可变长纤维增强反应注射成型技术及其制品质量控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可变长纤维增强反应注射成型(Variable Long Fiber Reinforced Reaction Injection Molding, VLFRRIM)技术是在增强反应注射成型和可变纤维注入技术基础上发展而来的新型复合材料成型技术,虽然在一定的领域得到应用,但VLFRRIM技术基础理论研究则较为匮乏和滞后。本文以减少VLFRRIM制品缺陷,提高质量为目标,采用理论分析与试验相结合的方法,探索VLFRRIM工艺条件、材料形态结构演化与制品性能之间的影响规律,以实现对VLFRRIM制品提高质量、降低成本的目标,最后利用研究得到的较优工艺参数制备了汽车内饰件产品,验证了本研究方案的可行性。主要研究内容如下:
     (1)综合一般反应注射成型理论,研究了工艺原理、材料体系、设备系统、制品及模具结构设计等VLFRRIM关键技术,归纳了制品常见缺陷并对其产生原因进行了分析,为汽车内饰件等同类制品的开发提供了一整套完整的VLFRRIM技术解决方案。
     (2)研究了纤维种类(玻璃纤维、植物纤维和碳纤维及其混杂纤维)、纤维含量和长度、模具温度、混合料温、合模压力等主要工艺参数对长纤维渗透率的影响,构建了工艺参数与渗透率关系模型,结果表明各工艺参数均对渗透率有较显著的影响;采用绝热温升实验建立了基料聚合时的反应动力学模型,该模型可以有效预测聚合时体系的温度、异氰酸酯转化率,以及充模和固化过程中模腔内的温度变化;采用动态DSC方法研究了VLFRRIM混合物料体系的固化动力学行为,重点研究了不同纤维的加入对聚氨酯体系的固化动力学方程、反应活化能、反应级数的影响,结果表明纤维加入后,混合物料表观活化能和指前因子显著增加,最大增加到原来的2倍,在相同升温速率下的最大固化反应速率降低,固化持续时间延长,反应级数均为1左右;运用流动指数和密度分布系数对VLFRRIM混合物料体系的流动性进行了表征,研究了纤维种类、纤维含量和长度、模具温度和混合料温等工艺参数对流动性的影响,当纤维长度达到25mm以上,质量百分含量大于30%时,混合物料的流动性显著降低。
     (3)研究了纤维种类、纤维含量和长度、模具温度、混合料温、纤维表面处理方式、在模时间、后熟化温度和时间等诸多成型工艺参数对VLFRRIM制品拉伸性能、弯曲性能和冲击性能等力学性能以及热下垂等尺寸稳定性能的影响,结果表明各类长纤维的加入均可提高VLFRRIM制品的力学性能与尺寸稳定性,纤维含量和长度对VLFRRIM制品性能的影响较显著,同时探讨了VLFRRIM复合材料形态结构演化与力学性能的关系。采用热失重法对聚氨酯及其复合材料进行了热失重分析,结果表明VLFRRIM复合材料在200℃时会发生少量分解,表明其具有较好的热稳定性。通过实验方法考察了纤维种类、纤维含量和长度、模具温度、混合料温、后熟化温度和时间等工艺参数对VLFRRIM制品复原性、翘曲变形量等表观质量的影响,其中纤维含量和长度的增加可以显著改善制品的表观质量。
     (4)基于纤维复合材料应力传递理论和层合板理论,在相关研究基础上,综合考虑了纤维性能的分散性,纤维的长度分布、取向分布和强度分布,以及泡孔结构、大小及面密度对复合材料性能的影响,构建了适合于VLFRRIM复合材料的模量预测模型、拉伸强度和冲击强度预测模型,研究结果表明,当纤维质量百分含量小于15%,表明预测值与实验值符合度较好,纤维百分含量大于15%时,预测误差较大。
     (5)以纤维含量、纤维长度、模具温度、混合料温、在模时间、物料配比等作为工艺参数,采用Taguchi方法进行正交试验设计,分析各种工艺参数对VLFRRIM制品综合性能的影响,得到了多个指标的优化工艺参数;运用模糊加权综合评价法对VLFRRIM制品弯曲模量、冲击强度和翘曲变形量进行总体优化,获得了较佳优化工艺参数组合。与某企业结合,利用本文研究成果试制了某型号挖掘机下挂,结果该制品的各项性能指标均有较大提高,废品率明显下降,同时减少了基料用量,节约了成本。
Variable long fiber reinforced reaction injection molding (VLFRRIM) is a new process for composite material molding technology which was developed based on reinforced reaction injection molding and variable fiber injection technology.Although to be applied in some of the areas, the basic theory research of VLFRRIM technology is deficient and lag. In order to reduce VLFRRIM products'defect, improve VLFRRIM products'quality, in this paper, the mutual influence discipline of VLFRRIM important processing conditions、 evolution of Material forms structuren the morphology and properties of VLFRRIM products have been systemically investigated through the theoretical analysis and test. The results of these studies have therefore achieve the goal of VLFRRIM products'quality improving and cost of production reducing, finally, The preparation of car inner decoration products according to the best optimal process parameters from this study, verify the feasibility of our research project. The main research contents are as follows:
     (1) Research on the VLFRRIM key technology such as process theory, material system, equipment system, VLFRRIM products and mould structure design systemically through the theoretical of reinforced reaction injection molding. Sum up the VLFRRIM products'common defects and analyzes its reasons,then, developed a whole solution project for the development of VLFRRIM products of Car inner decoration.
