本征导电纤维集合体的电—力学性能及其作为应变、压力传感器的性能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着高新技术对传统纺织行业的渗透,纺织品正在日益功能化,智能化。智能纺织品就是纺织品发展的一个新领域。
     纺织品作为传感器具有其独特的优点:柔软、可穿着、透气、轻薄、造价低等。利用导电纺织结构的电—力学性能作为传感器的应用已经得到了一些研究小组的重视,因为在下一代电子产品中,可穿着将是一个崭新的应用领域。
     目前大多数的纺织结构传感器是基于导电高分子材料,这种材料具有很多优点:易合成,敏感度高等,但是也具有其缺点:环境稳定性差、不耐高温、毒性等,所以,在没有克服这些缺点之前,本征导电纺织结构传感器是一个很好的替代,它具有环境稳定性好、耐高温、制作简单等优点。
     虽然已经有很多成功的本征导电纺织品作为拉、压传感器的应用实例,但是缺乏一个系统的关于本征导电纺织结构作为拉伸、压力传感器的机理研究。多数的研究是基于其宏观电—力学性能的研究。本文提出了本征导电纺织结构作为拉力、压力传感器应用的机理。从纤维—纤维集合体—织物结构的电—力学性能分析,找到纺织结构作为拉力、压力传感器应用的传感机理。并对每一层次结构的电—力学性能进行模型与实验分析,找到影响纺织结构作为传感器的主要影响因素及其最佳的设计形式。同时对设计的传感器进行了性能分析,与模型分析的结果做对比,验证模型,设计高性能传感器。
     通过本课题的研究发现,拉力、压力传感器的传感原理就是纱线与纱线之间的接触电阻随外界应力的变化而变化。如何设计出合理的纤维、纱线和织物结构是决定传感器性能好坏的主要因素。同时纤维的本身力学性能、表面状况也是影响传感器性能的重要因素。通过实验发现,作为应变传感器,短纤维纱线因为其可以提供更多的接触电阻而优于长丝纱。弯曲刚度大的纤维具有更好的回复性,低的滞后性。表面光滑的纤维有利于传感器的回复性。相对于机织物与非织造物,针织物结构可以抵抗大的变形而作为大应变传感器。同时其结构可以提供特殊结构的纱线之间接触的线圈来实现织物的传感特性。对于单编链结构应变传感器,织物密度是影响传感器性能的主要因素。对于压力分布传感器,机织结构因其可以提供规则的接触电阻“栅格”以及对侧向压力敏感而作为压力分布传感器的主要结构。本研究使用刺绣的方法来实现两个系统纱线的接触电阻“栅格”的规则分布。实验发现在接触点使用硅胶涂层可以提高接触电阻—应力的敏感度、回复性,同时可以扩大感应范围。对于引线,相对于全扫描电路,单独引线以及“共地”都可以降低电流之间的干扰效应。同时介绍了这些传感器的应用前景。
With the development of science and technology, traditional textile products exhibit more functional, intelligent properties due to the cooperating with high technologies. Smart textile is such a novel fields that provide more fantasy to our daily life.
     To be used as textile sensor is a kind of smart textile and it has advantages such as flexible, wearable, breathable, thin and cheap, etc. Many research groups have been focusing on the applications of textile sensor based on the textile structure and material properties, because wearability is the trend of the next generation electronics.
     Most of the textile structural sensor is based on the conductive polymers which have the advantages of high sensitivity, ease polymerization, etc. However the disadvantages are also existed in the practical application such as poor environmental stability, low usage temperature, toxicity. etc. Therefore, intrinsically conductive materials such as carbon, metal, silicon, etc are the best candidates to overcome the disadvantages of conductive polymer in the fabrication of fabric sensor.
     Although many successful intrinsically conductive fabric mechanical sensors have been used in the practical application, however, very few systematic works has been done in the sensing mechanism, sensor structure designing, etc. In order to fabricate high quality fabric sensor, some works were done in our research to find out the key factors which governor the sensing mechanism of the fabric sensor and put forward some useful guidelines to help design this sensors. The conducting and sensing mechanisms of single fiber, fiber assembly and fabric structure were analyzed theoretically by the circuit model and verified experimentally. From the analysis, the best structures of yarn and fabric are abstained when design the fabric sensors.
