装配图参数化设计系统的实现及其关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着计算机技术的发展,全球化制造时代已经到来。在这种背景下,利用集成化、智能化CAD系统完成产品的开发设计是企业赢得市场竞争的重要保证。因此,对集成化、智能化CAD系统的研究,已经成为设计领域的发展趋势。
     设计问题本质上是一个约束满足问题(Constraint Satisfaction Problem,CSP),即给定功能、结构、材料及制造等方面的约束描述,求得满足设计要求的设计对象的细节。现行的CAD系统能较好地处理复杂的零件图,但在装配图的设计方面,却显得薄弱无力,缺乏完善、可靠的装配建模工具。然而,装配图是产品设计中极为重要的技术文件,它对提高设计效率,缩短设计周期都具有重要的意义。
     本文以基于网络的零件库技术以及装配约束满足问题(Assembly Constraint Satisfaction Problem,ACSP)为主线,对集成化的智能CAD进行了研究,建立了基于PPLIB(Parametric Parts LIBrary)的装配图参数化设计系统。
     本文首先系统全面地分析了国内外关于集成化的智能CAD系统的最新研究成果,采用面向对象的建模方法,构筑了基于PPLIB的装配图参数化设计系统的体系结构,并采用IDEFO结构分析方法建立了参数化设计系统的功能模型。
     通过对约束满足问题的研究,建立了基于约束的产品几何模型,提出了对几何约束系统进行简化的方法,并给出了几何约束系统的图表达形式,阐明了几何约束网络图的基本性质。在此基础上,提出了一种面向零件图的基于点簇归约的几何推理算法,并且构筑了局部约束求解器。它能通过约束识别和几何推理自动建立起几何元素之间的依赖关系和求解次序,成功地实现了比较复杂的图形的参数化设计。
     在深入研究PLIB标准的基础上,采用NIST Expresso和WinSTEP等工具构筑了基于PLIB的产品信息模型。通过局部约束求解器和草图规整器等工具建立基于约束的产品几何模型,为支持企业在Intranet网上开展协同设计、共享设计资源,根据零部件库的实际使用情况,选择并改进了PLIB标准建议的第二种集成方案,建立了基于PLIB的信息集成系统,实现了不同CAD间产品级的信息交换,创建了机械领域的基于Internet/Intranet的参数化零部件库PPLIB。
     深入探讨了装配约束满足问题的求解机制,提出了基于块的全局约束求解算法,约束一致性算法和约束方程组求解算法,建立了几何约束求解系统、几何约束管理系统、约束方程组求解系统,在此基础上构筑了二维约束求解器,实现了
    
    东华大学博士学位论文
    摘要
    装配约束满足问题的求解。
     最后,以河南平顶山平高电气股份制有限公司的GIS软件项目为实践背景,
    采用面向对象方法开发了装配图的参数化设计系统,通过推广应用,实践表明,
    本文提出的理论和方法是正确的。
     综上所述,本文的研究在以下几个方面有所创新:
    1.建立了支持自顶向下和自底向上的装配图设计系统框架;
    2.通过对几何约束系统的简化,建立了基于约束的产品几何模型及其存储结构,
     并提出了基于几何约束网络图的产品几何模型的求解模型。
    3.提出了基于点簇归约的几何推理算法,并在此基础上建立了局部约束求解器。
     成功地实现了局部约束满足问题的求解。
    4.建立了基于PU[B标准的产品信息模型,提出了不同CAD系统间产品级信息
     集成方案,实现了不同CAD系统间的零部件库的集成。
    5.提出了基于块的全局约束求解算法,在此基础上建立了二维约束求解器,实
     现了装配约束满足问题的求解。
With the development of computer technology, the global manufacture era is coming. Under this background, using integrated and intelligent CAD systems to accomplish product design is important ensure for the enterprises to win the market competition. Therefore the study on integrated and intelligent CAD systems has become the trend in design field.
    The design problem is essentially a constraint satisfaction problem. Given the functional, structural, material, manufacturing constraints and so on, find the details of design object in line with the design requirements. Current CAD systems are good at dealing with complicated part drawings, but are week in the design of assembly drawings. However, assembly drawing is an important technical file, which contributes to improve design efficiency and shorten design cycle.