     (2) Effects of the main processing parameters such as type of fiber (glass fiber, plant fiber, carbon fiber), fiber contents and length, mold material temperature, mixture material temperature and compound die pressure on the permeability of long fiber were discussed, established a model which respect to technology parameters and permeability. It proves that each technology parameters have significant effect on permeability; The reaction kinetics mode during makings polymerization was established through adiabatic temperature rise experiments and brookfield rheometer, this model can exactly predict the curves of the temperature of the Makings system, the conversion of isocyanate and the mold cavity temperature during filling and curing; Research on curing kinetics of VLFRRIM mixture material system with dynamic DSC test, focus on the influence of dynamic equation, reaction activation energy, reaction series during inject different fiber into PU system. It turn out that,with injection of fiber, the apparent activation energy and the former factor have a significant increase(The best fiber injection can increase2times to the original), In the same heating rate, reduces the max curing reaction rate, extends curing reaction time, whatmore, each reaction order is about1;Fluidity of VLFRRIM mixture material system get characterization with flow index and density distribution coefficient, Effects of processing parameters such as type of fiber, fiber contents and length, mold material temperature on the fluidity were discussed. The study revealed that when length of fiber up to25mm, fiber contents exceed30%, fluidity of mixture material have a significant reduce.
     (3) Effects of various processing parameters such as type of fiber, contents and length of fiber, time of compound die, temperature and time of later aging on mechanical property such as tensile property, bending property and impact property, and hot prolapsed dimensional stability of VLFRRIM products were researched,the study revealed that injection of every type of fiber can improve mechanical property and dimensional stability of VLFRRIM products, among various processing parameters, contents and length of fiber are significant factors to property of VLFRRIM products, moreover, the relation between morphological structure evolution of VLFRRIM material and mechanical property is taked into research. Mass loss of VLFRRIM material get analysis through thermogravimetry, the result indicates that VLFRRIM material, which start disintegrate at the temperature of200℃has a good heat stability. Effects of processing parameters such as type of fiber, fiber contents and length, mold material temperature, mixture material temperature and compound die pressure on surface quality of VLFRRIM products such as restoration and warpage amount were discussed, with the increasing of fiber contents and length, surface quality of VLFRRIM products get a significantly improve.
     (4) Based on stress transmission theory of fiber composites and laminated plate theory, effects of dispersion of fiber properties, length distribution, orientation distribution and intensity distribution of fiber, as well as foam pore structure, size, and surface density on the property of the composite were synthetically considered, established prediction models of modulus, tensile strength and impact strength which respect to VLFRRIM material. The results show that when the fiber weight percent is less than15%, the equations were better in agreement with the experimental results, but when the fiber weight percent is more than15%, the prediction error is relatively large.
     (5) Designed orthogonal test with Taguchi method, effects of the main processing parameters such as fiber contents, fiber length, mold material temperature, mixture material temperature and time of compound die, the mass ratio of material on combination property of VLFRRIM products were analysised, Got the optimization of process parameters of several index; Conceptual optimized the bending modulus, impact strength and warping deformation through comprehensive valuation equation, obtain the optimum set of processing parameters. Combining with enterprise, prepared inner decoration products of car with the optimum set of processing parameters and other research techniques in this article, results shows that the products of VLFRRIM have better combination property, while reducing the amount of base material, and cost savings.
引文
[1]董建华,殷敬华,周持兴等.高分子材料反应加工的基本科学问题[J].中国科学基金,2003(1):12-15.
    [2]李俊贤.反应注射成型技术及材料(连载)[J].聚氨酯工业.1995-1997.