     It is found out from the research that the contact resistance between two contacting fibers in the yarn is the key factor governing the sensing mechanism. How to design a suitable yarn and fabric structures that distribute the fiber contacts is the most important factor when design a high quality fabric strain/pressure sensor. Meanwhile, the intrinsic properties of fiber such as mechanical properties, surface morphology are also important factors effecting the properties of fabric sensor.
     It can be concluded from the experimental results that, for strain sensor, stable yarn which can provide more fiber-fiber contacts has high sensitivity and repeatability than continuous filament yarn. High bend modulus and smooth surface yarn has higher repeatability and lower hysterisis. Compared to woven fabric, knitted fabric can be used as large strain sensor due to its easy deformation under stress and have larger sensitivity for its loop structure that can provide more contact resistance of yarns. For single warp structure, fabric density is the key factor effecting the fabric sensor characteristics. As to pressure sensing fabric, woven is the best structure because it can provide regular distributed contact resistance grids and it is sensitive to lateral pressure. For the fabrication of strain sensor, knitting machine can be used and for pressure mapping sensor, embroidery machine is the best tool for its accurate distribute the sensing grid on the surface of the fabric. It is found that coating of the grids can improve the sensitivity, repeatability and enlarge the sensing region. As to wiring, separate and "common ground" method can decrease the "crosstalk" effect of current than full scanning methods. Some application prototypes were also introduced at the end of the thesis.
引文
[1] Dina Meoli, Traci May-Plumlee, Interactive electronic textile development: a review of technologie, Journal of textile and apparel, technology and management, 2,3 (2002), 1-12.
    [2] Vladan Koncar, Bohwon Kim, Emmanuel Bilala Nebor, Xavier Joppin, Floatable intelligent and communicative clothing project-conductive fibers development, Proceedings of the eighth international symposium on wearable computers, 1 (2004), 36-39
    [3] Dejan Raskovic, Thomas Martin and Emil Jovanov, Medical monitoring application for wearable computing, The Computer Journal, 47, 4 (2004) 495-504
    [4] Starner, T. The challenges of wearable computing, IEEE Micro., 21 (4), (2001),44-67
    [5] Georgia Institute of Technology (2003) School of Textile and Fiber Engineering.http://www.tfe.gatech.edu/
    [6] Sensatex (2003) 'Smart Shirt'. http://www.sensatex.com/smartshirt/index.html
    [7] Jung, S., Lauterbach, C.and Webrt, W. Integrated microelectronics for smart textiles. In Proc. Workshop on Electronics Textiles, ASPLOS-X, San Jose, CA, October, 15-22. ACM, New York, NY.
    [8] E.R. Post, M. Orth, P.R. Russo, and N.Gershenfeld, E-broidery: design and fabrication of textile-based computing, IBM System Journal, 39, 3-4 (2000), 840-860
    [9] Rock, Moshe; Sharma, Vikram, Emi shielding fabric. US Patent 2002-386179
    [10] Fujita, Kazuhide, and Tanaka, Hiroyuki, Flame-retardant electrically conductive fabrics for electromagnetic shields and their manufacture. Japanese Patent 2001-178373
    [11] Akopian, Vladimir, Chirkov, and Alexander, Electromagnetic (EMI) shielding knit fabric, US Application Patent, 97-943957
    [12] Kim Han Kyun, Kim Mi Sun, Chun So Yeon, Park Yun Heum, Jeon Boong Soo,Lee Jun Young, Hong Young Ki, Joo, Jinsoo Kim, and Seong Hun, Characteristics of electrically conducting polymer-coated textiles, Molecular Crystals and Liquid Crystals, 405 (2003), 161-169.
    [13] Manabe,Katsuhide;Suzuki,Masayuki;Nakajima,Eigo;Suzuki,Toshikazu,Antistatic fabrics and clothing,Japanese Patent Application:JP 99-211972 19990727.
