99]Du L, Jana S C, Highly conductive epoxy/graphite composites for bipolar plates in proton exchange membrane fuel cells. Journal of Power Sources,2007,172:734
    [100]Wan Y, Peppley B, Creber K A M, et al. Chitosan-based electrolyte composite membranes Ⅱ Mechanical properties and ionic conductivity. Journal of Membrance Science,2006,284:331.
    [101]Wan Y, Peppley B, Creber K A M, et al. Chitosan-based electrolyte composite membranes Ⅰ. Preparation and characterization. Journal of Membrance Science,2006, 280:666.
    [102]Wan Y, Peppley B, Creber K A M, et al. Preliminary evaluation of an alkaline chitosan-based membrane fuel cell. Journal of Power Sources,2006,162:105
    [103]Juntaro J, Pommet M, Kalinka G, Creating Hierarchical Structures in Renewable Composites by Attaching Bacterial Cellulose onto Sisal Fibers. Advance Materials, 2008,20:3122.
    [104]Upadhyayula V, Deng S G, Smith G B, Adsorption of Bacillus subtilis on single-walled carbon nanotube aggregates, activated carbon and NanoCeram. Water Research,2009,43:148.
    [105]Codony F, Morato J, Mas J, Role of discontinuous chlorination on microbial production by drinking water biofilms. Water Research,2005,39:1896.
    [106]Momba M N B, Kaleni P, Regrowth and survival of indicator microorganisms on the surfaces of household containers used for the storage of drinking water in rural communities of South Africa. Water Research,2002,36:3023.
    [107]Xia S J, Liu Y N, Li X, Yao J J, Drinking water production by ultrafiltration of Song hua jiang River with PAC adsorption, Journal of Environmental Sciences,2007, 19:536.
    [108]Kerwick M I, Reddy S M, Chamberlain A H L, Electrochemical disinfection, an environmentally acceptable method of drinking water disinfection, Electrochimica Acta,2005,50:5270.
    [109]Rizzo L, Inactivation and injury of total coliform bacteria after primary disinfection of drinking water by TiO2 photocatalysis. Journal of Hazardous Materials,2009, 165:48.
    [110]Fass S, Block J C, Boualam M, Release of organic matter in a discontinuously chlorinated drinking water network. Water Research,2003,37:493.
    [111]Wist J, Sanabria J, Dierolf C, Evaluation of photocatalytic disinfection of crude water for drinking-water production. Journal of Photochemistry and Photobiology A: Chemistry,2002,147:241.
    [112]Zhang X W, Pan J H, Du A J, Combination of one-dimensional TiO2 nanowire photocatalytic oxidation with microfiltration for water treatment. Water Research, 2009,43:1179.
    [113]Pelkonen K H O, Tanski H H, Accumulation of silver from drinking water into cerebellum and musculus soleus in mice. Toxicology,2003,186:151.
    [114]Xiao F, Liu H G, Lee Y I, Formation and Characterization of Two-Dimensional Arrays of Silver Oxide Nanoparticles under Langmuir Monolayers of n-Hexadecyl Dihydrogen Phosphate. Bull Korean Chem Soc 2008; 29:2368
    [115]Kong H, Jang J, Antibacterial Properties of Novel Poly(methylmethacrylate) Nanofiber Containing Silver Nanoparticles. Langmuir,2008,24:2051.
    [116]Bruzzoniti M C, Kobylinska D K, Franko M, Flow injection method for the determination of silver concentration in drinking water for spacecrafts. Analytica Chimica Acta,2010,665:69.
    [117]Shashikala V, Kumar V S, Padmasri A H, Advantages of nano-silver-carbon covered alumina catalyst prepared by electro-chemical method for drinking water purification. Journal of Molecular Catalysis A:Chemical,2007,268:95.
    [118]Halem D V, Laan H, Heijman S G J, Assessing the sustainability of the silver-impregnated ceramic pot filter for low-cost household drinking water treatment. Physics and Chemistry of the Earth,2009,34:36.
    [119]Maneerung T, Tokura S, Rujiravanit R. Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydrate Polymers.2008, 72:43.
    [120]Pinto R, Marques P, Pascoal C. Antibacterial activity of nanocomposites of silver and bacterial or vegetable cellulosic fibers. Acta Biomaterialia,2009,5:2279.