    [3]朱吕民,刘益军等.聚氨酯泡沫塑料[M].第三版.化学工业出版社,2008
    [4]徐培林,张淑琴.聚氨醋材料手册[M].北京:化学工业出版社,2002
    [5]唐红艳.SRIM工艺与制品性能研究[D].武汉:武汉理工大学,2007
    [6]应圣康,罗宁.我国反应注射成型研究新进展[J].中国科学基金,1998(1):38-41.
    [7]吴锋英,徐敬一.泡沫塑料成型[M].北京:化学工业出版社,1992.
    [8]柳和生.旋转注射混合技术改进反应注射成型工艺[J].橡胶工业,1996(5):43-45.
    [9]燕来荣.车用复合材料及其应用趋势[J]. CAD/CAM与制造业信息化,2007,10:18-22.
    [10]王福玲,梅启林等.黄麻纤维增强聚氨酯泡沫工艺与性能研究[J].武汉理工大学学报,2006(9):27-29.
    [11]肖加余,曾竟成等.重视高性能天然纤维复合材料性能研究与制品开发[C].山东泰安:中国复合材料学会第三次全国会员代表大会,1999.
    [12]胡兴军.碳纤维在汽车上的应用[J].城市车辆,2009,5:44-45
    [13]李再新,闻荻江等.玻璃纤维增强灌注型聚氨酯泡沫塑料的微观结构和增强机理[J].高分子材料科学与工程,1999,15(5):102-104.
    [14]Yang Zhenguo, Zhao Bin, Qin Sanglu, Study on the mechanical properties of hybrid reinforced rigid polyurethane composite foam[J]. Appl Polym Sci,2004,92(3):1493.
    [15]卢子兴等,增强聚氨酯泡沫塑料力学行为的研究[J].复合材料学报,1999,16(2):39-41.
    [16]李国忠,于衍真,玻璃纤维对硬质聚氨酯泡沫塑料增强机理的探讨[J].高分子材料科学与工程,1997,13(4):130-133.
    [17]杜俊超等.低密度可变纤维增强PU-RIM材料制备研究[J].化学推进剂与高分子材料,2007,5(1):52-55.
    [18]Siegmann A, Kenig S, Alpherstein D, etc, Mechanical behavior of reinforced polyurethane foam[J]. Polymer Composites,1983,4(2):103-119.
    [19]Remillard B, Vu-khanh T, Fisa B, Reaction injection molding of mica reinforced polyurethane[J]. Polymer Composites,1986,7(5):395-403.
    [20]Gerkin R M, Lawler L F, Schwarz E G, Reinforced systems for high modulus reaction injection molded urethane composites[J]. Journal of Cellular Plastics,1979,1:51-58.
    [21]Gassan J, Dietz T,BledzkiA K. Effect of silicone interphase on the mechanical properties of flax-polyurethane composites[J]. Composite Interfaces,2000,7(2):103-115.
    [22]Cotgreave.T, Shottall.J.B. The fracture toughness of reinforced polyurethane foam[J]. Journal of Materials Science,1978,4(13):722-730.
    [23]梁书恩等.纤维增强聚氨酯泡沫塑料技术及应用[J].聚氨酯工业,2006,21(6):10-12.
    [24]Santos R J, Teiaira A M, Lopes J C B. Study of mixing and chemical reaction in RIM[J]. Chemical Engineerng Science,2005,60(8):2381-2398.
    [25]J Asrar. Reaction injection molding(RIM) system based on methesis[J]. Journal of Applied Polymer Science,2003,47(2):289-293.
    [26]R. E. Hayes, H. H. Dannelongue, P. A. Tanuy. Numerical Simulation of mold filling in reaction injection molding[J]. Polymer Engineering and Science,2004,31(11): 842-848.
    [27]D. Seo, J. R. Youn, C L. Tucker. Numerical simulation of mold filling in foam reaction injection molding[J]. International Journal for Numerical Methods in Fluids, 2003,42 (10):1105-1134.
    [28]Coyle D J, Blake J W, Maeosko C W. The kinematies of fountain flow in mold filling[J]. AIChEJ,1987,33(7):1168.
    [29]Castro J M, Maeosko C W. Studies of mold filling and curing in the reaction injection molding process[J]. AIChEJ,1982,28(2):250-260.
    [30]Seo.Dongjin, Youn.Jae Ryoun. Numerical simulation of mold filling in foam reaction injection molding[J]. International Journal for Numerical Methods in Fluids,2003, 42(10):1105-1134.
    [31]Jae Ryoun Youn. Numerical analysis on reaction injection molding of polyurethane foam by using a finite volume method[J]. Polymer,2005,46(17):6482-6493.
    [32]Tiqhe.S.C. Simulation of Foaming in Reaction Iinjecton Molding[J]. Polymer Engineeringand Science,1988,28(15):949-954.
