非织造材料(纤维网)形态结构的表征与分形模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非织造材料是基于既古老又具有崭新加工工艺的非织造技术的一种纤维材料,它最大的优点是可以按最终产品的使用性能,科学地设计加工技术、工艺路线,最充分有效地利用资源,生产出满足最终用途要求的产品。它在工业、农业、城市建设、医药卫生、衣用家用纺织品等领域都具有越来越广泛的用途,可以用作各种过滤材料、气体或微粒的吸附材料、土工材料、隔热隔音材料、电器绝缘材料、农产品的培养基等,同时也可作为一种基质材料,用于和其他物体构成复合材料。而无论是作为单一材料还是复合材料,其功能都与纤维集合体的多孔结构密切相关,如孔隙的形状、数量、大小分布等。而孔隙的结构又与纤维的粗细、数量、卷曲程度、取向程度以及纤维集合体的成形方式等有关,因此若能找到可直观方便地描述这种非织造纤维材料的结构参数,进而找出这些结构参数与制造方法、产品性能之间的有机联系,则无论对其生产还是用途都具有十分重要的理论指导意义。但由于这类材料结构的复杂性和随机性,长期以来,运用传统几何学一直未能有一个统一有效的刻划方法来表征其结构特征。随着非织造纤维材料的应用价值进一步被认识和应用领域的进一步扩大,其结构特征的定量表述现已成为一个急待解决的问题。
     分形几何为研究非规则几何对象提供了一种新的思想和有力的工具。因此,本文首先借助分形理论并结合计算机图象分析技术对实际纤维网进行了结构研究,发现非织造纤维网的孔隙大小分布具有明显的分形特征,并计算出了孔隙分形维数,用以表达孔隙大小分布的规律。同时结合反映孔隙形状的紧密度和粗糙度等参数,以及反映纤维状态的纤维取向分布函数来比较全面地表征非织造材料不规则性的形态结构。
     然后在对常用纤维卷曲形态的分形特征进行分析的基础上,通过Visual Basic语言编程,利用随机分形曲线模拟了纤维的卷曲形态,进而模拟了由卷曲纤维构造成的各种类型的非织造纤维网。
     在此基础上,利用编制好的参数化程序,通过改变纤维的直径、卷曲程度、取向分布、纤维网定量等参数,产生了大量的模拟纤维网图象,并提取了其结构
    
     非织造材料(纤维网)形态结构的表征与分形模拟提要
    特征参数,从而研究了生产加工中纤维直径、卷曲、纤维取向分布、纤维网定量
    等对非织造纤维网孔隙结构的影响。
     通过对实际非织造纤维网的直观图象分析研究,本文发现其孔隙分形维数与
    纤维网的透通性能之间存在一定的关系:而利用模拟纤维网进行研究的结果表明,
    纤维直径、卷曲、纤维取向分布、纤维网定量等对纤维网的孔隙分形维数有明显
    的影响,同时后三者对孔隙形状也有较大影响。由此说明,对非织造纤维网的形
    态结构进行表征和模拟,可以为在更深层次上揭示非织造纤维网的生产、结构与
    使用性能之间的关系提供理论基础。
Nonwovens are fiber materials which are based on nonwoven technologies. Nonwoven technology embodies both quite old and the very new processing techniques. From a fairly modest beginning with only a limited variety of raw materials, processes, and end uses, the nonwoven industry has reached a state of enormous diversity. Their most advantages are that the processing technologies and forming methods for the products can be designed scientifically according to their end-use. So that the resources can be used most adequately and the satisfactory products be obtained. The applications of nonwovens in industry, agriculture, civil construction, sanitary, home-use and so on, are wider and wider. They can be used as various kinds of filters, adsorbents, geotextiles, insulation materials of heat, sound and electricity, culture medium of farm produces, etc.. Meanwhile, they also can be used as fundus for composite materials. Whether they are used as single or composite materials, their properties are related to their
     porosity structures, such as pore shape, pore size, pore quantity and pore size distribution and so on. And the porosity structures are related to fiber diameter, fiber crimp, fiber orientation, fiber quantity and the forming method of the fiber aggregations. Therefore, it is important for both manufactory and end-use to obtain the parameters which can be used to express the structure of nonwovens conveniently, and furthermore to find out the relationships between structures parameters and produce methods and properties of products. But for the complexity and randomness of nonwovens structures, it is difficult to express their structures effectively using classical geometry. With the enlargement of their applications, it is urgent to find a way to express their structures quantitatively. Fractal geometry give us a new idea and a powerful tools to study on irregularity of
    
    
    geometric objects. Therefore, we studied on the morphologic structures of real nonwovens using fractal geometry combined with computer image processing technology first. The result shows that the pore size distribution in nonwovens is fractal, and the rule of pore size distribution can be expressed by fractal dimension. Fractal dimension, combined with compactness and roughness which are related to pore shape, and fiber orientation function, is found to be capable of express the irregular morphologic structures of nonwovens in the round.
