盲源分离的若干算法及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盲源分离(BSS)在数字图像处理、语音信号处理、医学信号处理、地球信号处理、通信信号处理、遥感图像处理等等邻域取得了广泛的应用。在混合过程和源信号未知的前提下,盲源分离技术试图对传感器观测信号进行分解而得到了解混的源信号,这个看似不可思议的问题,在一定的假设下取得了巨大的成功,各种新颖而有效的解决方法层出不穷。本文围绕这个研究热点,做了以下研究工作:
     1.第三章对文献中的盲源提取(BSE)算法进行分析。着重讨论了具有时间结构源信号的盲源提取问题,针对文献中的两种代表性算法进行了详细的分析,得出两点结论:①其中一个算法声称对加性高斯白噪声更鲁棒的说法是不对的,理论分析表明两种算法的抗噪性能是一致的;②两种算法是殊途同归的,即代价函数都可转化为观测信号的自相关函数。在此基础上我们得到几个更稳健的算法,仿真实验表明它们对时间结构信息的估计值更鲁棒,提取效果更好。
     2.参考独立分量分析或约束独立分量分析是一类重要的盲源提取算法。但这类算法存在明显的不足:①算法耗时;②算法中一个关键的阈值参数对算法的性能影响很大,一旦设置不当的话算法就失效。文献中的多个改进版本同样存在这些不足。第四章针对参考独立分量分析方法提出了三个改进算法,这些算法较好地弥补了以上不足,仿真实验表明它们收敛都较快,耗时降低两个数量级,同时分离效果显著提高。
     3.第五章研究基于广义特征值分解的盲源分离算法。着重讨论了基于线性预测的算法、基于可预测性的算法和"On blind source separation using generalized eigenvalues with a new metric"一文提出的算法。这三类算法都是通过优化广义Rayleigh商形式的代价函数来获得解混矩阵,在实际计算时把广义Rayleigh商的优化转化为相应的广义特征值分解,由特征向量构成解混矩阵。第三类算法的原文证明了最大化广义Rayleigh商能分离出一个源信号,但广义Rayleigh商其它的极值点和临界点是否一一对应呢?这是把用于解决盲源分离的广义Rayleigh商的优化转化为相应的广义特征值分解的基本前提,但我们的分析表明该文给出的证明不够严谨。本章给出了基于线性预测的三个类似的代价函数,其物理意义更明确。针对第三类算法也给出了一个算法实例,进而结合原文的工作给出了一个统一框架并加以证明。提出的框架包罗了通过优化广义Rayleigh商来解决盲源分离的所有算法,为最终用广义特征值分解来获得解混矩阵奠定了理论基础,也为构造Rayleigh商形式的代价函数提供了范本。
     4.第六章研究了基于矩阵联合对角化的盲源分离算法。早期的算法基于正交联合对角化,但正交的约束对分离效果有一定的影响,所以近年来都研究非正交的联合对角化算法。记各个对角化处理后的矩阵为B,,衡量对角化程度的一个很自然的准则是:J(W)=∑off(Bi),式中off(B)表示矩阵B所有非对角元素的平方和。为了避免分离矩阵陷入奇异解或退化解,文献中的大量算法在以上简单的准则加入了一个约束项。在本章中我们也通过加入约束项得到了两个简单的非正交联合对角化算法。此外我们还提出一个新颖的对角化准则:J(W)=∑off(Bi)‖Bi‖,式中‖·‖为Euclidean范数。该准则同时考虑了对角元素和非对角元素,仿真实验表明算法能获得更好的对角化效果和盲源分离效果。
Blind source separation (BSS) has found many applications in digital image processing, speech signal processing, medical signal processing, geophysical signal processing, communication signal processing, remote sensing image processing, etc. When the mixing process and the original signals are unknown, BSS tries decomposing the observed sensor signals in order to obtain the unmixed source signals, as seems mysterious. However, given some assumptions, BSS has had great success and many novel and effective methods have been emerging. The thesis concerning this hot research area does some research work as follows:
     (1) The blind source extraction (BSE) methods are analyzed in the third chapter. BSE for signal with temporal structure is focused on. After analysis in depth of two representative algorithms in the literature, two conclusions are reached:firstly, one of them claims that its method is more robust to the additive Gaussian white noise, as is incorrect. Our theoretical analysis shows that anti-noise performance of these two method are the same. Secondly, these two algorithms reach the same goal by different routes, and their cost functions can both be transformed to the autocorrelation function of the observed signals. Based on these points, a few more robust algorithms are obtained, which are more robust to the estimation of the temporal structure information and have better extraction results.