    [33]Santos.R.Study of mixing and chemical reaction in RIM. Chemical Engineering^] Science,2005,60(8):2381-2398.
    [34]Friedrich.B. Simulation and analysis of mold filling processes with polymer-fiber composites [J]. Processing of Polymers and Polymeric Composites,1990(9):73-90.
    [35]王伟明.反应注射成型充模及熟化过程研究[D].北京:北京化工大学,1996
    [36]任世杰、戴干策.三维RIM充模模拟[J].高分子材料科学与工程,1999,15(5):5-7
    [37]陶四平、杨伟等.聚氨酯反应注射成型固化过程数值模拟[J].中国塑料,2004,18(7):47-49.
    [38]刘帅.长玻纤增强反应注射成型质量研究[D].南京:南京理工大学,2008.
    [39]Gibala D,Rothacker A,张跃冬.用于可变纤维注塑的新材料[J].聚氨酯工业,2001,16(2):33-35.
    [40]叶鼎铨.玻璃纤维增强聚氨酯[J].玻璃纤维,2009(2):43-46.
    [41]W.Bras, GE.Derbyshire, D.Bogg, J.Cooke, M.J.Elwell, B.U.KDmanschek, S.Naylor and A.J.Ryan, Seienee,267,996(1998).
    [42]C.E.llerdB.E.Eiehinger, Journal of Applied Polymer Seience,42,2169(1991).
    [43]巴斯夫公司Elastogran携手Artega打造全聚氨酯车身跑车[J].工程塑料应用,2009(6):39
    [44]唐红艳,王继辉.结构反应注射成型技术及其研究进展[J].工程塑料应用,2006,34(5):72-74
    [45]Polyurethanes Mouldings Systematically Reinforced with Glass-Fibre.Duesseldorf of Deutsch:Krauss-Maffei Technical Publication.1995
    [46]Tavern M, Bonansea A. InterWet-Polyurethane Co-Injection Technology.In:Proceedings of SPI Polyurethanes EXPO'98.Texas of USA.1998
    [47]朱吕民.聚氨酯合成材料[M].南京:江苏科学技术出版社,2002.
    [48]吴人洁.高聚物的表面和界面.北京:科学出版社,1998
    [49]张开.高分子界面科学[M].北京:中国石化出版社,1997
    [50]鲁博,张林文,曾竟成.天然纤维复合材料[M].北京:化学工业出版社,2005.
    [51]邬义鸣.植物纤维化学[M].第2版.北京:冶金工业出版社,2010.
    [52]杨中文,刘西文.植物纤维填充改性塑料研究进展[J].塑料制造,2010(6):66-70.
    [53]雷文.麻纤维/聚合物复合材料[J].合成树脂及塑料,2009,26(3):67-73.
    [54]Christophe Baley, Frederic Busnel, Yves Grohens, Olivier Sire. Influence of chemical treatments on surface properties and adhesion of flax fibre-polyester resin[J] Composites:Part A:applied science and manufacturing,2006(37):1626-1637.
    [55]解英,吴宏武.表面处理方法对植物纤维增强高分子基复合材料性能的影响评述[J].化工进展,2010,.29(7):1256-1262.
    [56]李华,王芳.植物纤维的碱处理法[J].山西化工.2002,22(2):18-19.
    [57]G Oertel[德]编著,阎家宾等译校.聚氨酯手册[M].中国石化出版社,1992:110-113.
    [58]李凯,张沛,姬宜鹏Kenics型反应注射混合头的流动阻力分析与模拟实验研究[J].中国塑料,2003,17(7):82-85.
    [59]王亚萌,徐强等.反应注射成型技术及材料(连载六)[J].聚氨酯业,1997,12(1):47-52.
    [60]B.J.Briscoe, M.B.Khan, S.M.Richardson. RI-RIM:A New Concept in Reactive Processing[J].Plast. Eng.,1998,(11):43-45.
    [61]吴锋英,徐敬一.泡沫塑料成型[M].北京:化学工业出版社,1992.414-440.
    [62]柳和生.旋转注射混合技术改进反应注射成型工艺[J].橡胶工业,1996,43.
    [63]曹长兴,李贤.反应注射成型设备混合系统的类型与性能[J].塑料科技,2004,,160(2):42-45.
    [64]曹宏深,赵仲治.塑料成型工艺与模具设计[M].北京:机械工业出版社,1992.
    [65]张华,黄汉雄.微孔塑料成型研究进展[J].塑料科技,2010,38(1):97-102.
    [66]邱应明.聚氨酯泡沫塑料成型工艺研究及模具设计[D].成都:四川大学,2004.