    [121]Katiyar A. Ji L. Smirniotis P. Protein adsorption on the mesoporous molecular sieve silicate SBA-15:effects of pH and pore size. Journal of Chromatography A,2005, 1069:119.
    [122]Xiao F, Liu HG, Lee YI, Formation and Characterization of Two-Dimensional Arrays of Silver Oxide Nanoparticles under Langmuir Monolayers of n-Hexadecyl Dihydrogen Phosphate. Bull Korean Chem Soc 2008; 29:2368.
    [123]Liang HY, Wang WZ, Huang YZ, Zhang SP, Wei H, Xu HX, Controlled Synthesis of Uniform Silver Nanospheres. J Phys Chem C Doi:10.1021/jp9105713
    [124]Tokoh C, Takabe K, Fujita M, Saiki H, Cellulose synthesized by Acetobacter xylinum in the presence of acetyl glucomannan. Cellulose 1998; 5:249.
    [125]Czaja W, Romanovicz D, Brown RM, Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose 2004; 11:403.
    [126]Ghilane J, Fan FRF, Bard AJ, Facile Electrochemical Characterization of Core/Shell Nanoparticles Ag Core/Ag2O Shell Structures. Nano Lett 2007; 7:1406.
    [127]Wang X, Wu HF, Kuang Q, Huang RB, Xie ZX, Zheng LS, Shape-Dependent Antibacterial Activities of Ag2O Polyhedral Particles. Langmuir 2010; 26:2774.
    [128]Tang S C, Vongehr S, Meng X K, Carbon Spheres with Controllable Silver Nanoparticle Doping. J Phys Chem C 2010; 114:977.
    [129]Terada A, Kaku S, Matsumoto S, et al. Rapid autohydrogenotrophic denitrification by a membrane biofilm reactor equipped with a fibrous support around a gas-permeable membrane. Biochemical Engineering Journal,2006,31:84
    [130]Chen Y X, Chen S P, Chen Q S, Electrochemical preparation of iron cuboid nanoparticles and their catalytic properties for nitrite reduction. Electrochimica Acta, 2008,53:6938
    [131]Wang Y, Sakamoto Y, Kamiy Y, et al. Remediation of actual groundwater polluted with nitrate by the catalytic reduction over copper-palladium supported on active carbon. Applied Catalysis A:General 2009,361:123
    [132]Pintar A, Catalytic processes for the purification of drinking water and industrial effluents. Catalysis Today,2003,77:451
    [133]Wang Y, Qu J H, Liu H J, et al. Adsorption and reduction of nitrate in water on hydrotalcite supported Pd-Cu catalyst. Catalysis Today,2007,126:476
    [134]Meytal Y M, Shindler Y, Sheintuch M, Cloth catalysts in water denitrification Ⅲ. pH inhibition of nitrite hydrogenation over Pd/ACC. Applied Catalysis B: Environmental.2003,45:127
    [135]Rocca C D, Belgiorno V, Meric S, An heterotrophic/autotrophic denitrification (HAD) approach for nitrate removal from drinking water. Process Biochemistry,2006,41: 1022
    [136]Lu C S, Chen C C, Mai F D, et al. Identification of the degradation pathways of alkanolamines with TiO2 photocatalysis. Journal of Hazardous Materials,2009,165: 306.
    [137]Meytal U M, Sheintuch M, The relation between surface composition of Pd-Cu/ACC catalysts prepared by selective deposition and their denitrification behavior. Catalysis Communication,2009,10:1137.
    [138]Meytal U M, Sheintuch M, Activated carbon cloth-supported Pd-Cu catalyst: Application for continuous water denitrification. Catalysis Today,2005,102:121.
    [139]Gao W L, Chen J X, Guan X X, et al. Catalytic reduction of nitrite ions in drinking water over Pd-Cu/TiO2 bimetallic catalyst. Catalysis Today,2004,93:333.