     (2) Independent component analysis with reference (ICA-R) is an important method for BSE. However, our analysis indicates that it has two deficiencies. Firstly, it is time-consuming; secondly, its threshold parameter has an important effect on its performance, once its value is improperly set, it will fail. Many improved versions of ICA-R still have these drawbacks. Three improved algorithms for ICA-R are proposed in the fourth chapter, which completely avoid inherent drawbacks on ICA-R. Simulation experiments demonstrate their better performance.
     (3) The fifth chapter is about BSS methods based on generalized eigen-value decomposition (GED). Three algorithms, which is based on linear prediction, temporal predictability, and is proposed in " On blind source separation using generalized eigenvalues with a new metric", respectively, are investigated. They all acquire the demixing matrix through optimizing some cost function with the form of generalized Rayleigh quotient (GRQ). The optimization is transformed to the corresponding GED, whose eigen-vectors constitutes the demixing matrix. The original article of the third algorithm proved that one source signal can be obtained by maximizing of the cost function with the form of GRQ. But the problem is: whether any other extreme point of GEQ corresponds to its critical point, respectively. It is the fundamental premise for the transformation from the optimization of GRQ for BSS to GED. Our analysis shows that the proof in the original article of the third algorithm is not rigorous. We give three cost functions based on linear prediction, whose meanings are much more clear. We also give an algorithm based on the third method above, then we give a unifying framework and prove it. The framework covers all BSS methods based on the optimization of some cost function with the form of GRQ, which provides a solid theoretical basis for methods with the help of GED, also an sample for building a cost function with the form of GRQ.
     (4) Methods for BSS based on joint diagonalization (JD) of matrices are studied in the sixth chapter. Early algorithms are all based on orthogonal JD, but the constraint of orthogonality influences separation result, so in recent years all research is on the methods based on non-orthogonal JD. Denoting the diagonlized matrix as Bi whose its kl-th element is bkl, a very natural criterion for measurement of diagonalization extent is J(W)=∑off(Bi), where off(B)=∑k≠l(bkl)2 In order to avoid singular or degenerate solution, some constrained term is added to the aforementioned simple criterion. By this means, two simple non-orthogonal JD algorithms are proposed. Moreover, we give a novel JD criterion as follows:J(W)=∑off(Bi)/‖B‖, where‖.‖denote Euclidean norm. It simultaneously considers the diagonal elements and off- diagonal elements and its better diagonalization and BSS performance is validated by simulation experiments.
引文
[1]Herault J, Jutten C. Space or time adaptive signal processing by neural network models. In:AIP Conference Proceedings 151, UT,1986, pp.206-211.
    [2]Jutten C, Heraul J. Blind separation of sources, Part I:An adaptive algorithm based on neuromimetic architecture. Signal Processing,1991,24 (1):1-10.
    [3]Comon P, Jutten C, Herault J. Blind separation of sources, Part Ⅱ: Problems statement. Signal Processing,1991,24 (1):11-20.
    [4]Blind separation of sources, Part Ⅲ: Stability analysis. Signal Processing,1991,24 (1): 21-29.
    [5]Comon P. Independent component analysis, a new concept? Signal Processing,1994,36 (3):287-314.
    [6]Cardoso J F. Eigen-structure of the fourth-order cumulant tensor with application to the blind source separation problem, In Proc. ICASSP,1990, pp.2655-2658.
    [7]Tong L, Liu R, Soon V C, et al. Indeterminacy and identifiability of blind bdentification. IEEE Trans. Circuits and Systems,1991,38 (5):499-509.
    [8]Cardoso J F. Source separation using higher order moments, In Proceedings of ICASSP, 1989, pp.2109-2112.
    [9]Cardoso J F, C.N.R.S. and E.N.S.T. Blind signal separation:statistical principles. Proceedings of the IEEE,1998,86 (16):2009-2025.
    [10]Amari S, Cichocki A. Adaptive blind signal processing—neural network approaches. Proceedings ot the IEEE,1998,86 (10):2026-2048.
    [11]Bell A J, Sejnowski T J. An information maximisation approach to blind separation and blind deconvolution. Neural Computation,1995,7 (6):1129-1159.