    [14] Kuhn,Hans H.;Child,Andrew D.;Kimbrell,William C,Toward real applications of conductive polymers,Synthetic Metals,71(1-3) (1995) ,2139-2142
    [15] Yeh,Ya-hui;Wu,Cheng-tao,Antistatic fabrics comprising a fabric substrate and a thin metal film having specified volume resistivity and charge dissipating rate,formed on the side face of the fabric substrate,U.S.Pat.Appl.Publ.(2005) ,2005042959
    [16] Dall'Acqua,L.;Tonin,C;Peila,R.;Ferrero,F.;Catellani,M.,Performances and properties of intrinsic conductive cellulose-polypyrrole textiles,Synthetic Metals 146,2(2004) ,213-221
    [0] Collins G.E.& Buckley L.J.,Conductive Polymer-Coated Fabrics For Chemical Sensing,Synthetic Metals,78(1996) ,93-101
    [17] Lee,Jun Young;Park,Dong Won;Lim,Jeong Ok,Polypyrrole-coated woven fabric as a flexible surface-heating element,Macromolecular Research,11,6(2003) ,481-487
    [18] W.Thomson(Lord Kelvin),On the electrodynamic qualities of metals,Proc.R.Soc,1856.
    [19] Xiaojun Wang,D.D.L.Chung,Electromechanical behavior of carbon fiber,Carbon,(1997) 706-709
    [20] Xiaojun Wang,D.D.L.Chung,An electromechanical study of the transverse behavior of carbon fiber polymer-matrix composite,Composite Interfaces,5,33,(1998) ,191-199
    [21] Xiaojun Wang,D.D.L.Chung,Short carbon fiber reinforced epoxy coating as a piezoresistive strain sensor for cement mortar,Sensors and Actuators,A(1998)
    [22] D.D.L.Chung,Structural health monitoring by electrical resistance measurement,Smart Material and Structure,10,(2001) ,624-636
    [23] Xiaojun Wang,Xuli Fu,and D.D.L.Chung,Strain sensing using carbon fiber,Journal of Materials Research,14,3(1999) ,790-802
    [24] S.Blazewicz,B.Patalita and PH.Touzain,Study of piezoresistance effect in carbon fibers,Carbon,35,10-11(1997) ,1613-1618
    [25] Xiaojun Wang,D.D.L.Chung,Short carbon fiber reinforced epoxy coating as a piezoresistive strain sensor for cement mortar,Sensors and Actuators A 71(1998) ,208-212
    [26] R.Wijesiriwardana,T.Dias,S.Mukhopadhyay,Resistive fiber-meshed transducers,Proceedings of 7~(th)IEEE International Symposium on Wearable Computers,2003,200-205
    [27] Xue P and Tao XM,Morphological and electromechnical studies of fibers coated with electrically conductive polymers,Applied Polymer Science,98(2005) ,1844-1854.
    [28] Y Li,Leung YM,Tao XM,Chen XY,Tsang HYJ,Yuen MCW,Polypyrrole-coated fabrics as a candidate for strain sensors,J.Materials Science,40,15(2005) ,4093-4095
    [29] Y Li,Leung YM,Tao XM,Chen XY,Tsang HYJ,Yuen MCW,A flexible strain sensor from polypyrrole coated fabrics,Synthetic Metals,155,1(2005) ,89-94
    [30] Xue P,Tao XM,Yu TX,K Kwok and S.Leung,Electromechanical behavior and mechanistic analysis of fibers coated with electrically conductive polymer,Text.Research Journal,74,1(2004) ,929-936
    [31] R.V.Gregory,W.C.Kimbrell,and H.H Kuhn,Conductive textiles,Synthetic Metals,28,1-2(1989) ,823-835
    [32] Federico Lorussi,Walter Rocchia,Enzo Pasquale Scilingo,Alessandro Tognetti,and Danilo De Rossi,Wearable,redundant fabric-based sensor arrays for reconstruction of body segment posture,IEEE Sensors Journal,4,6(2004) ,807-818
    [33] Enzo Pasquale Scilingo,Federico Lorussi,Alberto Mazzoldi,and Danilo De Rossi,Strain-sensing,fabric for wearable kinaesthetic-like systems,IEEE Sensor Journal,3,4(2003) ,460-467
    [34] De Rossi,D.,Carpi,F.,Lorussi,F.,Tognetti,A.,Scilingo,E.P.,Mazzoldi A.,Electroactive Fabrics for Distributed,Conformable and Interactive Systems,in"Proc.of IEEE Sensors 2002,IEEE International Conference on Sensors,"1608-1613(2002)
    [35] Kuhn,H.H.and Kimbrell,W.C.,Worrell,G.and Chen,C.S.,Properties of Polypyrrole Treated Textile for Advanced Applications,ANTEC,(1991) ,760-764
    [0] Masayuki I.,Yukiko H.,Kenichiro N.,Tatsuo N.,Satoshi K.,Hirochika I.,A full-body tactile sensor suit using electrically conductive fabric and strings,Proceedings of the 1996 IEEE/RSJ International Conference on Intelligent Robots and Systems '96,450-457.
