羽绒纤维及其集合体结构和性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
羽绒作为天然纤维原料,具有轻、软、暖等特点,可以制造各类服用保暖材料,具有不可取代性,其本质原因在于羽绒体的形态、结构及空间分叉形式,而这方面的研究都很少,对其认识严重不足。
     本文首次对我国太湖鹅白鹅绒纤维的形态结构、聚集态结构、微观形态结构、化学结构进行了细致的研究。利用扫描电子显微镜技术观察了羽绒纤维的外观形态结构,得到了羽绒纤维各级分叉结构的定量长度和细度,对羽绒纤维中各级小纤维和节点的分布特点和表面特征进行了阐述;成功地制取了结构分辩性良好的羽绒纤维超薄切片,利用透射电子显微镜技术,观察了羽绒纤维内部微细结构,获得了各部分结构的基本尺寸和形态组成;利用红外光谱技术得到了羽绒纤维的的红外光谱图,分析了基本结构键吸收峰特征;利用氨基酸分析技术分析了羽绒纤维的基本氨基酸组成,得到羽绒纤维氨基酸种类和内部结合键构成与羊毛基本相同,某些氨基酸在含量上存在差异;利用X—衍射技术和萨那蒙补偿法,研究了羽绒纤维结晶和取向结构,羽绒纤维结晶度稍高于羊毛纤维,取向度较羊毛纤维相差较多。
     本文首次对羽绒绒枝纤维的导热性能、弯曲性能、润湿性能以及热性能进行了定量的测试和分析。利用树脂包埋松散纤维束的制样方法,测试了纤维包埋块的基本物性和导热参数,并利用加权平均数值方法计算了羽绒纤维的导热系数值,得到羽绒纤维的导热性能低于羊毛纤维;利用针对测试单纤维压缩弯曲性能的测量装置对绒枝单纤维的弯曲性能进行了测试和分析,结果表明绒枝纤维的相对抗弯刚度和弯曲模量均小于羊毛纤维,但弯曲恢复功系数大于羊毛纤维;测试了绒枝纤维的接触角和比表面能,结果表明羽绒纤维的润湿性远低于羊毛纤维;最后利用DSC技术,对羽绒纤维进行了热性能测试。
     本文首次将分形理论应用于羽绒纤维形态结构的定量分析和表征,这也是本文的主要创新点之一。研究表明羽绒纤维的形态结构具有明显的自相似性和标度不变性,因此羽绒外观具有显著的分形性;利用计算机模拟的理论计算和Sandbox方法的实际测算,分别得到了羽绒纤维的分形维数值为1.66和1.678,证明了理论模拟的一定的准确性,评价了分形维数对羽绒纤维性能的特殊意义。
     本文对羽绒纤维集合体的各项物理性能进行了定量的测量和研究。根据WRONZ蓬松测试仪的原理,对羽绒纤维集合体的蓬松性能进行测试,羽绒纤维集合体的蓬松性是其它纤维集合体的3~8倍;利用变密度纤维集合体传导性的原位综合测量装置对羽绒纤维集合体的压缩性能和透气性能进行了动态测试,结果表明羽绒纤维集合体的压缩性好于其他纤维集合体,当初始体积分数较小时,纤维体积分数和压缩率随外界压力的增加而变化明显,具有典型的压缩曲线特征。羽绒纤维集合体的压缩恢复性低于羊毛纤维集合体;羽绒纤维集合体的透气性随体积分数增加,逐渐变小,与其他纤维集合体相比,羽绒纤维的透气性最差;利用烘箱法测试了羽绒纤维集合体在不同大气状态下的吸湿性能,得到了羽绒纤维集合体的吸、放湿等温线以及吸湿等湿线,羽绒纤维集合体的吸湿性在不同温湿度状态下都低于羊毛;利用平板式保暖仪对羽绒纤维集合体的保暖性能进行了定量的测试,结果表明相同体积分数的羽绒纤维集合体的保暖性能好于其他纤维集合体,在体积分数为0.002~0.005范围时,羽绒纤维集合体保暖性最好。
     综合羽绒单纤维以及纤维集合体的各项特征和性能,讨论了羽绒单纤维性能对集合体物理性能的影响,评价了导致羽绒纤维集合体保暖机制的主次因素。羽绒纤维的形态结构的分形性特征,赋予了羽绒纤维集合体的高度蓬松性和空气不流动性,是导致羽绒集合体优良保暖性能的最主要因素;羽绒纤维自身较低的导热系数,在一定程度上降低了由于纤维间热传导而产生热量损失,为集合体保暖提供了辅助作用;羽绒的分形结构及较好的弯曲恢复性能,使羽绒纤维集合体在压缩后轻轻搅动下迅速恢复良好的蓬松状态,为集合体的保暖提供了必要的条件;羽绒纤维吸湿性和润湿性较小的特点,为羽绒纤维集合体在湿度较大条件下的保暖作用提供了有利的因素。
     本文首次将分形理论用于纤维集合体内部结构的研究,利用Micro CT测试技术,对纤维集合体进行断层扫描,观察纤维集合体的纤维排列和分布,通过计算断层分形维数,对纤维排列进行了定量化的表征,这种方法打破了以往对纤维集合体“容积平均”的几何描述,为研究纤维集合体内部结构和纤维间的相互作用开辟了一条新思路。
As natural nonwoven and filler materials down fibers have characteristics of light,soft and warm, whose products in beddings and some outerwear for cold climates areirreplaceable all through. However, cognitions and studies on the structures andproperties of down fiber and down assemblies are both lacking badly at present.Especially it is not enough to realize the true mechanism of thermal insulation ofdown assembly.