    [12]Gaeta M, Lacoume J L. Source separation without apriori knowledge: the maximum likelihood approach. In: proceedings of EUSIPCO 90,1990, pp.621-624.
    [13]杨福生,洪波。独立分量分析的原理与应用。北京:清华大学出版社,2006。
    [14]Hyvarinen A, Karhunen J, Oja E. Independent component analysis. New Jersey:John Wiley & Sons Inc,2001.中译本:周宗潭,董国华,徐昕,胡德文译。独立成分分析。北京:电子工业出版社,2007。
    [15]Cichocki A, Amari S. Adaptive blind source separation and image processing. New Jersey: John Wiley & Sons Inc,2002.中译本:吴正国,唐劲松,章林柯译。自适应盲信号与图像处理。北京:电子工业出版社,2005。
    [16]Comon P, Jutten C. Handbook of blind source separation:Independent component analysis and applications. Oxford:Academic Press,2010.
    [17]Shlens J. A tutorial on principal component analysis. Available online at: citeseerx.ist.psu. edu/viewdoc/download?doi=10.1.1.115.3503&rep=repl&type=pdf.
    [18]Amari S. Natural gradient works efficiently in learning. Neural Computation,1998,10 (2):251-276.
    [19]Cichocki A, Unbehauen R, Rummert E. Robust learning algorithm for blind separation of signals. Electron. Lett.,1994,30 (17):1386-1387.
    [20]Hyvarinen A. Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks,1999,10(3):626-634.
    [21]Gvert H, Hurri J, Srel J, Hyvarinen A. The FastICA package for MATLAB. Availabe online at:www.cis.hut.fi/projects/ica/fastica/.
    [22]郭武。面向图像处理的独立分量分析方法。长沙:国防科学技术大学,博士论文,2008。
    [23]Guidara R, Hosseini S, Deville Y. Maximum likelihood blind image separation using nonsymmetrical half-plane markov random fields. IEEE Trans.on Image Processing,2009, 18 (11):2435-2450.
    [24]Ozgen MT, Kuruoglu EE, Herranz D. Astrophysical image separation by blind time-frequency source separation methods. Digital Signal Processing,2009,19 (2):360-369.
    [25]Shwartz S, Schechner Y Y, Zibulevsky M. Blind separation of convolutive image mixtures. Neurocomputing,2008,71 (10-12):2164-2179.
    [26]Alfalou A, Mansour A. All-optical video-image encryption with enforced security level using independent component analysis. Journal of Optics A-Pure and Applied Optics,2007,9 (10):787-796.
    [27]Kopriva I. Approach to blind image deconvolution by multiscale subband decomposition and independent component analysis. Journal of the Optical Society of America A-Optics Image Science and Vision,2007,24 (4):973-983.
    [28]Zhang N, Lu J, Yahagi T. Nonlinear blind source separation method for X-ray image separation. IEICE Trans Fundamental of Eletronics Communication and Computer Sciences, 2006, E89A (4):924-931.
    [29]Almeida L B. Separating a real-life nonlinear image mixture. Journal of Machine Learning Research,2005,6:1199-1229.
    [30]Tonazzini A, Bedini L, Salerno E. A Markov model for blind image separation by a mean-field EM algorithm. IEEE Trans, on Image Processing,2006,15 (2):473-482.
    [31]Shen M F, Xu W L, Huang J X, et al. Analysis of functional MRI image using independent component analysis. Parallel and Distributed Computing Applications and Technologies, Proceedings, in Book Series:Lecture Notes in Computer Science,2004, vol. 3320, pp:127-130.
    [32]Lin Q H, Yin F L. Blind source separation applied to image cryptosystems with dual encryption. Electronics Letters,2002,38 (19):1092-1094.
    [33]Omam M A, Torkamani-Azar F.Band selection of hyperspectral-image based weighted indipendent component analysis. Optical Review,2010,17 (4):367-370.
    [34]Lee T W, Lewicki M S. Unsupervised image classification, segmentation, and enhancement using ICA mixture models. IEEE Trans Image Processing,2002,11 (3): 270-279.
    [35]Jadhav, Sangeeta D. Blind Source Separation based digital color image-adaptive watermarking. In Proceedings of ICIG 2009,2010, pp:13-17.
    [36]Gur M B, Niezrecki C. A source separation approach to enhancing marine mammal vocalizations Journal of the Acoustical Sociwty of America,2009,126 (6):3062-3070.
