亚麻增强树脂基复合材料的开发与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国亚麻资源丰富,与玻璃纤维等无机纤维相比,具有较高的比强度、比模量。同时亚麻容易种植,生长周期短,具有天然可降解性,可以作为绿色复合材料的理想增强材料。利用这一资源优势,课题选取亚麻为主要原料,进行亚麻纤维增强热固、热塑性树脂基复合材料的开发和研究,制备出性价比较高、力学性能较优的复合材料板材,为工程应用提供理论依据。
     课题着重研究了亚麻纤维增强热塑性树脂基复合材料的制备以及性能测试。作为对比和参考,首先加工出针刺亚麻纤维毡作为增强体,与不饱和聚酯树脂及环氧树脂进行复合,制备出亚麻增强热固性树脂基复合材料板材,并进行性能测试和分析。
     考虑热塑性树脂粘性大,成型困难以及加工成本等问题,课题利用亚麻纤维的可纺性,选取密度较小的聚丙烯作为热塑性基体,通过与亚麻纱线捻合,形成PP包覆亚麻的纱线结构,实现基体与纤维的丝束级均匀混合。
     分别制备了45%、50%和60%三种纤维体积含量的包覆纱线,采用机织的方法加工出复合材料预制件,经过层合热压制得亚麻/PP复合材料。通过调节压力、温度,确定了热压工艺;在不同纤维体积含量、不同铺层数、以及不同组织的条件下,进行板材拉伸、冲击性能测试,并对测试结果进行了分析和讨论。结果表明纤维在复合材料中的状态对材料的性能起到重要作用。纬纱在板材中的伸直状态好于经纱,所以同种工艺中,纬向的拉伸性能、经向的冲击性能(纬纱为主要的承力单元)均较高;不同组织中,由于斜纹组织中纱线的伸直状态良好,所以其板材的拉伸、冲击性能均优于平纹组织。
     对纤维浸渍过程、板材的固化成型过程进行模型分析及数值模拟;分析了孔隙产生的原因并计算孔隙率的具体数值;通过板材的拉伸试验,利用多项式拟合,得到板材经、纬向纤维伸直系数a_j、a_w与对应断裂伸长率的关系式,从而给出相关的强度修正公式;运用有限元分析软件ANSYS分别对亚麻增强热固性、热塑性树脂基复合材料的拉伸过程进行计算机编程,模拟拉伸破坏过程。结合亚麻增强热固性、热塑性复合材料的SEM拉伸断口破坏形貌,分析了纤维增强与板材破坏机理。
Flax is abundant in China and flax fiber has higher strength and modulus--density ratio compared with other inorganic fibers such as glass fiber. It is easy to cultivate and its growth period is shot. As a result flax fiber can be decomposed naturally;it could be used as an ideal reinforcing material of environmental protection composites. Flax fiber was used to fabricate with thermo-setting and thermo-plastic resins in this research. Laminates with high property-cost ratio were developed and researched;the results may be important reference for engineering applications theoretically.Flax reinforced thermo-plastic composites were mainly analyzed in this paper. For comparison, first flax fiber was needle-punched to form the mats, then fabricated with unsaturated polyester (UP) and epoxy (EP) separately. The mechanical properties of these composites were tested and analyzed.Polypropylene (PP), which has the lowest density among man-made fibers, was used as the thermo-plastic matrix. Te overcome the difficulties of resin penetrating during the composite processing because of the high viscosity, commingled yarns were produced by PP filaments wrapping around the linen yarn. The even distribution of flax and PP in the yarn gave a better mixture of the matrix and reinforcing material, and the reduction in cost was also realized to some extend.Commingled yarns with volume fraction of 45%, 50% and 60% were processed and woven into fabric as the pre-pregnant. Then fabric was sandwiched into laminates by optimum hot-pressing technology that was chosen through testing the parameters such as pressure and temperature during experiment. The laminates with different volume fractions, layers, and woven structures were tested by the tensile and impact instruments. Analysis revealed that fiber status in laminates was the most important factor affecting the mechanical properties. Since the weft yarns straightened better than warp yarns in laminates with the same manufacture technology, the tensile property in fill direction and impact behavior in warp direction were much better. As far as the woven structures were concerned, the mechanical properties of laminates
    with twill structure were better than those with plain structure.The fiber impregnation process was analyzed with the help of model and the shaping process was numerically simulated. The reason of the void was analyzed and the numerical value of the content was calculated as well. As for the tensile results, the revised formula for tensile strength was conducted. Two yarn straightened coefficients a,, aw were quoted to the formula, which were related to the extending ratio at break of laminates, and the expressions were defined by polynomial fit.The tensile processes of flax reinforced thermo-setting & thermo-plastic composites were programmed and simulated by using ANSYS, the software of Finite Element Analysis (FEA). The mechanisms of fiber reinforcing and fracture were discussed through examining the fracture photographs of Scanning Electronic Microscope (SEM).