    Our discussion is focused on parts library technology based on network and assembly constraint satisfaction problem (ACSP). In this paper we present a deep study on integrated ICAD and build a parametric design system of assembly drawing based on PPLD3 (Parametric Parts Library).
    Firstly, the background and related work in the field of integrated ICAD research are introduced. The architecture of parametric design system of assembly drawing based on PPLJB is set up using the object oriented modeling method. And the functional model of parametric design system is built using the IDEFO structural analysis approach.
    Then based on the deep study on PLIB standards, the product information model based on PLIB is set up using the tools such as NIST Expresso, WinSTEP and so on. To support the collaborative design and the share of design resource, the second integration project suggested by the PLIB standards is selected and modified and the information integration system based on PLIB is set up. The information exchange between different CAD systems is implemented.
    The geometric model of products is set up by studying on CSP. The simplified method for geometric constraint system is presented and a graph representation is used to
    
    
    describe the geometric constraint system. The characteristics of the geometric constraint network is also given. A part drawing oriented geometric reasoning algorithm based on point-cluster reduction presented and a local constraint solver is set up. It can obtain the solving sequence of geometric elements from the geometric constraint network and achieve the parametric design of complicated drawings. The tool for building PPLB is set up using the local constraint solver and PLJB technology.
    The solving mechanism of ACSP is discussed and the global constraint solving algorithm based on block is proposed. The 2D constraint solver is built based on the local constraint solver and PPLBB to achieve the parametric design of assembly drawing.
    Finally, under the practical background of the project of GIS parametric design software, the development of the parametric design system of assembly drawing based on PPLJB is carried out. The future work in this area is addressed.
    In conclusion, there are some innovates listed below in this paper.
    1. The architecture of assembly drawing design system which supports bottom-up and top-down assembly design is set up;
    2. The parametric geometric model of product based on constraint is set up, and the solving model based on constraint network graph for the product geometric model is proposed;
    3. The parametric information model of product based on PUB is set up, the method of product information exchange between different CAD systems through PLJB is designed, and the integration of parts libraries between the different CAD systems is implemented;
    4. The geometric reasoning algorithm based on point-cluster reduction is put forward, and the local solver is set up based on it, the local constraint solving problem is solved;
    5. The global constraint solving algorithm based on block is proposed, and the 2D constraint solver is set up, the parametric design of assembly drawing is realized.
引文
[AK93] Agrawal, R, Kinzel, GL, Srinivasan, R, Ishii, K, 1993, "Engineering constraint management based on an occurrence matrix approach", Journal of Mechanical Design, Transactions Of the ASME, 115(1) : 103-109.
    [AK96] Anantha R, Kramer G A, Crawford R H., (1996) . Assembly modelling by geometric constraint satisfaction. Computer-Aided Design. 28(9) .
    [Ald88] Aldefeld B., Variation of geometries based on a geometric-reasoning method. Computer-Aided Design. 20(3) . 1988
    [AM98] Abdel-Malek, K and Maropis, N, 1998 "Design-to-Manufacture Case Study: Automatic Design of Post-Fabrication Mechanisms for Tubular Components," SME Journal of Manufacturing Systems, 17(3) :183-195.
    [AZ99] Abdel-Malek, K and Yeh, HJ, 1997, "On the Determination of Starting Points for Parametric Surface Intersections," Computer-Aided Design, 29(1) :21?5.
    [BB92] Bowen, J and Bahler, D, 1992, "Frames, quantification, perspectives, and negotiation in constraint networks for life-cycle engineering" Artificial Intelligence in Engineering, 7: 199-226.
    [BEH94] Burke, E K, Elliman, D G, and Heard, M I, 1994, "XCODAMS: an engineering design system based on constraint propagation", Applications of Artificial Intelligence in Engineering, pp. 601-608
    [BF95] Bouma W, Fudos I, Hoffmann C, Cai J, Paige R. Gemoetric constraint solver. Computer-Aided Design, 1995,27(6) : 481-501.
    [BP93] Buchanan S A & de Pennington A., (1993) . Constraint Definition System: a computer-algebra based approach to solving geometric-constraint problems. Computer-Aided Design. 25 p741-740
    [Buc85] Buchberger B., Grobner bases: an algorithmic method in polymonial ideal theory. In Miltidimensional Systems Theory. Bose N K (Eds), D.Reidel Publishing Company, 1985, 184-232.