    [37]Herring K T, Mueller A V, Staelin D H. Blind separation of noisy multivariate data using second-order statistics:remote-sensing applications. IEEE Transactions on Geoscience and Remote Sensing,2009,47 (10):3406-3415.
    [38]Chintan A S, MANOJ K A, Pramod K V. Unsupervised classification of hyperspectral data an ICA mixture model based approach. International Journal of Remotesensing,2004,25 (2):481-487.
    [39]Shah C A, Varshney P K, Arora M K. ICA mixture model algorithm for unsupervised classification of remote sensing imagery. International Journal of Remote Sensing,2007,28 (8):1711-1731.
    [40]Shah C.A, Anderson I, Gao Z, et al. Towards the development of next generation remote sensing technology-ERDAS IMAGINE incorporates a higher order feature extraction technique based on ICA. In Proceedings of the ASPRS 2007 Annual Convention,7-11 May, Tampa, Florida.
    [41]Farah I R,Ahmed M B. Towards an intelligent multi-sensor satellite image analysis based on blind source separation using multi-source image fusion. International Journal of Remote Sensing,2010,31 (1):13-38.
    [42]Farah I R, Alouioui H, Ahmed M B. Supervised fusion of multi-spectral satellite images based on blind source separation of sources. In proceedings of International Conferences WSEAS, May2007, Istanbul, Turkey, pp:27-29.
    [43]Ozdogan M. The spatial distribution of croptypes from MODIS data: temporal unmixing using independent component analysis. Remote Sensing of Environment.2010,114 (6):1190-1204.
    [44]Du Q, Kopriva I, Szu H. Independent component analysis for hyperspectral remote sensing imagery classification. Optical Engineering,2006,45:017008-1-13.
    [45]——. Independent component analysis for classifying multispectral images with dimensionality limitation. International Journal of Information Acquisition,2004,1 (3): 201-216.
    [46]Oskouei, Majid M. Independent component analysis of hyperion data to map alteration zones. Photogrammetrie-Fernerkundung - Geoinformation,2010,11 (3):179-189.
    [47]Kopriva I, Szu H. Space-time variant blind sources separation with additive noise. Lecture Notes in Computer Science 3195, pp.240-247.
    [48]Kopriva I, Du Q, Szu H, et al. Independent component analysis approach to image sharpening in the presence of atmospheric turbulence. Optics Communications,2004,233 (1-3):7-14.
    [49]纪建。SAR图像处理的独立分量分析方法。西安:西北工业大学,博士论文,2007。
    [50]焦卫东。基于独立分量分析的旋转机械故障诊断方法研究。杭州:浙江大学,博士论文,2003。
    [51]Antoni J,.Braun S. Special issue on blind source separation:editorial. Mechanical Systems and Signal Processing,2005,19 (6):1163-1165.
    [52]Antoni J. Blind separation of vibration components:principles and demonstrations. Mechanical Systems and Signal Processing,2005,19 (6):1166-1180.
    [53]Bouguerriou N, Haritopoulos M, Capdessus C, Allam L. Novel cyclostationarity-based blind source separation algorithm using second order statistical properties:theory and application to the bearing defect diagnosis. Mechanical Systems and Signal Processing,2005, 19(6):1260-1281.
    [54]Serviere C, Fabry P. Blind source separation of noisy harmonic signals for rotating machine diagnosis. Journal of Sound and Vibration,2004,272 (1-2):317-339.
    [55]Serviere C, Fabry P. Principal component analysis and blind source separation of modulated sources for electro-mechanical systems diagnostic. Mechanical Systems and Signal Processing,2005,19 (6):1293-1311.
    [56]Salazar A, Vergara L, Igual J, Gosalbez J. Blind source separation for classification and detection of flaws in impact-echo testing. Mechanical Systems and Signal Processing,2005, 19 (6):1312-1325.
    [57]Poncelet F, Kerschen G, Golinval J C, Verhelst D. Output-only modal analysis using blind source separation techniques. Mechanical Systems and Signal Processing,2007,21 (6): 2335-2358.
    [58]Huang J Y, Pan H X, Bi S H, et al. Application of particle swarm optimization blind source separation technology in fault diagnosis of gearbox. Journal of Central South Univ. of Tech.2008,15 (Suppl.2):409-415.