引文
[1] 前川 善一郎.纤维在复合材料中的应用.纤维复合材料.2001 (1):51~56
    [2] 翁瑞,马燕合.环境材料发展与展望——第三届国际环境材料大会综述.材料导报.1998 (1):1~4
    [3] 王天民.生态环境材料.天津大学出版社.天津.2000年:11
    [4] 沃丁柱.复合材料大全.北京化学工业出版社.北京.2000年:1
    [5] 杜善义,沃丁柱,章怡宁 等.复合材料及其结构的力学、设计、应用和评价.哈尔滨工业大学出版社.哈尔滨.2000年6月:99
    [6] 郑融,冼杏娟,叶颖薇,冼定国.黄麻纤维/环氧复合材料基其性能分析.复合材料学报.1995 (1):18~24
    [7] 唐建国,胡克鳌.天然植物纤维的改性与树脂基复合材料.高分子通报.1998 (2):56~61
    [8] 曾竟成,肖加余,梁重云,张长安,张纯禹.黄麻纤维增强聚合物复合材料工艺与性能研究.玻璃钢/复合材料.2001 (3):30~33
    [9] 曲丽君.麻纤维在汽车用装饰材料中的应用.产业用纺织品.2002,(8):36-38
    [10] 姚穆,周锦芳,黄淑珍等编著.纺织材料学.纺织工业出版社.北京.1988:64~66
    [11] 肖加余,曾竟成,王春奇等.高性能天然纤维复合材料及其制品研究与开发现状.玻璃钢/复合材料.2000 (2):38~43
    [12] Hornsby P. R, Hinrichsen E, Tarverdi K. Preparation and properties of polypropylene composites reinforced with wheat and flax straw fibers. J. Mater. Sci. 1997(2): 443~449
    [13] 张一甫,张长安.苎麻落麻纤维增强热固性树脂复合材料的制备及性能研究.玻璃钢/复合材料.2002 (1):13~14
    [14] Thermosetting materials: recycling and applications.. N° 35 Composites. Sept./Oct.1999:50
    [15] Springer G S. Environmental Effects on Composite Materials[M]. Westport, CT: Technomic Publishing Co. 1981: 75-76
    [16] Yan li, Yiu Wing Mai, Lin Ye. Sisal fibre and its composites: a review of recent developments. Composites Science and Technology. Vol. 60. August 2000:2017~2055
    [17] 吴德隆,沈怀荣.纺织结构复合材料的力学性能研究.力学进展.2001 (4):583~591
    [18] 黄家康,岳红军,董永祺.复合材料成型技术.化学工业出版社.北京.1999 年1月:515
    [19] 董卫国,黄故.包芯编带纱的制造工艺及结构参数.纺织学报.2004 (2):66~68
    [20] 李彩凤,李明,王克荣.提高纤维亚麻产量和品质的途径.中国麻作.1997 (4):19-21
    [21] H.L.Bos, M.J.A. VAN DEN OEVER, O.C.J.J. Peters ATO, Tensile and compressive properties of flax fibers for natural fiber reinforced composites. Journal of Materials Science 2002, vol.37:1683-1692
    [22] 胡文侠 主编.纺织材料学试验.山西科学技术出版社.1996:42
    [23] 李汝勤.纤维和纺织品的测试原理与仪器.中国纺织大学出版社.上海.1995:114~116.