    [Chen99] 陈禹六:IDEF建模分析和设计方法.清华大学出版社.1999年: 8-15
    [Cho88] Chou S C., A introduction to Wu's method for mechanical theorem proving in geometry. Journal of Automated Reasoning. 1988(4) , 237-267.
    
    
    [CS93] D.Y. Cho & C.K. Shin & H.S. Cho. Automatic inference on stable robotics assembly sequences based upon the evaluation of base assembly motion instability. Robotics, 1993, 11:351-362
    [CT90] Cutkosky, M R and Tenenbaum, J M, "Toward a computational framework for concurrent engineering" Electronics Society-IECON, Pacific Grove, CA, 1990:700-706.
    [DD87] A. Dechter and judea pearl. Network-Based Heuristics for Constraint Satisfaction Problems. In Proceedings of the National Conference on Artificial Intelligence, AAAI Press, 1987:105-109
    [DK87] David Neville Rocheleau and Kunwod Lee ,"System for interactive assembly modeling", Computer-Aided Design,Vol. 19,No.2,1987, PP65-71.
    [FG94] Fohn, SM, Greef, AR, Young, RE, and O'Grady, PJ, 1994, "Constraint system shell to support engineering approaches to concurrent engineering" Artificial Intelligence in Engineering, 9(1): 1-7.
    [FH96] Fudos I, Hoffmann C M., Correctness proof of a geometric constraint solver. International Journal of Computational Geometry & Application. 6(4), 1996, 405-420.
    [FH97] Fudos I, Hoffmann C M., A graph-constructive approach to solving systems of geometric constraints. ACM Transactions on Graphics. 16(2), 1997, 179-216.
    [Fit81] Fitzgerald W J.,(1981). Using axial dimensions to determine the proportions of line drawings in computer graphics. Comput -Aided Des. 13(6).
    [Fre82] Engene C. Freuder. A Sufficient Condition for Backtrack-Free Search. Journal of the ACM, 1985,29(1):24-32.
    [Gao97] 高剑峰.BYLCAD系统设计技术报告.上海交通大学计算机系CIT实验室.1997
    [GB7635-87] GB7635-87:全国工农业产品(商品、物资) 分类与代码;1987
    [Ge93] 葛建新,新一代造型系统的研究与实现。浙江大学博士学位论文,1993.3.
    [GH96] Gorti S R, Humair S, Sriram R D, Talukdar S, Murthy S., (1996). Solving constraint satisfaction problems using Ateams. AIEDAM. 10.
    [GY97] 葛建新,杨莉.参数化设计中的动态约束迭代及静态因果分析技术.计算机学报.1997,20(4):305-314.
    [GZ00] 高剑峰,张申生,何援军,赵继云.几何约束求解器.计算机辅助设计与图形学学报,2000,Vol.12 No.2:110-115.
    [HA89] Haug, E. J., 1989, Computer Aided Kinematics and Dynamics of Mechanical
    
    Systems, Vol I: Basic Methods, Allyn & Bacon, Boston.
    [HK87] Ko H, Lee K. Automatic assembling procedure generation from mating condition. Computer Aided Design, 1987, 19 (1) :3-10
    [HR93] Hel-Or Y, Rappoport A, Werman M., Relaxed parametric design with probabilistic constraints. ACM Solid Modeling '93. Montreal,Canada. 1993. 261-270.
    [HW97] 何援军,王慧强,赵冬梅;“CAD图形开发工具”
    [IM94] Imamura, S, 1994,"Development of constraint based object oriented language for engineering design-on the parametric design support", Journal of the Japan Society for Precision Engineering 60(9) : 1242-1246.