    Then, on the basis of studying on fractal character of crimped morphology of routine fibers, we simulated the crimped fibers using fractal curve through programming with Visual Basic Language. Furthermore, we simulated various kinds of nonwovens made up of crimped fibers.
    Finally, a large series of simulated nonwovens were generated through changing the fiber diameter, fiber crimp, fiber orientation and fiber quantity in the program, so as to study the effect of those fiber parameters mentioned above on fractal dimension of pore size distribution and pore shape.
    The study on real nonwovens indicates that the fractal dimension of pore size distribution is related to nonwovens permeability; and the results from simulated nonwovens show that fiber diameter, fiber crimp, fiber orientation and web density influence the fractal dimension of pore size distribution prominently, and the latter three also influence the pore shape obviously. Accordingly, we know that to express and simulate the morphologic structures of nonwovens will provide the theoretics foundation for revealing the relationships between manufacture, structure and properties of nonwovens in a deep level.
引文
(1) 王延熹.非织造布生产技术[M].上海:中国纺织大学出版社,1998.
    (2) 王晓红.非织造布结构特性的测试方法及其发展方向[J].西北纺织工学院学报,2000,14(1):85~89.
    (3) 李洪.面状纤维集合体孔隙相的研究[J].产业用纺织品,2000,18(5):20~23.
    (4) Burleigh E.G, Wakeham H., Honoid E., andSkau E.L.. Pore size distribution in textiles [J]. Textile Res. J., 1949,19(9):547~555.
    (5) Wakeham.H. and Spicer N.. Pore size distribution in textiles——A study of windproof and water-resistant cotton fabrics [J]. Textile Res. J., 1949,19(11):703~710.
    (6) Miller B. and Tyomkin I.. An extended range liquid extrusion method for determining pore size distributions[J]. Textile Res. J., 1986,56(1):35~40.
    (7) Gong R.H. Image-analysis tech. Part Ⅰ: The measurment of pore-size distribution [J]. J. Text. Inst., 1992,83(2):253~268.
    (8) Pourdeyhimi B. and Ramanathan R.. Measuring fiber orientation in nonwovens, Part Ⅰ: simulation[J]. Textile Res. J., 1996,66(11):713~721.
    (9) Pourdeyhimi B. and Ramanathan R.. Measuring fiber orientation in nonwovens, Part Ⅱ: direct tracking[J]. Textile Res. J., 1996,66(12):747~753.
    (10) Pourdeyhimi B. and Ramanathan R.. Measuring fiber orientation in nonwovens, Part Ⅲ: fourier transform[J]. Textile Res. J., 1997,67(2): 143~151.
    (11) Pourdeyhimi B. and Ramanathan R.. Measuring fiber orientation in nonwovens, Part Ⅳ:flow field analysis[J]. Textile Res. J., 1997,67(3): 181~187.
    (12) Hearle J. W. S. nonwoven fabric studies. Part Ⅱ:The anisotropy of nonwoven fabrics [J]. Text Res. J.,1986,33(11):877~888.
    (13) 赵广兴,严灏景.利用微波法检测非织造布的各向异性[J].中国纺织大学学报,1990,16(4):11~16.
    (14) Huang X. C. Characterizing nonwoven web structure using image analysis tech. Part Ⅰ: Fiber orientation analysis in thin web[J]. INDA JNR, 1997, 5(2): 14~21.
    
    
    (15) Wan T.R.,Leaf.G.A.V. and lype C. A new objective method for assessing fibre arrangement in fibrous webs[J]. J. Text. Inst., 1995, 86(4):649~663.
    (16) Pourdeyhimi B.. Measuring Fiber Orientation in Nonwovens: The Hough Transform[J]. Textile Res. J., 2002,72(9):803~809.