     This paper studied amply the morphological structure, aggregating state structure,microfine structure and chemical structure of Taihu goose down of China for the firsttime. Using SEM observed the appearance morphological structure of down andobtained all levels length and fineness of down bifurcate structures. Expatiatedrespectively distributing rules and surface characteristics of all levels fibrils and nodeson down fibers. Achieved down ultrathin sections dyed very well and studied themicrofine structure of down inner through observing the TEM photographs. The basicdimension and composing of every part were introduced, and the first class fibrillarstructure was found. Making use of FTIR obtained infrared spectrum of down innerand down surface, and analyzed the basic absorbent apices characters. Throughamino-acid analyzer tested the basic ammo-acid composing of down. It was provedthat down inner bonding forms were almost the same with the wool fibers. Theamino-acid sorts of both fibers were uniform, but some contents were different. ByX-diffraction techniques studied down crystallization structure and by compensatingmechanism studied down orientation structure. The crystallinity of down was littlehigher than wool fiber, and the specific birefringence of down was much lower thanwool.
     This paper tested and analyzed quantificationally down thermal conductivity,bending properties, wetting and thermal properties for the first time. Making use ofresin embedding loose fibers, measured the basic physical indexes and thermal parameters of embedding block. Then calculated the thermal conductivity of down byweighted mean. The results indicated that the heat conductivity of down was lowerthan wool. Using the measuring device aiming at compression and bend of singlefiber tested and analyzed the bending indexes of down branch fiber. It had beenshowed that both the relative bending rigidity and bending modulus of down branchfiber were much lower than wool fiber. However, the bending recovery coefficient ofdown branch fiber was higher than wool. Measured contact angle and specific surfaceenergy of down branch fiber. It was proved that the wetting performance of downmuch lower than wool. Through DSC techniques measured the thermal properties ofdown.
     For the first time applied the fractal theories to characterize measurably themorphological structure of down, which also was one of the main innovation parts ofthis paper. The whole down possesses obvious self-similarity and scale-fixity, whichshowed that down fiber could be considered as a marked fractal; Utilizing computersimulation and practice calculation by Sandbox measurement calculated the fractaldimensions of down respectively as 1.66 and 1.678, which was provided with especialmeaning to fiber performances.