    [ISO 10303-11] ISO 10303-11: 1994, Industrial automation systems and integration-Product data representation and exchange-Part 11: Description Methods: The EXPRESS language reference manual; ISO TC184/SC4/WG2
    [ISO 10303-21] ISO 10303-21: 1994, Industrial automation systems and integration-Product data representation and exchange-Part 21: Implementation methods: Clear Text Encoding of the Exchange Structure (Physical File); ISO TC184/SC4/WG2
    [ISO 10303-27] ISO 10303-27: Industrial automation systems and integration-Product data representation and exchange-Part 27: Implementation methods: Java language binding to SDAI; ISO TC184/SC4/WG2
    [ISO 13584-1] ISO 13584-1: Industrial automation systems and integration-Parts Library-Part 1, Overview and fundamental principles; ISO TC184/SC4/WG2
    [ISO 13584-10] ISO 13584-10: Industrial automation systems and integration-Parts Library-Part 10, Conceptual description: Conceptual model of parts library; ISO TC184/SC4/WG2
    [ISO 13584-20] ISO 13584-20: Industrial automation systems and integration-Parts Library-Part 20, Logical resource: Logical model of expressions; ISO TC184/SC4/WG2
    [ISO 13584-24] ISO 13584-24: Industrial automation systems and integration-Parts Library-Part 24, Logical resource: Logical model of supplier library; ISO TC184/SC4/WG2
    [ISO 13584-26] ISO 13584-26: Industrial automation systems and integration-Parts Library-Part 26, Logical resource: Supplier identification; ISO TC184/SC4/WG2
    [ISO 13584-31] ISO 13584-31: Industrial automation systems and integration-Parts Library-Part 31, Implementation Resource: Geometric Programming Interface; ISO TC184/SC4/WG2
    [ISO 13584-42] ISO 13584-42: Industrial automation systems and integration-Parts Library-Part 42, Description Methodology: Methodology for Structuring Part Families ISO TC184/SC4/WG2
    [ISO 13584-101] ISO 13584-101: Industrial automation systems and integration-
    
    Parts Library-Part 101, View exchange protocol: Geometric view exchange protocol by parametric program; ISO TC184/SC4/WG2
    [JB91] Jaques, MWS, Billingsley, J, Harrison, D, 1991 "Generative feature-Based design-by constraints as a means of integration within the manufacturing industry", Computer-Aided Engineering Journal, 8(6) :261-267.
    [JH97] 姜华.机械产品的制品规划研究.华中理工大学博士学位论文. 1997.
    [JS97] Joan-Arinyo R, Soto A., A correct rule-based geometric constraint solver. Comput. & Graphic. 21(5) 1997, 500-609.
    [KA92] Kott, A, Agin, G, Fawcett, D, 1992, "Configuration tree solver. A technology for automated design and configuration" Journal of Mechanical Design Transactions of the ASME, 114(1) : 187-195.
    [KB93] Kolb, M A and Bailey, M W, 1993, "FRODO: constraint-based object modeling for preliminary design" Proceedings of the 19th Annual ASME Design Automation Conference, Albuquerque, NM, 65:307-318.
    [KD85] Kunwoo Lee and David C Gossard. A hierarchical data structure for representing assemblies: part 1. Computer-Aided Design, 17(1) , 1985: 15-19.
    [KG85] Kunwoo Lee & G. Andrews. Inference of the position of components in an assembly: part 2. Computer Aided Design, Volume 17 No.l Jan/Feb. 1985:20-24.
    [Kon90] Kondo K., (1990) . PIGMOD: parametric and interactive geometric modeller for mechanical design. Computer-Aided Design.22(10) .
    [Kon92] Kondo K.,(1992) Algebraic method for manipulation of dimensional relationships in geometric models. Computer-Aided Design. 24(3) .
    [KP91] Subramam A K, Deewhurst P. Automatic generation of product disassembly sequences. Annals of the CIRP, 1991, 40(1) :115-118.
    [Kra92] Kramer. G.A A geometric constraint engine. Artificial Intelligence. 1992, 58: 327-360.
    [KT91] Kin N, Takai Y,Tosiyasu L. (1991) . A Connectionist Approach to Geometrical Constraint-Solving. Modeling in Computer Graphics. Springer-Verlag.
    [Lak97] Lakmazaheri S., Constraint-based reasoning via Grobner Based AIEDAM. 11, 1997.
    [LA85] K.W. Lee & G. Andrews. Inference of the position of components in an assembly: part 2 . Computer Aided Design, Volume 17 No.1 Jan/Feb. 1985: 20-24.
    
    
    [LC90] Alan C.Lin, Tien-Chien Chang. Product Modeling and Process Planning for 3-Dimensional Mechanical Assembly. Proceedings of NSF Design and Manufacturing Systems Conference, January 1990:633-640.
    [LG82] Light L, Gossard D. Modification of geometric models through variational geometry. Computer-Aided Design. 1982,14(4) : 209-214.
    [LG82] Light R & Gossard D C.,(1982) Modification of geometric models through variational geometry Computer-Aided Design. 14(4) .