    (17) Kim H.S. and Pourdeyhimi B. A note on the effect of fiber diameter, fiber crimp and fiber orientation on pore size in thin webs[J]. International Nonwovens Journal. winter 2000:15~19.
    (18) Xu B.. Identifying fabric structures with Fast Fourier Transform Technics[J]. Textile Res. J., 1996,66(8):496~506.
    (19) Xu B. and Yu L. Determining fiber orientation distribution in nonwovens with hough transform techniques[J]. Textile Res. J.,1997,67(8):563~571.
    (20) 郭永平,徐增波,李汝勤.傅立叶变换技术在织物和无纺布结构参数测试中的应用[J].中国纺织大学学报,1998,24(6):18~22.
    (21) Ghassemieh.E. et al. Microstructural analysis of fiber segments in nonwoven fabrics using SEM and image processing[J]. International Nonwovens Journal. summer 2001:26~31.
    (22) Wang Xueqin. Morphology distributions in thermally point bonded nonwovens. PhD Thesis. Georgia Institute of Technology, 2001.
    (23) 刘明,许鹤群.棉网均匀度检测中的图象识别方法[J].中国纺织大学学报,1990,16(4).
    (24) 周胜,储才元,严灏景.基于激光散射强度测量非炽造布面密度的实验研究[J].中国纺织大学学报,2000,26(6):105~108.
    (25) Abdel-Ghani M. S. and Davies G. A. Simulation of nonwoven fiber mats and the application to coalescers[J]. Chemical Eng. Sci., 1985:117.
    (26) 潘莺,王善元.模拟熔喷纤网的孔隙分布及其对过滤性能的影响[J].中国纺织大学学报,2000,26(5):73~77.
    (27) Helen H. Epps, et al. Pore size and air permeability of four nonwoven fabrics[J]. International Nonwovens Journal, 2002.
    (28) Pourdeyhimi B. Characterizing fiber diameter variability in nonwovens [J]. International
    
    Nonwovens Journal, 2002.
    (29) Kim H.S. and Pourdeyhimi B. The role of structure on mechanical properties of nonwoven fabrics[J]. International Nonwovens Journal, summer 2001:32~37.
    (30) Yakir Shoshani, et al. Use of nonwovens of variable porosity as noise control elements [J]. International Nonwovens Journal, winter 2001:23~28.
    (31) Benoit B. Mandelbrot. The fractal geometry of nature[M]. W. H. Freeman and Company, New York, 1983.
    (32) Jens Feder. Fraetal[M]. Plenum Press, New York and London, 1988.
    (33) Jorge Neves et al.. Fraetal geometry[J]. International Journal of Clothing Science and Technology. 1994,6(1):28~36.
    (34) 胡瑞安,胡纪阳,徐树公著.分形的计算机图象及其应用[M].北京:中国铁道出版这,1995.
    (35) 谢和平,薛秀谦.分形应用中的数学基础与方法[M].北京:科学出版社,1998.
    (36) Mandelbrot B.著,文志英 苏虹 译.分形对象——形、机遇和维数[M].北京:世界图书出版公司,1999.
    (37) 张济忠.分形[M].北京:清华大学出版社,1995.
    (38) 李后强,汪富泉 著.分形理论及其在分子科学中的应用[M].北京:科学出版社,1997.
    (39) 齐东旭 著.分形及其计算机生成[M].北京:科学出版社,1994.
    (40) 王桥 毋河海 著.地图信息的分形描述与自动综合研究[M].武汉:武汉测绘科技大学出版社,1998.
    (41) Conci A. Fractal image analysis system for fabric inspection based on a box-counting method[J]. Computer Networks and ISDN Systems, 1998, 30(20~21): 1887~1895.
    (42) Chen J. Fractal characterization of fabric wrinkle image[J]. Journal of China Textile University, English Edition, 1999, 16(3):86.
    (43) 杨旭红,李栋高等.绉织物表面图象的分形特征分析[J].纺织学报,2003,24(4):39~41.
    (44) Gunnar A. Niklasson, et al. Surface roughness of pyrolytic tin dioxide films evaluated by different methods[J]. Thin Solid Films, 2000 (359): 203~209.