     This paper also measured and investigated the physical performances of downassemblies, and compared them with other fiber assemblies. Basing on the principiumof WRONZ bulkiness tester, a simple device was made to test the bulkiness of downassembly. The bulkiness of down assembly was 2~7 times better than otherassemblies. Using in-situ measurement devices to fiber assembly conductivity underfluctuant densities, measured dynamically the compressibility and permeability ofdown assembly. Along with the changing of assembly volume fractions thecompressibility of down assembly was much better than other assemblies. As initialvolume fraction was low, the change of assembly compression ratio with the pressureincreasing was evident, and the change followed typical compression characters.However, the compression-recoverability of down assembly was less than woolassembly. The permeability of down assembly reduced gradually as the increasing ofassembly volume fraction. Down assembly permeability is the least compared with other assemblies. By oven method tested respectively the hygroscopicity of downassemblies under various atmospheric states. So the hydroscopic isotherm andmoisture liberation isotherm could be gained. The absorbent qualities of down undervarious atmosphere states were lower than wool. On plate warmth retaining testertested and valued the heat insulating ability of down assembly. It was proved thatdown assembly possessed better heat retention than any other assembly under thesame volume fraction, and when the volume fraction retained between 0.002 and0.005 down had best thermal insulations.
     Colligating the characters and performances of both single down branch fiber andfiber assemblies, this paper valued the primary and secondary factors influencing fiberassembly thermal insulations. The fractal characteristic of down morphologicalstructure, which endowed down assembly with high bulkiness and plentiful still-air,was the most important factor leading to down assembly excellent thermal insulation.Besides, the lower thermal conductivity of down itself decreased the heat transferthrough fibers to some extent and was the assistant factor to thermal insulations ofassembly. The fractal structures and excellent bending recovery of down branch madedown assembly compressed puff out quickly under gently agitation, which providedthermal insulation of down assembly necessary condition. Because down had lesshygroscopic wetting property, down assembly could retain better heat insulting abilityas ambient humidity rising.
     This paper observed assembly inner fibers arrangement and distributing byMicro-CT techniques and calculated the fractal dimensions of assembly scan tierapplying fractal theory, so achieved the quantificationally characterizing to fibersarrangement in assembly. It had changed the thought and depiction of fiber assemblyhaving "even volume" and would approach the practice much more. It pioneered anew route to study the inner structures and mutual effects among fibers.
引文
[1]关石菡.羽绒—喷胶棉复合保暖絮片,中国实用新型专利,专利号,CN93210248.4
    [2]张俊生.喷熔粘结的弹力絮棉及其生产工艺,中国实用新型专利,专利号,CN86100722
    [3]阎建军 王万达.太空棉保暖隔热材料,中国实用新型专利,专利号,CN91227588.X