    [24] 马建伟,毕克鲁,郭秉臣等著.非织造布实用教程.中国纺织出版社.北京.1994:1~4
    [25] 许健南 主编.塑料材料.中国轻工业出版社.北京.1999:362~363
    [26] 赵渠森,赵攀峰.真空辅助成型工艺研究[J].纤维复合材料.2002(1):42~46
    [27] 张刚毅,沈玉考.浅谈RTM工艺中对树脂流动性的控制.玻璃钢/复合材料.1999 (5):10-12
    [28] 吴学东,丁辛.热塑性树脂基纺织结构型复合材料.玻璃钢/复合材料.1996 (6):34-38
    [29] Cogswell, F. N. Thermoplastic Aromatic Polymer Composites: a Study of the Structure, Processing and Properties of Carbon Fiber Reinforced Polyetheretherketone and Related Materials, Butterworth-Heinenann. 1992
    [30] Coldicott, R.J. Longdon, T., Creen, S., and Ives, P, J., Heltra-A New System for Blending Fibres and Matrix for Thermoplastic-based High Performance Composites, 34th Int. SAMPE Symp., May, 1989:2206-2216
    [31] Wulfhorst, B., Tetzlaff, G, and Kaldenhoff, R. Herstellung Von Hybridgamen fur den Einsatzin Faserverbundwerkstoffen, Technische Textilien, 35, Marz, 1992
    [32] Kaldenhoff, Rand Wulthorst, B. Textile Prepregs aus Friktionsspinhybrudgarnen fur Faserverbundkunststoffe. Technische Textilien, 36, Mai, 1993
    [33] Muzzy, J., Vanraghese, B., Thammongkol, V. and Tincher, W. Electrostatic Prepreging of Thermoplastic Matricess, SAMPE Journal, Sept./Oct. 1989:15-21
    [34] Fujii, M. and Inoguchi, H., Good Wettability of Co-woven Unidirectional Fabrics, 21st Int. SAMPE Technical Conference. Sept. 1989:496-506
    [35] 蔡浩鹏,王钧,段华军.热塑性复合材料制备工艺概述.玻璃钢/复合材料. 2003 (2):51~53
    [36] 张茂林,储长流,李龙.单向芳纶/聚丙烯混纤复合材料拉伸性能研究.纺织学报.2003 (3):22~23
    [37] 王宏刚,郑安呐,戴干策.玻璃纤维增强聚丙烯复合材料界面结合的研究.复合材料学报.1993年第3期:46~50
    [38] 张宝艳,Byun Jh,Kim B-s等.混纤纱制备热塑性复合材料研究评述.航空材料学报.2000 (3):178~186
    [39] 李龙.纤维集合体结构对混纤型复合材料性能的影响.宇航材料工艺.2001 (3):36
    [40] Ye L, Friedrich K. Consolidation of unidirectional GF/PEEK composites from commingled yarn prepreg. Composites Science and Technology. 1995, Vol.54: 349~358
    [41] Helen CY, Cartledge, Caroline A B, Studies of microstructural and mechanical properties of Nylon/glass composite. Journal of Materials Science, 1999, vol.34:5113~5126
    [42] Mayer C, Wang X, Macro-and micro-impregnation phenomena in continuous manufacturing of fabric reinforced thermoplastic composites. Composites: Part A, 1998, vol.29:783~793
    [43] Svensson N, Shishoo R. Fabrication and mechanical response of commingled GF/PET composites. Polymer Composites, 1998, (2): 360~369
    [44] Shishoo R. Effect of processing parameters on consolidation quality of GF/PP commingled yarn based composites. Journal of Thermoplastic Composite Materials, 2000, (7): 292~313