    [59]Jing J P, Meng G. A novel method for multi-fault diagnosis of rotor system. Mechanism and Machine Theory,2009,44 (4):697-709.
    [60]Tse P W, Gontarz S, Wang X J. Enhanced eigenvector algorithm for recovering multiple sources of vibration signals in machine fault diagnosis. Mechanical Systems and Signal Processing,2007,21 (7):2794-2813.
    [61]Lee J M, Qin S J, Lee I B. Fault detection and diagnosis based on modified independent component analysis. Iche Journal,2006,52 (10):3501-3514.
    [62]Shen Y J, Yang S P. New blind-source-separation method and its application to fault diagnosis of rolling bearing. International Journal of Nonlinear Sciences and Numerical Simulation,2006,7 (3):245-250.
    [63]Zhong Z M, Chen J, Zhong P, et al. Application of the blind source separation method to feature extraction of machine sound signals. International Journal of Advanced Manufacturing Technology,2006,28 (9):855-862.
    [64]Castells F, Rieta J J, Millet J, et al. Spatiotemporal blind source separation approach to atrial activity estimation in atrial taehyarthythmias. IEEE Trans. Biomedieal Engineering, 2005,52(2):258-267.
    [65]Langley P, Rieta J J, Stridh M, et al. Comparison of atrial signal extraction algorithms in 12-lead ECGs with atrial fibrillation. IEEE Trans. Biomedieal Engineering,2006,53 (2): 343-346.
    [66]Lathauwer L D, Moor B D, Vandewalle J. Fetal electroeardiogram extraction by blind soure subspace separation. IEEE Trans. Biomedieal Engineering,2000,47 (5):567-572.
    [67]Zarzoso V, Nandi A K. Noninvasive fetal electroeardiogram extraction:blind separation versus adaptive noise cancellation. IEEE Trans Biomedical Engineering,2001,48 (1):12-18.
    [68]GJafari M, Chambers J A. Fetal electroeardiogram extraction by sequential source separation in the wavelet domain. IEEE Trans. On Biomed. Eng.,2005,52 (3):390-400.
    [69]Makni S, Beckmann C, Smith S, Woolrich M. Benefits of independent component modelling of structured noise in fMRI GLM analysis. Neurolmage,2009,47 (s1):S167.
    [70]Dave R.M. Langers. Blind source separation of fMRI data by means of factor analytic transformations. NeuroImage,2009,47 (1):77-87.
    [71]D. Calhoun V D, Liu J, Adah T. A review of group IC A for fMRI data and ICA for joint inference of imaging, genetic, and ERP data. NeuroImage,2009,45 (s1):S163-S172.
    [72]Congedo M, Gouy-Pailler C, Christian Jutten C. On the blind source separation of human electroencephalogram by approximate joint diagonalization of second order statistics. Clinical Neurophysiology,119 (12):2677-2686.
    [73]Sui J, Adali T, Pearlson G D, Calhoun V D. An automatic artifact removal method for independent components derived from second-level fMRI analysis. NeuroImage,2009,47 (s1):S81.
    [74]Tohka J, Foerde K, Aron A R, et al. Automatic independent component labeling for artifact removal in fMRI. NeuroImage,2008,39 (3):1227-1245.
    [75]Guo Y, Pagnoni G. A unified framework for group independent component analysis for multi-subject fMRI data. NeuroImage,2008,42 (3):1078-1093.
    [76]Tie Y, Whalen S, Suarez R O, Golby A J. Group independent component analysis of language fMRI from word generation tasks. NeuroImage,2008,42 (3):1214-1225
    [77]Hyvarinen A, Ramkumar P, Parkkonen L, et al. Independent component analysis of short-time Fourier transforms for spontaneous EEG/MEG analysis. NeuroImage,2010,49 (1): 257-271.
    [78]Mantini D, Franciotti R, Romani G L, et al. Improving MEG source localizations:An automated method for complete artifact removal based on independent component analysis. Neurolmage,2008,40 (1):160-173.
    [79]Kochiyama T, Morita T, Okada T, et al. Removing the effects of task-related motion using independent-component analysis. NeuroImage,2005,25 (3):802-814.
    [80]Vosough M. Using mean field approach independent component analysis to fatty acid characterization with overlapped GC-MS signals. Analytica Chimica Acta,2007,598 (2): 219-226.