    [4]黄嫣仪.一种金属无胶棉的生产工艺,中国发明专利,专利号,CN92101562.3
    [5]彭佩俊.无纺羊绒高保温材料,中国实用新型专利,专利号,CN95208266.7
    [6]李福祥 关石菡 李福连.防风、阻燃热熔棉复合保暖絮片,中国实用新型专利,专利号,CN94248689.7
    [7]迈克尔·S·弗兰科斯基.改进的防水聚酯填充用纤维,中国发明专利,专利号,CN90110425.6
    [8]I·马库斯.新的填充纤维结构,中国发明专利,专利号,CN97195943.9
    [9]贾娟 王革辉.冬服保暖功效学原理及保暖材料的发展现状与前景,国外纺织技术,2004,No.7,1-5
    [10]王西亭.防寒服保暖材料研究,中国个体防护装备,2003,No.5,12—14
    [11]钱程 储才元.非织造布絮片保暖性能的研究,非织造布,1999,13(3),14-16
    [12]尹继亮.高寒地区防护服,国外纺织技术,2000,No.3,34-37
    [13]岳素娟.几种新型保暖絮材性能之比较,产业用纺织品,2005,No.2,27-30
    [14]郑海其.无胶棉的纤维、性能及应用前景,产业用纺织品,2000,No.2,38—39
    [15]黄丽娜.新型服装用保暖材料,产业用纺织品,2003,No.1,43—44
    [16]张建春 郭玉海.羽绒絮毡及其与PTFE薄膜层压保暖新材料的研究与开发,国际化纤,2002,No.1,65-67
    [17]王敦洲.中国羽绒与利用,1994,北京:上海科学技术出版社,1—54
    [18]江苏省科技厅农村科技处 江苏省农业资源开发局科教处.农业科技信息参考,第31期
    [19]吴安成 宋修彩.羽绒(毛)结构和性能研究,中国纺织大学学报,1990,16(2):94—99
    [20]金阳 李薇雅.羽绒纤维结构与性能的研究,毛纺科技,2000,No.2,14—18
    [21]金阳 李薇雅.羽绒等几种天然蛋白质纤维结构和性能的研究,毛纺科技,2000.No.1.23—26
    [22]Skelton J., Dent R. and Donovan J.G., The Thermal and Mechanical Properties of Down. Proceedings of The 7th International Wool Textile Research Conference, Tokyo, 1985,volⅢ: 264-273
    [23]Kaneko T., Mohtadi M.E and Aziz K., An Experimental Study of Natural Convection in Inclined Porous Media. International Journal of Heat Mass Transfer. 1974,Vol.17:485-496
    [24]Burna EJ. and Tien C.L., Natural Convection in Porous Media Bounded by Concentric Spheres and Horizontal Cylinders. International Journal of Heat Mass Transfer. 1979,Vol.22: 929-939
    [25] Verschoor J.D. and Greebler P., Heat Transfer by Gas Conduction and Radiation in Fibrous Insulations.Trans..Am.soc.Mech.Engrs., 1952. Vol. 74: 961-968
    |26] Bankvail C. Heat Transfer in Fibrous Materials. Journal of Testing Evaluation 1973,1:235-243
    [27] Strong H.M., Bundy F.P. and Bovenkerk H.P., Flat Panel Vacuum Thermal Insulation. Journal of Apply Physics, 1960,31:39-50
    [28] Van der Held E.F.M., The Contribution of Radiation to the Conduction of Heat. Apply Science Research, Section A, 1952, 3:237-249
    [29] Hager N.E. and Steere R.C., Radiant Heat Transfer in Fibrous Thermal Insulation. Journal of Apply Physics. 1967,38(12):4663-4668
    [30] Aroson J.R. and Emslie A.G, Infrared Emittance of Fibrous Materials. Appl.Optics, 1979,18:2622-2633
    [31] Larkin B.K. and Churchill S.W., Heat Transfer by Radiation through Porous Insulations. A.I.Ch.E.Journal. 1959, 5(4): 467-473
    [32] Tong T.W. and Tien C.L., Analytical Models of Thermal Radiation in Fibrous Insulations. Journal of Thermal.Insulation. 1980,4(6): 27-29.
    [33] Stark C. and Fricke J., Improved Heat -transfer Models For Fibrous Insulations. International Journal of Heat Mass Transfer.1993,36(3):617-625
    [34] Fricke J. and Caps R., Heat Transfer in Thermal Insulations,Recent Progress in Analysis. International Journal of Thermophys. 1988,9:885-895
    [35] Farnworth B., Mechanisms of Heat Flow through Clothing Insulation. Text.Rese.J., 1983,53(12): 717-722
    [36] Pelanne C.M., Heat Flow Principles in Thermal Insulations. Journal of Thermal Insulation., 1978,Vol.l:48-80
    [37] Baxter S., The Thermal Conductivity of Textiles.Process of Physics Society. 1946,58: 105-108.