    [140]Meytal Y M, Barelko V, Yuranov I, et al. Cloth catalysts for water denitrification Ⅱ. Removal of nitrates using Pd-Cu supported on glass fibers. Applied Catalysis B: Environmental,2001,31:233
    [141]Meytal Y M, Barelko V, Yuranov I, et al. Cloth catalysts in water denitrification Ⅰ. Pd on glass fibers. Applied Catalysis B:Environment,2000,27:127
    [142]Sakamoto Y, Kamiya Y, Okuhara T, Selective hydrogenation of nitrate to nitrite in water over Cu-Pd bimetallic clusters supported on active carbon. Journal of Molecular Catalysis A:Chemical,2006,250:80
    [143]Dumbuya K, Denecke R, Steinruck H P, Surface analysis of Pd/ZnO catalysts dispersed on micro-channeled Al-foils by XPS. Applied Catalysis A:General,2008, 348:209
    [144]Zhang X L, Wang W P, Liu J, Hydrogen transport through thin palladium copper alloy composite membranes at low temperatures. Thin Solid Films,2008,516:1849
    [145]Gao W L, Chen J X, Guan X X, Catalytic reduction of nitrite ions in drinking water over Pd-Cu/TiO2 bimetallic catalyst. Catalysis Today,2004,93:333.
    [146]Hung C M, Activity of Cu-activated carbon fiber catalyst in wet oxidation of ammonia solution. Journal of Hazardous Materals,2009,166:1314.
    [147]Lemaignen L. Tong C, Begon V, Catalytic denitrification of water with palladium-based catalysts supported on activated carbons. Catalysis Today,2002,75: 43.
    [148]Gasparovicova D, Kralik M, Hronec M, Reduction of nitrates dissolved in water over palladium-copper catalysts supported on a strong cationic resin. Journal of Molecular Catalysis A:Chemical,2006,244:258.
    [149]Nagaveni K, Sivalingam G, Hegde M S, Madras G, Photocatalytic Degradation of Organic Compounds over Combustion Synthesized Nano TiO2. Environmental Science and Technology,2004,38:1600.
    [150]Wang W Y, Irawan A, Ku Y, Photocatalytic degradation of Acid Red using a titanium dioxide membrane supported on a porous ceramic tube. Water Research,2008,42: 4275.
    [151]Selloni A, Anatase shows its reactive side. Nature Materials,2008,7:613.
    [152]Yu H B, Chen S, Quan X, Zhao H M, et al. Fabrication of a TiO2-BDD Heterojunction and its Application As a Photocatalyst for the Simultaneous Oxidation of an Azo Dye and Reduction of Cr(Ⅵ). Environmental Science and Technology, 2008,42:3791.
    [153]Cesano F, Bertarione S, Damin A, Agostini G, et al. Oriented TiO2 Nanostructured Pillar Arrays:Synthesis and Characterizatio. Advance Materials,2008,20:3342.
    [154]Schaaff T G, Blom D A, Deposition of Au-Nanocrystals on TiO2 Crystallites. Nano Letters,2002,2:507.
    [155]Usseglio S, Damin A, Scarano D, et al. (I2)n Encapsulation inside TiO2:A Way To Tune Photoactivity in the Visible Region. Journal of the American Chemical Society, 2007,129:2822.
    [156]Shannon M A, Bohn P W, Elimelech M, Georgiadis J G, Marinas B J, Science and technology for water purification in the coming decades. Nature,2008,452:301.
    [157]Ghicov A, Macak J M, Tsuchiya H, Kunze J, Haeublein V, Frey L, Schmuki P, Ion Implantation and Annealing for an Efficient N-Doping of TiO2 Nanotubes. Nano Letters,2006,5-6:1080.
    [158]Xiong C R, Kim M J, Balkus K J, TiO2 Nanofibers and Core-Shell Structures Prepared Using Mesoporous Molecular Sieves as Templates. Small,2006,2:52.
    [159]Zhang S Z, Ni W H, Kou X S, Formation of Gold and Silver Nanoparticle Arrays and Thin Shells on Mesostructured Silica Nanofibers. Advance Functional Materials, 2007,17:3258.
    [160]Jin M, Zhang X T, Nishimoto S, Light-Stimulated Composition Conversion in TiO2-Based Nanofibers. Journal of Physical Chemistry C,2007,111:658.
    [161]Chen J Y, B. J. Wiley, Y. N. Xia, One-Dimensional Nanostructures of Metals: Large-Scale Synthesis and Some Potential Applicationsm. Langmuir,2007,23:4120.
    [162]Jang J H, Jeon K S, Oh S, Kim H J, Synthesis of Sn-Porphyrin-Intercalated Trititanate Nanofibers:Optoelectronic Properties and Photocatalytic Activities. Chemistry of Materials,2007,19:1984.