    
    
    (45) Merle G., et al. Quantitative analysis of surface morphology: characterization of polypyrrole films aging[J]. Polymer Testing, 1999(18): 217~229.
    (46) Kang Tae Jin, et ai. Geometric modeling of a cyber replica system for fabric surface property grading[J]. Textile Res. J., 2002, 72 (1): 44~50.
    (47) Thomas T.R., et al. Fractal characterization of the anisotropy of rough surfaces[J]. Wear, 1999(232):41~50.
    (48) Sointsev V.A.,et al. Investigation of electric field at the cathode with fractal structure of the surface[J]. Solid-State Electronics,2001(45):853~856.
    (49) 王敏锡 等.用散射系数提取粗糙面的分形特征[J].应用科学学报,2000,18(2):131~134.
    (50) 徐满才 等.大孔交联聚苯乙烯的分形结构研究[J].离子交换与吸附,2000,16(5):385~391.
    (51) 缪明烽 等.钙基脱硫剂分形孔结构的实验研究[J].洁净煤燃烧与发电技术,2001(1):28~30.
    (52) 李霜 等.粉煤灰颗粒群几何特征的图象分析研究[J].建筑材料学报,2001,4(1):49~54.
    (53) 袁群 等.混凝土粘结面粗糙度评併的功率谱分维[J].工业建筑,2001,31(2):4~5.
    (54) 赵艳娥 等.金属材料粗糙表面分形特性的研究进展[J].太原理工大学学报,2001,32(2):120~122.
    (55) 吕家桢 等.钛酸钾晶须增韧尼龙66及其断面分形研究[J].高分子材料科学与工程,2001,17(2):154~157.
    (56) 杨爱明 等.薄型PVC材料断裂痕迹分形维数的研究[J].云南大学学报(自然科学版),2001,23(3):199~200.
    (57) 夏玉虎 等.钙钛矿结晶形貌的研究[J].东北大学学报(自然科学版),2001,22(3):307~310.
    (58) 邹群彩 等.基于分形理论的岩相图象识别与分析[J].南京化工大学学报,2001,23(1):23~26.
    (59) 杨旭红,李栋高等.基于分形L系统的纺织品图案的自动生成[J].纺织学报,2003,
    
    24(3):13~15.
    (60) 张聿,李栋高,杨旭红.纺织设计中Julia集可视化信息表征方法的研究[J].苏州大学学报工学版,2002,22(1):25~28.
    (61) 刘华杰.分形艺术[M].湖南:湖南科学技术出版社,1998.
    (62) 辛厚文 主编.分形理论及其应用[M].安徽:中国科学技术大学出版社,1993.
    (63) 张永宁,甘应进.复平面分形在纺炽花型CAD中的应用[J].纺织导报,1999.
    (64) 高明琴 等.海地粗糙面的二维分形模拟及其散射特性[J].华中师范大学学报(自然科学版),2000,31(1):45~48.
    (65) Frederik P. Agterberg.地球化学图纹理的多重分形模拟[J].地球科学——中国地质大学学报,2001,26(2):142~151.
    (66) Wu Jiunn-Jong. Analyses and simulation of anisotropic fractal surface [J]. Chaos, Solitons and Fractals, 2002(13): 1791~1806.
    (67) Ohno K. et al. A modified CCA model describing gelation processes [J]. Computational and Theoretical Polymer Science, 2000 (10): 269~274.
    (68) Isayeva O.B. Properties of electron field emission from a fractai surface [J]. Solid-State Electronics, 2001 (45): 871~877.
    (69) 许世远 等.地貌形态模拟[J].地盘学报,2000,53(3):266~272.
    (70) 许莉,李文萍 等.滤饼结构的分形研究[J].过滤与分离,2000,10(4):22~25.
    (71) 秦跃平,傅贵.煤孔隙分形特性及其吸水性能的研究[J].煤炭学报,2000,25(1):55~59.
    (72) 陈永平,施明恒.应用分形理论的实际多孔介质有效导热系数的研究[J].应用科学学报,2000,18(3):263~266.
    (73) 陈德珍,张鹤声.模拟石灰颗粒干式除酸的分形Bethe孔网模型[J].同济大学学报,2000,28(1):46~50.
    (74) 傅雪海,秦勇 等.煤储层孔、裂隙系统分形研究[J].中国矿业大学学报(自然科学版),2001,30(3):225~228.