    [38] Clulow E.E. and Rees W.H., The Transmission of Heat Through Textile Fabrics, Part III:A New Thermal Transmission Apparatus. Journal of Textile Institute, l968,59(6):285-294
    [39] Cena K. and Monteith J.L., Transfer Progresses in Animal Coats, II:Conduction and Convection. Process Research Society.London Serious B,1975,188:395-411
    [40] Bhattacharyya R.K., Heat-Transfer Model for Fibrous Insulations, Thermal Insulation Performance. ASTM STP 1980,718:272-286
    [41] Stuart I.M. and Holcombe B.V., Heat Transfer Through Fiber Beds By Radiation With Shading and Conduction. Text.Rese.J.,1984,54(3): 149-156
    [42] Sun G, Yoo H.s., Zhang X.S. and Pan N., Radiant Protective and Transport properties of Fabrics Used By Wildland Firefighters, Text.Rese.J.,2000,70(7): 567-573
    [43] Telem G.S., Bulent O and Pan N, Thermo-Insulating Properties of Perpendicular-Laid Versus Cross-Laid Lofty Nonwoven Fabrics,Text.Rese.J.. 2000,70(2): 121-128
    [44] Mary A.M.. Thermal Insulation of Single and Multiple Layers of Fabrics. Text.Rese.J., 1955,25(9):766-773
    [45] Obendorf S.Kay and Smith Jana P., Heat Transfer Characteristics of Nonwoven Insulating Materials, Text.Rese.J.,1986,56(11):691-696
    [46] Bristow K.L., Kluitenberg G.J., and Horton R., Measurement of Soil Thermal Properties with a Dual-Probe Heat-Pulse Technique, Soil Sci.Soc.Am.J.,1994,58: 1288-1294
    [47] McMenamin C.S., Bird J.P., Brewer D.F., and Hussey N.E., Heat Pulse Measurement of Thermal Properties-An Improved Fitting Technique, Cryogenics, 1993,33:941-946
    [48] Luo A.H., Youdelis W.V. and Wang W.Q., Measurement of Thermal Properties for Sand Molds-A Heat Balance Approach, Can.Metallurg.Quar. 1992,31:73-77
    [49] Bauer S. and Ploss B., A Heat Wave Method for the Measurement of Thermal and Pyroelectric Properties of Pyroalectric Films, Ferroelectric, 1990,106:393-398
    [50] Coufal H., Photothermal Methods for the Measurement of Thermal Properties of Thin Polymer Films, Polymer.Engneer.Science.,1991,31:92-98
    [51] Mansanares A.M., Bento A.C.,Vargas H., and Leite N.F., Photoacoustic Measurement of the Thermal Properties of 2-Layer Systems, Phys.Rev.B Condensed Mater, 1990,42:4477-4486
    [52] Ronald J. M., George Lamb E.R., Measurement of Thermal Conductivity of Nonwovens Using a Dynamic Method. Text.Rese.J., 1987,57(12):721-727
    [53] Fitch A.L., A New Thermal Conductivity Apparatus. Am.J.Phys. 1935,3,135-136.
    [54] Oldich J.,Telem G, Bulent O. and Pan N, Comparing dynamic and static Methods for Measuring Thermal Conductive Properties of Textiles,Text.Rese.J.,1998, 68(1):47-56
    [55] Van Wyk C.M., Note on the Compressibility of Wool, Journal of Textile Institute, 1946,37(5):285-291
    [56] Dunlop J.I., Letters To The Editor On The Compression Characteristics Of Fibre Masses. Journal of Textile Institute,1983,74(2),92-97
    [57] Dunlop J.I., Characterizing the Compression Properties of Fibre Masses. Journal of Textile Institute,1974,65(11):532-536
    [58] Komori T., Makishima K., Numbers of Fiber-To-Fiber Contacts In General Fiber Assemblies, Text.Rese.J.,1977,47(11).13-17