    [67]Lundstorm TS, Gebart BR. Influence from process parameters on void formation in resin transfer molding[J]. Polymer Composite.1994,15(1):25-33.
    [68]I.Sevostianov, V.E. Verijenko,C.J.Klemperer. Mathematical model of cavitations during resin film infusion proeess[J]. Composite Structures,2000(48):197-203.
    [69]S.T.Peters. Handbook of Composites[M]. UK:Chapman & Hall,1998.
    [70]谢怀勤,陈辉,方双全.聚合物基复合材料模压成型过程固化度与非稳态温度场的数值模拟[J].复合材料学报,2003,25(3):73-76.
    [71]Cai Z, Berdiehevsky AL.Estimation of the resin flow permeability of fiber tow performs using the self-consistent method[J]. Polymer Composites,1993,15(3):240-246
    [72]Gauvin R, Troehu F, Lemerm Y.Permeability measurement and flow simulation through fiber reinforcement[J]. Polymer Composites,1996,17(1):34-42
    [73]Fong L, Xu J, Lee LJ.Preforming analysis of thermoformable glass fiber mats deformation modes and reinforcement characterization [J].Polymer Composite,1994, 15(1):134-146
    [74]Trevino L, Rupel K, Young WB. Analysis of resin injection molding in molds with preplaced fiber mats, I:Permeability and compressibility measurements [J]. Polymer Composites,1991,12(1):20-29
    [75]C.E.Miller and B.E.Eiehinger, Analysis of reaction-injection-molded polyurethanes by near-infrared diffuse reflectance spectroscopy[J]. Journal of Applied Polymer Seience, 1991,42(8):2169-2190.
    [76]陈竹生,Yang W.R, Macosko C.W.聚氨酯和聚脲的傅里叶变换红外透射光谱的研 究[J].高分子材料科学与工程,2003,58(3):58-62.
    [77]J.C.Moreland, GL.Wilkes, C.GMoreland, S.S.Sanker, E.O.Stejskal and R.B.Turner. Solid-state NMR characterization of motion in flexible polyurethane foams [J].Joural of Applied Polymer Science,1994,52(9):1175-1180.
    [78]GR.Rossmy, H.J.Kollmeier, W.Kidy, H.Schator and M.Wiemann. Cell-opening in one-shot flexible polyether based polyurethane foams. The role of silicone surfactant and its foundation in the chemistry of foam formation[J] Journal of Cellular Plastie,13, 26(2000)
    [79]Stepphen D.Lipshitz and Christopher W.Macosko. Kinetics and energetics of a fast polyurethane cure[J]. Journal of Applied Polymer Science,1977,21(8):2029-2039.
    [80]Advani S.G, Bruschke M.V, Parnas R.S. Flow and rheology in polymeric composites manufacturing[J]. NewYork:Elsevier,1994
    [81]Roller M.B, Rheology of curing thermosets:an overview[J]. Polymer engineering and science,1986,26(6):432-440.
    [82]Kim D.S, Garcia M.A, Macosko C.W. Using mold pressure rise data to obtain viscosity of fast polymerizing systems[J].Intern Polym Proc,1998,13(2):162-171.
    [83]Y.S.Eom, L.Boogh, V.Michaud, et al.A Structure and property based process window for void free thermoset composites[J].Polymer Composites,2001,22(1):22-31.
    [84]李海晨.树脂传递模塑工艺过程数值模拟与固化过程监测研究[D].哈尔滨:哈尔滨工业大学,2002.
    [85]代晓青.纤维预成型体中环氧树脂-固化剂反应体系流动浸渍行为研究[D].长沙:国防科技大学,2010.
    [86]赖家美,陈锋.固化反应动力学在不饱和聚酯树脂中的反应[J].中国塑料,2001,15(10):57-60.
    [87]Schawe J.E.K. A description of chemical and diffusion control in isothermal kinetics of cure kinetics[J]. Thermochimica Acta,2002,388(1-2):299-312.
    [88]Keenan M. R. Autocatalytic cure kinetics from DSC measurements:zero initial cure rate[J]. Journal of Applied Polymer Science,1987,33(5):1725-1734.
    [89]Pellin.M.P, Regueira.L.N, Quintela.A.L, et al. Epoxy resins based on trimethylolpropane. II kinetic and thermodynamic parameters of cure with m-XDA[J]. Journal of Applied Polymer Science,1995,55(11):1507-1516.
    [90]Kissinger.H.E. Reaction kinetics in differential thermal analysis export find similar [J]. Analytical Chemistry,1957,29(11):1702-1706.