    [45] Niklas Svensson and Roshan, Shishoo, Michael Gilchrist, Fabrication and Mechanical response of commingled GF/PET Composites. Polymer Composites, August 1998, vol.19 (4): 360~369
    [46] Lynch, T. Thermoplastic/Graphite Fiber Hybrid Fabrics, SAMPE Journal, Jan/Feb 1989:25
    [47] Hugh, M.K., Marchello, J. M. Hartuess, J.T., et. at, Textile Composites From Powder-coated Towpreg: Yarn Treatment For Braiding. 3th Int. SAMPE Symp. April, 1994:551~559
    [48] Jonas Bernhardsson, Roshan Shishoo. Effect of Processing Parameters on Consolidation Quality of GF/PP Commingled Yarn Based Composites. Journal of Thermoplastic Composite Materials, Vol. 13, July, 2000:292~313
    [49] 朱波,余希同,陶肖明.机织复合材料的本构关系与成型性研究.力学进展.2004 (3):327~340
    [50] 胡文侠 主编.纺织材料学试验[M].山西科学技术出版社.1996:153~164
    [51] 段跃新,左璐,章亚东,梁志勇.经编织物增强聚丙烯复合材料.北京航空航天大学学报.2004 (10):993~997
    [52] M.D. Wakeman, T.A.Cain, C.D. Rudd, R. Brooks & A.C. Long, Compression moulding of glass and polypropylene composites for optimized macro-and micro-mechanical properties—1 commingled glass and polypropylene composites science and technology 1998, vol.58:1879~1898
    [53] 王鹏飞,王俊勃,万振江等.苎麻布增强UP复合材料的研究.玻璃钢/复合材料.2000 (2):18~20
    [54] Zee Relph. H. Hsieh, Chung Y. Energy loss paritioning during ballistic impact of polymer composites. Polymer Composites. 1993, 14(3), 265~267
    [55] Richardson, M. O. W. Wisheart, M. J. Review of low-velocity impact properities of composite materials. Composites, 1996, 27(12), 1123~1131
    [56] 宁荣昌,王孝忠.玻璃纤维/环氧树脂复合材料叠层板冲击损伤特性的若干实验研究.复合材料学报.1994,vol.11 (3):70~75
    [57] 程小全,张子龙,吴学仁.小尺寸试件层合板低速冲击后的剩余压缩强度.复合材料学报.2002,Vol.19 (6):8~12
    [58] 李东明.塑料冲击试验方法的评价.塑料.1989,Vol.18 (4):46~50
    [59] 唐振廷,刘培英,张钰彦.冲击试验的新发展.物理测试.2003 (6):1~3
    [60] 蒋海滨,魏伯荣,李名琦.薄层芳纶复合材料(内衬吸能垫)的平头冲击性能研究.纤维复合材料.2000 (4):29~32
    [61] Jang B.Z, Chen L. C.. The respone of fiberous composites to impact loading. Polymer Composite, 1990, 11(3): 144~157
    [62] Jian L K and Mai Y W. Proc. ofICCM-11, Gold Coast, Australia, 1997,1:25~38
    [63] 周晓东,戴干策.纤维增强热塑性聚合物复合材料的界面控制与设计.纤维复合材料.1998,(1):9~12
    [64] Lee W I and Springer G S.J Comp. Mats. 1987, 21 (11): 1017~1055
    [65] Peltonen Pet al. J Thermoplastic. Comp. Mats. 1992, 5 (10): 318~342
    [66] 沈玉考,张刚翼,刘扬.纤维增强热塑性复合材料新动向.纤维复合材料.2004 (2):57~59
    [67] 李辰砂,冷劲松,王殿富,杜善义.用数值模拟设计纤维复合材料在热压机上的固化操作.纤维复合材料.2000 (1):23~27
    [68] 李龙,张茂林,赵伟,王俊勃,段亚峰.热塑性复合材料用混纤预浸料特征.玻璃钢/复合材料.2002 (5):32~34