    [59] Komori T, Itoh M. and Takaku A. A Model Analysis of the Compressibility. Text.Rese.J., 1992,62(10): 567-574
    [60] Curiskis J.I. and Carnaby G.A. Continuum Mechanics of the Fiber Bundle. Text.ReseJ.,1985,55(5):334-344
    [61] Lee D.H. and Lee J.K. Initial Compressional Behaviour of Fiber Assembly, in"Objective Measurement: Applications to Product Design and Process Control," S.Kawabata, R.Postle, M.Niwa, Eds., The Textile Machine Society of Japan, 1985,613-622
    [62] Lee D.H., Camaby G.A. and Tandon S.K. Compressional Energy of the Random Fiber Assembly. Part I :Theory. Text.Rese.J.,1992,62(4):185-191
    [63] Lee D.H., Carnaby G.A. and Tandon S.K., Compressional Energy of the Random Fiber Assembly. Part II: Evaluation. Text.Rese.J.,1992.62(5):258-265
    [64]Pan N, A Modified Analysis of the Microstructural Characteristics of General Fiber Assemblies. Text.Rese.J., 1993.63(5):336-345
    [65]Pan N. and Carnaby G.A., Theory of the Shear Deformation of Fibrous Assemblies. Text.Rese.J., 1989,59(5): 285-291
    [66]Carnaby G.A. and Pan N., Theory of the Compression Hysteresis of Fibrous Assemblies. Text.Rese.J., 1989,59(5):275-284
    [67]Steam A.E., The Effect Of Anisotropy In The Randomness of Fibre Orientation On Fibre To-Fibre Contacts, Journal of Textile Institute, 1971,62(7):353-360
    [68]Komori T. and Itoh M., A Modified Theory of Fiber Contact In General Fiber Assemblies. Text.Rese.J., 1991,61 (9):519-528
    [69]Cheng C.C. and Duckett K.E., The Direction Distribution on Cross-Contact Points in Anisotropic Fiber Assemblies. Text.Rese.J.,1979,47(7):379-383
    [70]Komort T. and Makishima K., Geometrical Expressions of Spaces in Anisotropic Fiber Assemblies. Text.Rese.J.,1979,49(9):550-555
    [71]Bohuslav NeckAR, Compression and Packing Density of Fibrous Assemblies, Text.Rese.J., 1997,67(2): 123-130
    [72]刘让同,无规纤维集合体热传递性能的研究,纺织学报,16(5):264—267
    [73]Arthar.L.Loeb, Thermal Conductivity:Ⅶ. Journal of the American Ceramic Society. 1954, 37(2):96-99.
    [74]Francl, Kingery, Thermal Conductivity:Ⅸ. Journal of the American Ceramic Society. 1954, 37(2):99-107.
    [75]陈则韶 倪海涛 陈梅英,多孔介质等效导热系数的较高精度通用计算式,工程热物理学报,1991,12(3):305—308
    [76]Pitchumani R, Yao S.C. Correlation of Thermal Conductivities of Unidirectional Fibrous Composites Using Local Fractal Techniques. Journal of Heat Transfer, 1991, 113(11):788-796
    [77]陈永平 施明恒,基于分形理论的多孔介质导热系数研究,工程热物理学报,1999,20(5):608-611
    [78]程远贵 周勇 朱家骅,耐火材料高温热导率的分形,化工学报,2002,53(1):1193—1197
    [79]赵书经.纺织材料实验教程,1989,北京:中国纺织出版社,133—153
    [80]朱诚身.聚合物结构分析,2004,北京:化学出版社,1—200
    [81]于伟东 储才元.纺织物理.2002.上海:东华大学出版社,209—230
    [82]姚穆.纺织材料学[M],1980.第2皈,北京:中国纺织出版社,99—105
    [83]胡恒亮 穆详祺.X射线衍射技术,1998,北京:纺织工业出版社,54-78
    [84]D.舍伍德著 范世潘译.晶体、X射线和蛋白质,1985.北京:科学出版社,1—5
    [85][美]中西香尔,索罗曼.红外光谱分析100例,1984.北京:科学出版社,1-205
    [86]王宗明 何欣翔 孙殿卿.实用红外光谱学,1982,北京:石油工业出版社,1-104
    [87]Lucia E.,Jurdana, Confocal laser Raman microprobe studies of keratin fibers, Text.Rese.J., 1995,65(10):593-600
    [88]Astbury W.T., Street, A.phil.Roy.Soc, 1931,A230:75
    [89]Bendit E.G.,Text. Res.J.,1960,30(8):547-553
    [90]Speakman, J.B.,The Intracellular Structure of Wool Fibre, Journal of Textile Institute, 1927,18(8):431-453