    [LG85] Kunwoo Lee and David C Gossard. A hierarchical data structure for representing assemblies: part 1 . Computer-Aided Design, 17(1) , 1985:15-19.
    [LK96] Lee J Y, Kim K. Geometric reasoning for knowledege-based parametric design using graph representation. Computer-Aided Design. 1996,28(10) : 831-841.
    [Luo95] 罗浩.基于约束的工程图形参数化设计系统的理论与实践.华中理工大学博士学位论文. 1995. 6
    [Owe91] Owen J C., (1991) . Algebraic solution for geometry from dimensional constraints. Proc. Symp. Solid Modeling Foundations and CAD/CAM Application. ACM SIGGRAPH(1991) pp.397-407
    [OMS] G Ogan, F. Metzger, B. Seybold and M. Engeli. A two-body solver for assembly modeling,
    [RJ94] Rajneet Sodhi and Joshua U. Turner. Towards modeling of assemblies for product design. Computer-Aided Design,Vol.26,No.2,Feb.1994
    [SB88] Serrano, D and Gossard, D, 1988, "Constraint management in MCAE" Artificial Intelligence in Engineering Design (Gero, J S, editor), pp217-239.
    [SC91] Homem de Mello L S, Sanderson A C. A Correct and Complete algorithm for the generation of mechanical assembly sequences. IEEE Transaction on Robotics and Automation, 1991, 7(2) :228-240.
    [SL96] Steinberg, L, Langrana, N, 1996, "EVEXED and MEET for mechanical design: testing structural decomposition and constraint propagation", Artificial Intelligence, 84(1-2) 37-46.
    [SMO97] B. Seybold, F. Metzger, G Ogan, J. Bathelt, F. Collenberg, J. Taiber, K. Simon, and M. Engeli. Spatial Modelling with Geometric Constraints. In Practical Application of Constraint Technology, 1987:307-320.
    [SMO98] B. Seybold, F. Metzger, G Ogan and K. Simon. Using Blocks for Constraint
    
    Satisfaction, Technical Report 297. ETH Zurich, Institute Of Theoreitical Computer Science, 1998.
    [SOM97] B. Seybold, G. Ogan, F. Metzger and K. Simon. Interactive aspects of constraint based assembly modeling. In CP97 Workshop on the Theory And Practice of Dynamic Constraint Satisfaction, 1997.
    [Sun87] Sunde G., A CAD system with declarative specification of shape. EuroGraphics Workshop on Intelligent CAD System. 1987, 90-105.
    [Sun97] 孙家广.CAD技术的发展趋势.计算机辅助设计与制造,1997.4:12-14
    [SW96] 沈剑,王勇,董金详,基于变分几何的参数化设计绘图方法.计算机辅助设计与图形学学报.1996,8(6):464-469.
    [Tan95] 谭建荣.基于零件图约束信息的装配图重建方法.机械工程学报,31(2),1995:63-69
    [Tar72] Robert Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing, 1972,1(2): 146-160.
    [Tho96] Thornton A C., (1996). The use of constraint-based design knowledege to improve the search for feasible designs. Artificial Intelligence in Engineering. 9(4).
    [TL98] 唐立.装配建模中设计变量约束模型的研究与实践.华中理工大学硕士学位论文.1998年
    [Tod89] Todd P.,(1989). A k-treee generalization that characterizes consistency of dimensioned engineering drawings. ACM Disc Math. 2(2).
    [TT97] 阳凌,童秉枢,刘雄.SIGRAPH—DESIGN环境下的机构装配设计技术.工程图学学报,1997,No.2-3:12-18
    [VS92] Verroust A, Schonek F, Roller D. Rule-Oriented method for parameterized computer-aided design. Computer Aided Design, 1992,24(10): 531-540.
    [YCh00] 殷国富、陈永华.计算机辅助设计技术与应用.科学出版社.
    [ZA96] Zou, HL, Abdel-Malek, K, and Wang, JY, 1996, "Computer-Aided-Design Using the Method of Cut-Joint Kinematic Constraints, Computer-Aided Design, 28(10):795?06.
    [ZA98] Zou, HL Abdel-Malek, K and Wang, J, 1997, Design Propagation in Mechanical Systems: Kinematic Analysis, ASME Journal of Mechanical Design, 119(3):338-345.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700