    [91]Marieta.C, Schulz.E, Irusta.L. Evaluation of fiber surface treatment and toughening of thermoset matrix on the interfacial behaviour of carbon fiber-reinforced cyanate matrix composites[J]. Composites Science and Technology,2005,65(14):2189-2197
    [92]Zhang Z Q, Liu Y W, Huang Y D, et al. The effect of carbon-fiber surface properties on the electron-beam curing of epoxy-resin composites[J]. Composites Science and Technology,2002,62(3):331-337.
    [93]Cedeno A J, Vazquez-Torres H. Kinetic study of the effect of poly(phenyl sulfone) on the curing of an epoxy/amine resin by conventional and by Temperature modulated differential scanning calorimetry[J]. Polymer International,2005,54(8): 1141-1152.
    [94]王汝敏,裴照卿.连续碳纤维增强新型聚氨酯弹性体复合材料:制备与表征[J].网络聚合物材料通讯,2007,5:1-3.
    [95]赵朋远,张金仲,刘文广.碳纤维增强聚氨酯密封胶强度分析[J].中国胶粘剂,2009,18(6):15-18.
    [96]Hoi-yan Cheung, Mei-po Ho, Kin-tak Lau. Natural fibre-reinforced composites for bioengineering and environmental engineering applications [J]. Composites:Part B, 2009(40):655-663.
    [97]Paul Wambua, Jan Ivens, Ignaas Verpoest. Natural fibres:can they replace glass in fibre reinforced plastics? [J]. Composites Science and Technology,2003(63):1259-1264.
    [98]H.Ku, H.Wang, N.Pattarachaiyakoop, M.Trada. A reciew on the tensile properties of natural fiber reinforced polymer composites [J]. Compo sites:Part B,2011(42):856-873.
    [99]潘碧莲,徐强,姜志国.RIM聚氨酯快速反应动力学研究[J].高分子材料科学与工程,1993(2):6-12.
    [100]Williams M L, Landel R F, Ferry J D. The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids [J]. Journal of the American Chemical Society,1955,77:3701-3707.
    [101]Castro J M, Macosko C W. Studies of mold filling and curing in the reaction injection molding process[J]. AIChE Journal,1982,28(2):250-252.
    [102]张赛军,袁宁, 阮锋.APG工艺用环氧树脂体系的固化及流变模型[J]. 合成树脂及塑料,2007,24(3):20-24.
    [103]Vyazovkin S, Sbirrazzuoli N. Kinetic methods to study isothermal and nonisothermal epoxy-anhydride cure[J]. Macromolecular Chemistry and Physics,1999, 200(10):2294-2303.
    [104]Gum W F, Riese W, Ulrieh H.Reaction Polymers[M]. Munieh:Hanser Publisher,1992.
    [105]GrulkeEA.Polymer Processing[M]. NewJersey:PTR Prentice Hall,1994.
    [106]LoPez Serrano, Castro F, Macosko CW.Recursive approach to copolymerization statistics[J]. Polymer,1980,21(3):263-273.
    [107]卢子兴,皱波.短纤维增强泡沫塑料力学行为的研究进展[J].复合材料学报,2005,,22(5):1-8.
    [108]卢子兴,王仁,黄筑平.泡沫塑料力学性能研究综述[J].力学进展,1996,26(3):306-323.
    [109]Cotgreave T C, Shortall J B. The mechanism of reinforcement of polyurethane foam by high-modulus chopped fibers[J]. J Mater Sci,1977,12(4):708-717.
    [110]Cotgreave T C, Shortall J B. The fracture toughness of reinforced polyurethane foam[J]. J Mater Sci,1978,13(4):722-730.
    [111]Morimoto K, Suzuki T, Yosomiya R,etal. Stress relaxation of glass-fiber-reinforced rigid polyurethane foam [J]. Polymer Engineering and Science,1984,24(12): 1000-1005.
    [112]Morimoto K, Suzuki T. Adhesion between glass-fiber and matrix of glass-fiber reinforced rigid polyurethane foam under tension [J]. Polymer-Plastics Technology and Engineering,1984,22(1):55-76.
    [113]Morimoto K, Toshio S, Yosomiya R.etal. Flexural properties of glass fiber reinforced rigid polyurethane foam [J].Industrial and Engineering Chemistry, Product Research and Development,1984,23(1):81-85.
    [114]Yosomiya R, Morimoto K. Compressive properties of glass fiber reinforced rigid polyurethane foam[J].Industrial and Engineering Chemistry, Product Research and Development,1984,23(4):605-608.