    [36] Sarah Brady,Dermot Diamond,Kong Tong,Lau,Inherently conductive polymer modified polyurethane smart foam for pressure sensing,Sensors and Actuators:A 119(2005) 398-404
    [37] Tianshu Liu,M.Guille and J.P.Sullivan,Accuracy of pressure-sensitive paint,AIAA Journal,39,1(2001) ,103-112
    [38] Manwar Hussain,Yong-Ho Choa,Koichi Niihara,Fabrication process and electrical behavior of novel pressure-sensitive composites,Composites:Part A 32(2001) 1689-1696
    [39] [19] Foot insole & stepping mats,tactile pressure measurement system,Tactilus,www.sensorprod.com/tactilus
    [40] D.T.Beruto,M.Capurro,G.Marro,Piezoresistance behavior of silicone-graphite composites in the proximity of the electric percolation threshold,Sensors and Actuators A 117(2005) 301-308
    [41] Makoto Shimojo,Ryota Makino,Akio Namiki,Masatoshi Ishikawa,Takafumi Suzuki,Kunihiko Mabuchi,A sheet type tactile sensor using pressure conductive rubber with electrical-wires stitches method,IEEE Sensors Journal,4,5(2004) ,1637-1642
    [42] D.Lussey,D.Jones,S.Leftly,Flexible switching devices,U.S.Pat.Appl.20040252007,Dec,2004.
    [43] J.Kraetzl,M.Hugenschmidt,"Pressure sensor",U.S.Pat.Appl.20010020714,Sep.,2001.
    [44] Swallow,S.Staley,A.Peta-Thomson,"Conductive pressure sensitive textile",U.S.Pat.Appl.20030119391,Jun.,2003.
    [45] Maximilian Sergio,Nicolo Manaresi,Fabio Campi,Roberto Canegallo,A dynamically reconfigurable monolithic CMOS pressure sensor for smart fabric,IEEE Journal of Solid-State Circuits,38,6(2003) ,966-975
    [46] Min-Xin Zhou,Qing-An Huang,Ming Qin,Modeling,design and fabrication of a triple-layered capacitive pressure sensor,Sensors and Actuators A 117(2005) 71-81
    [47] Sung-Pil Chang,Jeong-Bong Lee,Mark G.Allen,Robust capacitive pressure sensor array,Sensors and Actuators A 101(2002) 231-238
    [48] R.Lazzarini,R.Magni,P.Dario,A tactile array sensor layered in an artificial skin,in International Conference on Intelligent Robots and Systems,3(1995) ,3114-3119
    [49] M.Sergio,N.Manaresi,M.Tartagni.R.Guerrieri,R.Canegallo,"A Textile Based Capacitive Pressure Sensor",in Proc.of IEEE,2(2002) ,12-14
    [50] J.Dargahi,A piezoelectric tactile sensor with three sensing elements for robotic endoscopic and prosthetic applications,Sensors and Actuators A 80(2000) 23-30
    [51] Tommaso D'Alessio,Measurement errors in the scanning of piezoresistive sensors arrays,Sensors and Actuators 72(1999) 71-76
    [52] Shenfang Yuan,Fahard Ansari,Xiaohui Liu,Yang Zhao,Optic fiber-based dynamic pressure sensor for WIM system,Sensors and Actuators A,4,(2005) ,53-58
    [53] L.Mohanty,S.C.Tjin,N.Q.Ngo,Pressure mapping sensor with an array of chirped sampled fiber gratings,Sensors and Actuators A 117(2005) 217-221
    [54] N.K.S.Lee,R.S.Goonetilleke,Y.S.Cheung,G.M.Y.So,A flexible encapsulated MEMS pressure sensor system for biomechanical applications,Microsystem Technologies,7(2001) ,55-62
    [55] Takao Someya,Tsuyoshi Sekitani,Shingo Iba,Yusaku Kato,Hiroshi Kawaguchi,and Takayasu Sakural,A large-area,flexible pressure sensor matrix with organic field-effect transistors for artificial skin application,Proceedings of the National Academy of Sciences,101,27(2004) ,9966-9970