    [163]Klemm D, Heublein B, Fink H P, Bohn A, Cellulose:Fascinating Biopolymer and Sustainable Raw Material. Angewandte Chemie International Edition,2005,44:3358.
    [164]Feng L, Li S, Li H, Zhai J, Song Y, Jiang L, et al. Super-Hydrophobic Surface of Aligned Polyacrylonitrile Nanofibers. Angewandte Chemie International Edition, 2002,41:1221.
    [165]黄纪震,罗鸿烈,王庆瑞,曹振林等编,合成纤维生产工艺学,北京:化学工业出版社.1993年
    [166]Zhou Y, Zhang S Y, Zhu Z P, et al. Preparation and photocatalytic activity of Pd-doped TiO2 nanofibre. Journal of Central South University of Technology,2005, 12:657.
    [167]Yuan Z Y, Su B L, Titanium oxide nanotubes, nanofibers and nanowires. Colloids and Surfaces A,2004,41:173.
    [168]Lee J A, Krogman K C, Ma M l, Hill R M, Highly Reactive Multilayer-Assembled TiO2 Coating on Electrospun Polymer Nanofibers. Advance Materials,2008,20:1.
    [169]Marques P A A P, Trindade T, Neto C P, Titanium dioxide/cellulose nanocomposites prepared by a controlled hydrolysis method. Composites Science and Technology, 2006,66:1038
    [170]Bobowska I, Wojciechowski P, Halamus T, Organic-inorganic nanocomposites of (2-hydroxypropyl) cellulose as a precursor of nanocrystalline zinc oxide layers. Polymers for Advanced Technologies,2008,19:1860.
    [171]Yano H, Sugiyama J, Nakagato A N, Optically Transparent Composites Reinforced with Networks of Bacterial Nanofibers. Advance Materials,2005,17:153
    [172]Qian H S, Antonietti M, Yu S H, Hybrid "Golden Fleece":Synthesis and Catalytic Performance of Uniform Carbon Nanofibers and Silica Nanotubes Embedded with a High Population of Noble-Metal Nanoparticles. Advance Functional Materials,2007, 17:637.
    [173]Wang C, Yan E Y, Huang Z H, Fabrication of Highly Photoluminescent TiO2/PPV Hybrid Nanoparticle-Polymer Fibers by Electrospinning. Macromolecular Rapid Communications,2007,28:205.
    [174]Kaewnopparat S, Sansernluk K, Faroongsarng D, Behavior of Freezable Bound Water in the Bacterial Cellulose Produced by Acetobacter xylinum:An Approach Using Thermoporosimetry. PharmSciTech,2008,9:70.
    [175]Shao G S, Zhang X J, Yuan Z Y, Preparation and photocatalytic activity of hierarchically mesoporous-macroporous TiO2-xNx. Applied Catalysis B,2008,82: 208.
    [176]Joung S K, Amemiya T, Murabayashi M, Itoh K, Mechanistic Studies of the Photocatalytic Oxidation of Trichloroethylene with Visible-Light-Driven N-Doped TiO2 Photocatalysts. Chemistry-A European Journal,2006,12:5526.
    [177]Liu A R, Wang S M, Zhao Y R, Low-temperature preparation of nanocrystalline TiO2 photocatalyst with a very large specific surface area. Materials Chemistry and Physics, 2006,99:131.
    [178]Suarez S, Coronado J, Portela R, et al. On the Preparation of TiO2-Sepiolite Hybrid Materials for the Photocatalytic Degradation of TCE:Influence of TiO2 Distribution in the Mineralization. Science Technology.2008,42:5892.
    [179]Cao J, Sun J Z, Hong J, et al. Carbon Nanotube/CdS Core-Shell Nanowires Prepared by a Simple Room-Temperature Chemical Reduction Method. Advanced Materials. 2004,16:84.
    [180]Dukovic G, Merkle M G, Nelson J H, et al. Photodeposition of Pt on Colloidal CdS and CdSe/CdS Semiconductor Nanostructures. Advanced Materials,2008,20:4306.
    [181]Zhang P, Gao L. Synthesis and Characterization of CdS Nanorods via Hydrothermal Micro emulsion. Langmuir,2003,19:208.