    (75) 刘莹,王清 等.地基处理中孔隙水压力及地表沉降的分形特征[J].长春科技大学学报,2001,31(3):294~297.
    
    
    (76) 郑瑛,周荚彪等.多孔CaO孔隙结构的分形描述[J].华中科技大学学报,2001,29(3):82~84.
    (77) 刘建国,彭功勋 等.岩体裂隙网络的分形特征[J].兰州大学学报,2000,36(4):96~99.
    (78) 张国祥,刘宝琛 等.分形理论及其在膨胀土结构研究中的应用[J].铁道学报,2000,22(5):72~75.
    (79) Fujita H. Fractal analysis of wavy pattern of frictional coefficient of fabrics [J]. Journal of the Textile Machinery Society of Japan, 2000, 53(2): T27-T36.
    (80) Friesen W I. Fractal dimension of coal particals[J]. Journal of Colloid and Interface Science, 1987,20(1).
    (81) Mather, Robert R. Fractal analysis of organic pigment crystals[J]. Dyes and Pigments, 1990, 14(1):49-58.
    (82) Mori T.. Fractal analysis and aesthetic evaluation of geometrically overlapping patterns[J]. Textile Res. J., 1996, 66(9):581-586.
    (83) Mori T.. Evaluating wrinkling appearance and effects of color patterns using image analysis[J]. Journal of the Society of Fiber Science and Technology, 1999, 55(9):424-431.
    (84) Ohta K.. Visual feature of textile design Part 2: fractal dimension of yarn-dyed fabric[J]. Journal of the Textile Machinery Society of Japan, 1997, 50(3):58-65.
    (85) Ohta K. Simulation of visual feature of yam by using fractal geometry[J]. Journal of the Society of Fiber Science and Technology, 1999, 55(12):609-612.
    (86) Yang G. Microencapsulation of ultramarine particles in water/oil emulsion and surface fractal dimensionality of the particles[J]. Dyes and Pigments, 1997, 34(1): 57-62.
    (87) Yoichiro Muraoka. Fiber crimp analysis by fractal dimension[J]. Textile Res. J., 1995, 65(8):454~460.
    (88) 吴兆平,李艰 等.非织造土工布几何结构与孔径分布计算[J].上海工程技术大学学报,1997,11(3):23~27.
    (89) 杨旭红等.织物表面图象的计算机处理[J].丝绸,2000(11):9~11.
    (90) 杨旭红等.用图象分析法评价Lyoeell炽物的起球特性[J].印染.2001(12):50~53.
    (91) 杨旭红等.纱线混合状态的图象分析[J].苏州丝绸工学院学报,1999,19(5):35~38.
    
    
    (92) 章毓晋.图象工程(上册)——图象处理和分析[M].北京:清华大学出版社,1999.
    (93) 李介谷 等.图象处理技术[M].上海:上海交通大学出版社,1990.
    (94) 田村秀行 等著,郝荣威 等编译.计算机图象处理技术[M].北京:北京师范大学出版社,1990.
    (95) B.H.Kaye著,徐新阳 等译.分形漫步[M].东北大学出版社,1994:193~218,18~20,207
    (96) Hou Zhende et al. The study of fractal correlation method in the displacement measurement and its application. Available online.
    (97) 陈健敏 等.分形理论在织物折皱评定中的应用[J].中国纺织大学学报,1999,25(2):34~37.
    (98) 岳清 主編.Visual Basic 6.0培训教程[M].北京:电子工业出版社,2000.
    (99) Dan Fox著,骆万文 等译.Visual Basic 6开发与实例[M].北京:电子工业出版社,2000.
    (100) 张梁斌.数学软件Mathematica及其在分形几何中的应用[J].浙江万里学院学报,2000,13(2):7~11.
    (101) 薛全 等.利用Mathematica软件模拟L-系统生成分形图[J].抚顺石油学院学报,2001,21(1):64~67.
    (102) 王小铭.分形图案的构图艺术及其计算机实现[J].计算机辅助设计与图形学学报,2001,13(1):83~86.
    (103) 郭冬梅 等.分形几何在计算机图形学中的应用[J].计算机辅助设计(机械设计),2001(2):28~31.
    (104) 卢福民.双组分纤维技术对纺丝性能与纺粘法非织造布结构及其特性的影响[J].产业用纺织品.2000,18(1):16~20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700