    [115]Yosomiya R, Morimoto K. Effect of interaction between fiber and matrix on impact properties of glass fiber reinforced rigid polyurethane foam[J].Polymer-Plastics Technology and Engineering,1985,24(1):11-26.
    [116]闻荻江,陈再新.增强泡沫塑料的特性和应用[J].玻璃钢/复合材料,1998(2):49-51.
    [117]许鑫华,方洞浦,陈贻瑞.纤维增强环氧发泡复合材料的研究[J].化学工业与工程,1997,14(1):36-40.
    [118]卢子兴,高镇同,田常津.两种增强泡沫塑料静动态力学性能的比较[J].北京航空航天大学学报,1996,22(3):358-362.
    [119]王建华,芦艾,周秋明.短切玻璃纤维增强硬质聚氨酯泡沫塑料的压缩性能[J].高分子材料科学与工程,2001,17(3):150-156.
    [120]李国忠,于衍真.玻璃纤维对硬质聚氨酯泡沫塑料增强机理的探讨[J].高分子材料科学与工程,1997,13(4):130-133.
    [121]李国忠.玻璃纤维增强硬质聚氨酯泡沫塑料的微观结构及破坏机理研究[J].复合材料学报,1996,13(2):17-21.
    [122]Cotgreave T, Shortall J B. Failure mechanisms in fibre reinforced rigid polyurethane foam[J] J Cell Plast,1977,13(4):240-244.
    [123]刘东雷.高光无痕注射成型工艺技术研究[D].南昌:南昌大学,2010.
    [124]张长安,张一甫,王春齐.苎麻落麻纤维的偶联剂改性研究[J].玻璃钢/复合材料,2002,(5):19-21.
    [125]A.Arbelaiz, Cantero, B.Fernandez, I.Mondragon.Flax fiber surface modifications:effects on fiber Physico mechanical and flax/polypropylene interface properties [J]. Polymer composites,2005, I(2):325-332.
    [126]B.K.Sarkar.Dipa Ray.Effect of the defect concentration on the impact fatigue endurance of untreated and alkali treated jute-vinyl ester composite under normal and liquid nitrigen atmosphere [J]. Composites Science and Technology,2004,(64):2213-2219.
    [127]赵磊,俞建勇,刘丽芳等.黄麻纤维毡增强复合材料的力学性能研究[J].山东纺织科技,2008,(5):8-11.
    [128]陈丰,曹春平,张蔚,孙宇.长纤维增强反应注射成型多指标工艺参数优化[J].材料科学与工艺,2011,19(3):37-42.
    [129]Feng Chen, Chunping Cao, Wei Zhang, Yu Sun, Optimization of Parameters in Long Fiber Reinforced Reaction Injection Molding on Bending Properties[J]. Advanced Materials Research,2011,154-155:981-986.
    [130]张蔚,陈丰,孙宇,曹春平.低密度长玻纤增强聚氨酯复合材料的力学性能[J].工程塑料应用,2011,39(2):24-27.
    [131]张蔚,陈丰,孙宇,曹春平.长玻纤增强聚氨酯复合材料弯曲应力-应变试验研究[J].塑料工业.2011,39(9):77-80.
    [132]郝元恺,肖加余著.高性能复合材料学[M].北京:化学工业出版社,2004.
    [133]张桂芳,罗某蔚,胡冬梅,RIM聚氨酯弹性体热下垂性能测定影响因素研究[J]黎明化工,1990,8:40-44.
    [134]Paley M, Aboudi J.Micromechanical analysis of composites by the generalized cells model[J].Mechanics of Materials,1992,14:127-139.
    [135]Aboudi J.Mechanics of Composite Materials-A Unified Micromechanical Approach[M]. Amsterdam:Elsevier Scienee Publishers B.V.,1991.
    [136]廉英琦.弱界面粘结的纤维增强金属基复合材料细观力学分析[D].南京:南京航空航天大学,2004.
    [137]Pindera M J, Bednarcyk B A.An efficient implementation of the generalized method of cells for unidirectional, Multi-Phased Composites with Complex Micro structures [J]. Composites Part B:engineering,1999,30:87-105.
    [138]孙占英.天然纤维复合材料性能改善及性能预测[D].上海:华东理工大学,2010.
    [139]沈观林,胡更开.复合材料力学[M].第一版.北京:清华大学出版社,2006.
    [140]Chin W K, Liu H T, Lee Y D.Effects of fiber length and orieniation distribution on the elastic modulus of short fiber reinforced thermoplasties [J].Polymer Composites,1988, 9(1):27-35
    [141]贺建芸SF-TPU复合材料注射充模纤维取向数值模拟及其结构-性能的研究[D].北京:北京化工大学,1998.