    [182]Wang S M, Liu P, Wang X X, Fu X Z. Homogeneously Distributed CdS Nanoparticles in Nafion Membranes:Preparation, Characterization, and Photocatalytic Properties. Langmuir,2005,21:11969.
    [183]Qi L M, Colfen H, Antonietti M. Synthesis and Characterization of CdS Nanoparticles Stabilized by Double-Hydrophilic Block Copolymers. Nano Letters, 2001,1:61.
    [184]Zeng J H, Zhu Y, Liu Y F, et al. Morphology development of CdS/PVAc composite from spheres to rods. Materials Science Engineering B,2002,94,131.
    [185]Shi J H, Qin Y J, Wu W, et al.In situ synthesis of CdS nanoparticles on multi-walled carbon nanotubes. Carbon,2004,42:455.
    [186]Liang H J, Angelini T E, Braun P V, Wong G C L. Roles of Anionic and Cationic Template Components in Biomineralization of CdS Nanorods Using Self-Assembled DNA-Membrane Complexes. Journal of the American Chemical Society,2004,126: 14157.
    [187]Yong Z, Ji Q M, Masuda M, Kamiya S, Shimizu T. Helical Arrays of CdS Nanoparticles Tracing on a Functionalized Chiral Template of Glycolipid Nanotubes. Chemistry of Materials,2006,18:403.
    [188]Hirai T, Ota M. Immobilization of CdS nanoparticles from reverse micellar system onto mesoporous organosilicates and their photocatalytic properties. Materials Research Bulletin.2006,41:19.
    [189]Yang C S, Awschalom D D, Stucky G D. Kinetic-Dependent Crystal Growth of Size-Tunable CdS Nanoparticles. Chemistry of Materials,2001,13:594.
    [190]Chtchigrovsky M, Primo A, Gonzalez P, et al. Functionalized Chitosan as a Green, Recyclable, Biopolymer-Supported Catalyst for the [3+2] Huisgen Cycloaddition. Angewandte Chemie International Edition,2009,48:5916.
    [191]Song C E, Lee S G. Supported Chiral Catalysts on Inorganic Materials. Chemical Reviews,2002,102:3495.
    [192]Klemm D, Heublein B, Fink H P, Bohn A. Cellulose:Fascinating Biopolymer and Sustainable Raw Material. Angewandte Chemie International Edition,2005,44:3358.
    [193]Tokoh C, Takabe K, Fujita M, Saiki H. Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose,1998,5:249.
    [194]Czaja W, Romanovicz D, Brown R M. Cellulose synthesized by Acetobacter xylinum in the presence of acetyl glucomannan. Cellulose,2004,11:403.
    [195]Puthussery J, Lan A, Kosel T H, Kuno M. Band-Filling of Solution-Synthesized CdS Nanowires. American Chemical Society Nano,2008,2:357.
    [196]Zhang p, Gao L. Synthesis and Characterization of CdS Nanorods via Hydrothermal Microemulsion. Langmuir,2003,19:208.
    [197]Sun S Q, Li T. Synthesis and Characterization of CdS Nanoparticles and Nanorods via Solvo Hydrothermal Route. Crystal Growth Design,2007,7:2367.
    [198]Xiong S L, Zhang X G, Qian Y T. CdS with Various Novel Hierarchical Nanostructures by Nanobelts/Nanowires Self-Assembly:Controllable Preparation and Their Optical Properties. Cryst Growth Design,2009,9:5259.
    [199]Zhai T Y, Fang X S, Bando Y, et al. Morphology-Dependent Stimulated Emission and Field Emission of Ordered CdS Nanostructure Arrays. American Chemical Society Nano,2009,3:949.
    [200]Chae W S, Lee S W, An M J, et al. Nanostructures and Optical Properties of Mesoporous Composite Nanofibers Containing CdS Quantum Dots. Chemistry of Materials,2005,17:5651.
    [201]Wahi R K, Yu W W, Liu Y P, Mejia M L, et al. Photodegradation of Congo Red catalyzed by nanosized TiO2. Journal of Molecular Catalysis A:Chemical,2005,242: 48.
    [202]Cao B, Jiang Y, Wang, C, Wang W H et al. Synthesis and Lasing Properties of Highly Ordered CdS Nanowire Arrays. Advanced Functional Materials.2007,17:1501.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700