    [1] D.D.Edie, The effect of processing on the structure and properties of carbon fibers,Carbon, 36, 4 (1998), 345-362
    [2] Xiaojun Wang, D.D.L.Chung, Electromechanical behavior of carbon fiber, Carbon,(1997) 706-709
    [3] Xiaojun Wang, D.D.L.Chung, An electromechanical study of the transverse behavior of carbon fiber polymer-matrix composite, Composite Interfaces, 5,33,(1998), 191-199
    [4] Xiaojun Wang, D.D.L.Chung, Short carbon fiber reinforced epoxy coating as a piezoresistive strain sensor for cement mortar, Sensors and Actuators, A (1998)
    [5] D.D.L. Chung, Structural health monitoring by electrical resistance measurement, Smart Material and Structure, 10, (2001), 624-636
    [6] Xiaojun Wang, Xuli Fu, and D.D.L. Chung, Strain sensing using carbon fiber,Journal of Materials Research, 14, 3 (1999), 790-802
    [7] S. Blazewicz, B. Patalita and PH. Touzain, Study of piezoresistance effect in carbon fibers, Carbon, 35, 10-11 (1997), 1613-1618
    [8] Xiaojun Wang, D.D.L. Chung, Short carbon fiber reinforced epoxy coating as a piezoresistive strain sensor for cement mortar, Sensors and Actuators A 71 (1998),208-212
    [9] W.Thomson (Lord Kelvin), On the electrodynamic qualities of metals, Proc. R. Soc., 1856.
    [10] P.C.Conor and C.N.Owston, Electrical resistance of single fiber, Nature, 223(1969), 1146-1147
    [11] C.N. Owston, Electrical properties of single carbon fibres, Journal of Physics D 3(1970), 1615-1626
    [12] S.J. DeTeresa, Piezoresistivity and failure of carbon filaments in axial compression, Carbon 29, 3 (1991), 397-409
    [13] 姚穆,论纤维集合体的电阻,西北纺织工学院学报,15,2(2001),178—185
    [14] Ragnar Holm, "Electric Contacts (Fourth Edition)", Berlin, New York, Springer-Verlag, P 7-19 (1967).
    [1] Munden, D.L., The Geometry and Dimensional Property of Plain-Knit Fabrics,Journal of Textile Institute, 50 ((1959), 448-471
    [2] Shanahan, W.J. and Postle, R., A Theoretical Analysis of the Plain Knitted Structure, Textile. Research Journal, 40 (1970), 656-665
    [3] Shanahan, W.J. and Postle, R., A Theoretical Analysis the Tensile Properties of Plain-Knitted Fabrics. Part Ⅰ: The Load-Extension Curve for Fabric Extension Parallel to the Course, Journal of Textile Institute, 65 (1974), 200-212
    [4] W.L. Wu, H. Hiroyuki, M. Zen-ichiro.Computer Simulation of the Deformation of Weft-Knitted Fabrics for Composite Materials, Journal of Textile Institute, 85 (1994), 198-213
    [5] A.U. Loginov, S.A. Grishanov, and R. J. Harwood, Modelling the load-extension behavior of plain-knitted fabric part Ⅰ: a unit-cell approach towards knitted-fabric mechanics, Journal of Textile Institute, 93, 3 (2003), 218-238
    [6] A.U. Loginov, S.A. Grishanov, and R. J. Harwood, Modelling the load-extension behavior of plain-knitted fabric part Ⅱ: Energy relationship in the unit cell, 93, 3 (2003), 239-275
    [7] 姚穆,论纤维集合体的电阻,西北纺织工学院学报,15,2(2001),178—185
    [8] H. Zhang, X.M. Tao, S.Y. Wang, and T. X. Yu, Electro-Mechanical properties of knitted fabric made from conductive multi-filament yam under unidirectional extension, Textile Research Journal, 75, (2005), 598-606
    [1] W.Thomson (Lord Kelvin), On the electrodynamic qualities of metals, Proc. R. Soc., 1856.