    [91]候秀良.山羊绒纤维结构与热学性能研究,东华大学博士学位论文,2002
    [92]杨庆斌.大豆纤维理化性能及混纺比优化的研究,东华大学博士学位论文,2005
    [93]肖红.木棉纤维及其集合体的浸润与浮力特征研究,东华大学博士学位论文,2005
    [94]王伟东 刘宇清.纤维压缩弯曲性能测量的方法及装置,中国发明专利,专利号,200310109512.3
    [95]刘宇清.织物毛羽刺痒感客观评价——单纤维轴向压缩弯曲的理论模型及其性能研究,东华大学硕士学位论文.2004
    [96]姚穆 施楣梧 张燕 高峰.蛋白质纤维的导热性及其方向性差异,2001,15(2):42-46
    [97]Carlene P.W., The Bending Stress-Strain Properties of Single Fibres, Journal of Textile Institute, 1947,38(1),38-45
    [98]Peirce F.T, Bending Rigidity of Textile Fibers, Journal of Textile Institute, 1930,21(7):377-384
    [99]Kolb H.J., Application of High Compression Stresses to Textile Fibres, Text.Rese. J.,1953,23(2):84-95
    [100]Kawabata S., Kotani T. and Yamashita.,The Mechanical Properties of Wool Fibres, Journal of Textile Institute,1995, 86(7):347-359
    [101]Khayatt R.M.,The Bending Modulus of Animal Fibres, J.Text.Inst,1948,39, 185-192
    [102]Morton W.E. and Hearle J.W.S., Physical Properties of Textile Fibres,1975,The Textile Ins, Manchester,48-59
    [103]Hearle J.W.S. and Grosberg P., Structural Mechanics of Fibers, Yarns and Fabrics, 1969, Wiley Interscience, New York,78-84
    [104]Susich G and Backer S., Tesile Recovery Behaviour of Textile Fibres, Text. Rese. J., 1953,21(7):482-496
    [105]Bihai S., Alexander B., A Generalized Drop Length-Height Method for Determination of Contact Angle in Drop-on-Fiber Systems, J.Colloid and Interface Science, 1998,197:68-77
    [106]刘振海.热分析导论,1991,北京:化学工业出版社,22-45
    [107]Philips D.J., Detection a Glass Transition by Differential Scanning Calorimetry, Textile.Res.J., 1985, 55(1):171-174
    [108]Kure Julie M., The Glass Transition of Wool: an Improved Determination Using DSC, Textile.Res.J., 1997, 67(1):18-22
    [109]Wortmann, Glass Transition Temperature of Wool as a Function of Regain. Text.Rese.J., 1984,54(1):6-8
    [110]英国PL热科学公司.用动态力学热分析方法对单根纤维的测定,国外科学仪器,1991,2:57-60
    [111]吴安成 宋修彩.羊毛纤维热性能研究,纺织学报,1986.7(4),203-206
    [112]陆家和 陈长彦.现代分析技术,1988,北京:清华大学出版社,1—27
    [113]Ward I. M. and Hadley D. M., An Introduction to the Mechanical Properties of Solid Polymers, John Wiley & Sons, Chichester, 1993,201-288
    [114]Bendit E. G., Mechanical Properties of Keratins, Ⅰ: The Pre-Yield Region in the Stress-Strain Curve (There is no Hookean Region), in "Proc. Int. Wool Textile Research Conf., Pretoria," Vol. Ⅱ, 1980, 43-54
    [115]Feughelman M., The Mechanical Properties of Permanently Set and Cystine Reduced Wool Fibres at Various Relative Humidities and Structure of Wool, Textile Res. J., 1963,33 (12), 1013-1022
    [116]Tao M. and Postle R., Viscoelastic Analysis of Keratin composite, Part Ⅰ: Longitudinal and Transverse Mechanical Properties, Textile Res. J., 1989,59(3), 123-138
    [117]Happey, F., "Applied Fibre Science," vol.l., "The Mechanical Properties of Fibres and Fibre Thermodynamics," M. Feughelman, Ed., Academic Press, London, 1978,25-69
    [118]Xu-W, Thermal Analysis of Ultrafine Wool Powder, Journal of Apply Polymer Science, 2003,87 (14):2372-2376
    [119]Mandelbrot B., The Fractal Geometry of Nature,W. H.Freeman,New York,1975,81-105