    [69] Zhong Cai. A generalized model for flow of polymer fluids through fibrous media, J. Advanced Materials, 1993, (10):58
    [70] W-B. Young, A simplified flow model for resin transfer modeling of polymer composites, SAMPE Q 25, 1994, (3): 60
    [71] Bowles K J, Frimpong S. Void effets on the interlaminar shear strength of unidirectional graphite-fiber-reinforced composites [J]. Journal of Composite Materials, 1991,26:1487~1509
    [72] LundstrOm, T. S., Bubble transport through constricted capillary tubes with application to resin transfer molding. Polymer Composites, 1996, 17(6), 770~779
    [73] Rohatgi, V., Patel, N. and Lee, L. J., Experimental investigation of flow-induced microvoids during impregnation of unidirectional stictched fiberglass mats. Polymer Composites, 1996, 17(2), 161~170
    [74] Krishna M. Pillai, Murthy S. Munagavalasa, Governing equations for unsaturated flow through woven fiber mats. Part 2. Non-isothermal reactive flows. Composites Part A, 2004, Vol.35:403~415
    [75] Van Krevelen, D.W.(ed.),Properties of Polymers. Elsevier, Amsterdam, 1990:535~583
    [76] 陶恒,王亚熊.复合材料孔隙率计算的误差分析.复合材料学报.1988,5 (1):1~6
    [77] 周履,范赋群.复合材料力学.高等教育出版社,北京.1991年4月:122
    [78] 周仕刚,嵇醒.复合材料层合板强度界限.玻璃钢/复合材料.1996 (5):1~5
    [79] 张志民 主编.复合材料结构力学.北京航空航天大学出版社.北京.1993年9月:16
    [80] 王善元等编著.纤维增强复合材料.中国纺织大学出版社.上海.1998年:147
    [81] 王烈衡,许学军.有限元方法的数学基础.科学出版社.北京.2004年12月:1
    [82] 王国强 主编.实用工程数值模拟技术及其在ANSYS上的实践.西北工业大学出版社.西安.1999年8月:1
    [83] [美]Daryl L.Logan著.有限元方法基础教程.电子工业出版社.北京.2003年8月:15
    [84] 路明坤,刘杨,张博明.ANSYS二次开发在RTM工艺注模过程树脂模拟中的应用.纤维复合材料.2005,vol.22 (2):31~35
    [85] [美]G.R.布查南 著,董文军,谢伟松 译.有限元分析.科学出版社.北京.2002年3月:46
    [86] 邹维前,刘方龙.植物纤维复合材料力学性能的试验与分析.复合材料学报.1988 (1):74~80
    [87] 沈开猷.不饱和聚酯树脂及其应用[M].化学工业出版社.北京.2001年1月:286
    [88] 李桂林 编著.环氧树脂与坏氧涂料[M].化学工业出版社.北京.2003年3月:12~13
    [89] 师昌绪 主编.材料大辞典[M].化学工业出版社.北京.1994年3月:377
    [90] 吴妙生.玻璃纤维毡增强热塑性复合片材的研制和应用.纤维复合材料.2002 (4):24~26
    [91] 焦斌.“绿色”复合材料——植物纤维增强复合材料.玻璃钢/复合材料.1999,(2):8
    [92] 康洪彬.先进复合材料在汽车工业中的应用.纤维复合材料.1997,(2):55~58
    [93] 刘星,孙颜文.汽车用聚丙烯开发应用.合成树脂基塑料.2005,22 (3):75~79
    [94] 张微微,刘莉,杨彬等.聚丙烯(PP)在汽车部件上的应用.汽车工艺与材料.2003,(8):36~37
    [95] 周一兵.汽车工业高速发展拉动塑料需求跃增.化工新型材料.2004,32 (2):1~2
    [96] 季平.改性聚丙烯在我国汽车中的应用.汽车工艺与材料.2002,(8):88
    [97] 范忠庆,改性聚丙烯在我国汽车中的应用.石化技术与应用.1999,17 (4):236~239
    [98] 李尹熙.中国汽车用塑料的现状和发展方向.汽车工艺与材料.2000,(1):5
    [99] 吴三清.汽车用改性聚丙烯(PP)材料的开发与应用.汽车工艺与材料.2004,(2):28
    [100] 周一兵.我国汽车工业对塑料需求浅析[J].工程塑料应用.2004,32 (2):

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700