    [142]Kelly A, Tyson W R. Tensile properties of fiber-reinforced metals:copper/tungsten and copper/molybdenum[J]. Journal of the Mechanics and Physics of Solids,1965,13(6): 329-350.
    [143]王瑞,王春红.亚麻落麻纤维增强可降解复合材料的拉伸强度预测[J].复合材料学报,2009,26(1):43-47.
    [144]Fukuda H, Chou T W. A probabilistic theory of the strength of short-fiber composites with variable fiber length and orientation [J]. Journal of Material Science,1982, 17:1003-1011.
    [145]Pipes R B, Mccullough R L, Taggart G. Behavior of discontinuous fiber composites: Fiber orientation [J]. Polymer Composite,1982,3(1):34-39.
    [146]Sanomura Yukio, Hayakawa K, Mizuno M. Effects of process conditions on Young s modulus and strength of extrudate in short-fiber-reinforced polypropylene [J]. Polym Compos,2007,1002 (10):30-35.
    [147]Goda Koichi, Yoshiyuki Kitamura, Junji Ohgi. Green composites reinforced with bamboo fibers[C].2nd International Workshop on"Green"Composites. Yamaguchi, Japan:Press of Yamaguchi University,2004:96-100.
    [148]彭响方,刘婷,兰庆贵,周南桥.微孔发泡塑料注射成型技术及其新进展[J].材料导报,2005,19(1):75-78.
    [149]孙爱芳,刘敏珊,董其伍.短切纤维增强复合材料拉伸强度的预测[J].材料研究学 报,2008,22(3):333-336.
    [150]Beckermann G W, Pickering K L. Engineering and evaluation of hemp fibre reinforced polypropylene composites:Micromechanics and strength prediction modelling[J] Composites Part A:Applied Science and Manufacturing,2009,40(2):210-217.
    [151]Thomason J L, Vlug M A. Influence of fibre length and concentration on the properties of glass fibre-reinforced polypropylene I:Tensile and flexural modulus[J].Composites Part A:Applied Science and Manufacturing,1996,27(6):477-484.
    [152]Kumar K S, Ghosh A K, Bhatnagar N. Mechanical properties of injection molded long fiber polypropylene composites I:Tensile and flexural properties [J]. Polymer Composites,2007,28(2):259-266.
    [153]张宇,段召华,陈弦,何波兵.注塑工艺参数对长玻纤增强PA66复合材料力学性能的影响[J].塑料科技,2011,39(2):65-69.
    [154]Cooper G A. The fracture toughness of composites reinforced with weakened fibres[J]. Journal of Materials Science,1970,5(8):645-654.
    [155]Kelly A. Interface effects and the work of fracture of a fibrous composite[J]. Proceedings of the Royal Society (Series A),1970,319:95-116.
    [156]Folkes M J. Short fiber reinforced thermoplastics[M].Chicheste:Research Studies Press, 1985:22-27.
    [157]Cottrell A H. Strong solids. Proceedings of the Royal Society of London[J]. Series A, Mathematical and Physical Sciences,1964,282:2-9.
    [158]Thomason J L. Influence of fibre length and concentration on the properties of glass fibre-reinforced polypropylene.4:Impact properties [J]. Composites, Part A:Applied Science and Manufacturing,1997,28(3):277-288.
    [159]Lhymm C, Schultz J M. Fracture behaviour of collimated thermoplastic reinforced with short glass fibre[J]. Journal of Materials Science,1983,18(7):2029-2046.
    [160]孙占英,韩海山,戴干策.剑麻/聚丙烯复合材料的冲击性能及其预测[J].复合材料学报,2009,26(6):8-16.
    [161]Mieck K P, Reu β mann T, Lutzkendorf R. Calculations and experiments for impact strength of natural long-fiber reinforced composites [J]. Advanced Engineering Materials,2004,6(3):144-147.
    [162]Andersons J, Sparnin E, Joffe R, et al. Strength distribution of elementary flax fibres [J]. Composites Science and Technology,2005,65(3/4):693-702.
    [163]Watson A S, Smith R L. An examination of statistical theories for fibrous materials in the light of experimental data[J] Journal of Materials Science,1985,20(9):3260 3270.
    [164]吴贵生.试验设计与数据处理[M].北京:冶金工业出版社,1997.
    [165]Wang Zhongjun.On the Methods.Problems and Research Trends of Comprehensive Evaluation[J]. Journal of Manegment Science in China,1998,1(1):73-79.
    [166]Guo Yajun,Yu Zhaoji.Rationality of synthetic evaluation[J]. Journal of Northeastern University(Natural Science),2002,23(9):844-849.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700