    [120]Stanley, H.E., Fractal Concepts for Disordered System:The Interplay of Physics and Geometry. in: Scaling Phenomena in Disordered System, R. Pynn and A. Skjeltorp, eds., NATO ASI Series B, Plenum, New York,1985,133,85-97
    [121]张济中 分形.1995,北京:清华大学出版社,42—59
    [122]谢和平 薛秀谦.1997,北京:科学出版社,分形应用中的数学基础与方法,20—35
    [123]辛厚文.分形理论及其应用.1993,合肥:中国科学技术大学出版社,362—376
    [124]Iovane G. and Varying G, Accelerating Universe, and other relevant consequences of a stochastic self-similar and fractal Universe, Chaos, Solitons and Fractals, 2004, 20(4), 657-667
    [125]Weiss H, The golden mean as clock cycle of brain waves, Chaos, Solitons and Fractals, 2003,18(4):643-652
    [126]Keshavarzi A.R., Ziaei A.N., Homayoun E. and Shirvani A., Fractal Markovian scaling of turbulent bursting process in open channel flow, 2005,25(2):307-318
    [127]He JH., Fifth dimension of life and the 4/5 allometric scaling law for human brain, Cell Biology International, 2004,28(11):809-815
    [128]He JH., Application of E-infinity theory to biology, Chaos, Solitons and Fractals, 2005,28(2): 285-289
    [129]Gabrys E. and Rybaczuk M.. Blood flow simulation through fractal models of circulatory system, Chaos, Solitons and Fractals,2005,27(1),1-7
    [130]Haba T.C, Ablart G., Camps T. and Olive E, Influence impendance of a fractal structure realized on silicon, Chaos, Solitons and Fractals,2005,24(2),479-490
    [131]Zmeskal O,, Buchnicek M. and Vala M., Thermal properties of bodies in fractal and cantorian physics, Chaos, Solitons and Fractals, 2005,25(5):941-954
    [132]El Naschie MS., On a fuzzy Kahler-like manifold which is consistent with the two slit experiment, International Journal of Nonlinear Sciences and Numerical Simulation. 2005,6(2):95-98
    [133]El Naschie MS., Transfinite electrical networks, spinoral varieties and gravity Q bits, International Journal of Nonlinear Sciences and Numerical Simulation. 2004,5(3):191-197
    [134]El Naschie MS., Einstein in a complex time some very personal thoughts about E-infinity theory and modern physics, International Journal of Nonlinear Sciences and Numerical Simulation. 2005,6(3):331-333
    [135]Goldfain E., Complex Dynamics and the High-energy Regime of Quantum Field Theory, International Journal of Nonlinear Sciences and Numerical Simulation. 2005,6(3):223-234
    [136]于伟东 刘茜.变密度纤维集合体传导性的原位综合测量方法与装置,中国发明专利,申请号,200510024967.4
    [137]候秀良 陈运能 王善元.山羊绒、细支绵羊毛绒纤维集合体压缩性能研究,毛纺科技,2000,No.5,24-28
    [138]De Jone S. and Postle R., An Energy Analysis of Woven-Fabric Mechanics by Means of Optical Control Theory, Part Ⅱ: Pure Bending Properties. Journal of Textile Institute, 1977,68(3):362—369
    [139]姚仲鹏 王瑞君 张习军.传热学.1995,北京:北京理工大学出版社,1—54
    [140]钱壬章 俞昌明 林文贵.传热分析与计算.1987,北京:高等教育出版社,1—19
    [141]于承训.工程传热学,1990,南宁:西南交通大学出版社,1—104
    [142]Lin ASP, Barrows TH, Cartmell SH, Guldberg RE. Microarchitecture and mechanical characterization of oriented porous polymer scaffolds. Biomaterials 2003,24:481-489
    [143]Saey Tuan Ho, Dietmar W. Hutmacher, A comparison of micro CT with other techniques used in the characterization of scaffolds, Biomaterials, 2006,27:1362-1376

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700