    [2] W. Steinhogl et al., "Size dependent resistivity of metallic wires in the mesoscopic range," Physical. Review 66 (2002), 075414/1-075414/4
    [3] H. L. Ho, W. Jin, C. C. Chan, Y. Zhou and X. W. Wang, A fibre Bragg grating sensor for static and dynamic measurands, Sensors and Actuators A: Physical, 96 (2002), 21-24.
    [4] Xiaoming Tao, Liqun Tang, Wei-chong Du and Chung-loong Choy, Internal strain measurement by fibre Bragg grating sensors in textile composites, Composites Science and Technology, 60, 5, (2000) 657-669.
    [5] Eun-Soo Hwang and Yong-Jun Kim, Flexible polysilicon strain gauge array, The Japan Society of Applied Physics, 42 (2003), L810-L813
    [6] B. Yang, X.M. Tao and J.Y. Yu, A study on the relation between resistance and strain based on stainless steel fabric, Rare metal materials and engineering, 35,1 (2006), 96-99
    [7] H. Zhang, X.M. Tao, T.X. Tong, and S.Y. Wang, Conductive knitted fabric as large-strain gauge under high temperature, Sensors and Actuators A: Physical 126, 1 (2006), 129-140
    [8] H. Zhang, X.M. Tao, T.X. Tong, S.Y. Wang, and Xiaoyin Cheng, A novel sensate "string" for large-strain measurement at high temperature, Sensors and Actuators A:Physical 17, 2 (2006), 450-458
    [1] B.Morten, G. D. Cicco, M.Prudenziati, Resonant pressure sensor based on piezoelectric properties of ferroelectric thick films, Sensors and Actuators Physical: A,31(1992), 153-158
    [2] G.Caliano, N Lamberti, A. Lula, M. Pappalardo, A piezoelectric bimorph static pressure sensor, Sensors and Actuators Physical: A, 46(1995), 176-178
    [3] SA Whitmore, WT Lindsey, RE Curry, GB Gilyard, Experimental characterization of the effects of pneumatic tubing on unsteady pressure measurements, Technical Report NASA TM-4171, Research Engineering, NASA Dryden Flight Research Center
    [4] Narkis M, Ram A, Flasher F, Electrical properties of carbon black filled polyethylene. Polymer Engineering Science, 18, (1978) 649
    [5] A.E.Job,F.A.Oliveira,N.Alves,J.A.Giacometti,L.H.C.Mattoso,Conductive composites of nature rubber and carbon black for pressure sensors,Synthetic Metals 135-136(2003) 99-100
    [6] C.Tsikos,"Capacitive fingerprint sensor,"U.S.Patent 4 353 056,Oct.5,1982.
    [7] U.Paschen,M.Leineweber,J.Amelung,M.Schmidt,G.Zimmer,A novel tactile sensor system for heavy-load applications based on an integrated capacitive pressure sensor,Sensors and Actuators A 68(1998) 294-298
    [8] Wen H.Ko,Qiang Wang,Touch mode capacitive pressure sensors,Sensor and Actuators,75(1999) 242-251
    [9] H Zhang,S.C.Galea,W.K.Chiu,and Y.C.Lam,An investigation of thin PVDF films as fluctuating-strain-measuring and damage-monitoring devices,Smart Materials and Structure,2(1993) ,208-216
    [10] Makoto Shimojo,Mechanical filtering effect of elastic cover for tactile sensor,IEEE Transactions on Robotics and Automation,13,1(1997) ,128-132
    [11] H.Zhang,X.M.Tao,T.X.Yu,and X.S.Li,Pressure sensor fabric,Proceeding of Material Research Society,Smart and nanotextile section,920,(2006) ,0920-S05-05
    [12] X.M.Tao and H.Zhang,"Pressure sensing fabric"US.Patent,Application No.11/127,142,On pending

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700