    [81]Yadava R D S, Chaudhary R. Solvation, transduction and independent component analysis for pattern recognition in SAW electronic nose. Sensors and Actuators B,2006,113 (1)-1-21.
    [82]Horihata S, Zhang Z, Imamura T, et al. Biological signal analysis by independent component analysis using complex wavelet transform. International Journal of Wavelets Multiresolution,2010,8 (4):595-608.
    [83]白树忠。欠定盲源分离算法及在语音处理中的应用研究。济南:山东大学,博士论文,2008。
    [84]Olsson R K. Algorithms for source separation-with cocktail party applications. Technical University of Denmark, Ph D thesis,2007.
    [85]Pedersen M S, Wang D L, Larsen J, et al. Two-microphone separation of speech mixtures. IEEE Trans on Neural Networks,2008,19 (3):475-492.
    [86]Kokkinakis K, Nandi A K. Multichannel blind deconvolution for source separation in convolutive mixtures of speech. IEEE Trans on Audio Speech and Language Processing,2006, 14 (1):200-212.
    [87]Reju V G, Koh S N, Soon I Y. Partial separation method for solving permutation problem in frequency domain blind source separation of speech signals. Neurocomputing, 2008,71 (10-12):2098-2112.
    [88]Douglas S C, Sawada H, Makino S. Natural gradient multichannel blind deconvolution and speech separation using causal FIR filters. IEEE Trans on Audio Speech and Language Processing,2005,13 (1):92-104.
    [89]Kokkinakis K, Loizou P C. Using blind source separation techniques to improve speech recognition in bilateral cochlear implant patients. Journal of the Acoustical Society of America,2008,123 (4):2379-2390.
    [90]Rivet B, Girin L, Jutten C. Mixing audiovisual speech processing and blind source separation for the extraction of speech signals from convolutive mixtures. IEEE Trans on Audio Speech and Language Processing,2007,15 (1):96-108.
    [91]Saruwatari H, Yamajo H, Takatani T, et al. Blind separation and deconvolution for convolutive mixture of speech combining SIMO-model-based ICA and multichannel inverse filtering. IEICE Trans. On Fundamentals of Electronics Communications ans Computer Sciences,2005, E88A (9):2387-2400.
    [92]Cobos M, Lopez J J. Two-microphone separation of speech mixtures based on interclass variance maximization. Journal of the Acoustical Society of America,2010,127 (3): 1661-1672.
    [93]Di Persia L, Yanagida M, Rufiner H L, et al. Objective quality evaluation in blind source separation for speech recognition in a real room. Signal Processing,2007,87 (8): 1951-1965.
    [94]Sodoyer D, Girin L, Jutten C, et al. Developing an audio-visual speech source separation algorithm. Speech Communication,2004,44 (1-4):1-4.
    [95]Rivet B, Girin L, Jutten C. Visual voice activity detection as a help for speech source separation from convolutive mixtures. Speech Communication,2007,49:667-677.
    [96]Visser E, Otsuka M, Lee T W. A spatio-temporal speech enhancement scheme for robust speech recognition in noisy environments. Speech Communication,2003,41 (2-3):393-407.
    [97]Di Persia L, Milone D, Rufiner H L, et al. Perceptual evaluation of blind source separation for robust speech recognition. Signal Processing,2008,88 (10):2578-2583.
    [98]Araki S, Makino S, Aichner R, et al. Subband-based blind separation for convolutive mixtures of speech. IEICE Trans. On Fundamentals of Electronics Communications ans Computer Sciences,2005, E88A(12):3593-3603.
    [99]Mukai, R; Sawada, H; Araki, S, et al.Blind source separation for moving speech signals using blockwise ICA and residual crosstalk subtraction. IEICE Trans. On Fundamentals of Electronics Communications ans Computer Sciences,2004, E87A (8):1941-1948.
    [100]Blin A, Araki S, Makino S. Underdetermined blind separation of convolutive mixtures of speech using time-frequency mask and mixing matrix estimation. IEICE Trans. On Fundamentals of Electronics Communications ans Computer Sciences,2005, E88A (7): 1693-1700.
    [101]Nishikawa T, Abe H, Saruwatari H, et al. Overdetermined blind separation for real convolutive mixtures of speech based on multistage ICA using subarray processing. IEICE Trans. On Fundamentals of Electronics Communications ans Computer Sciences,2004, E87A (8):1924-1932.
    [102]Araki S, Mukai R, Makino S, et al. The fundamental limitation of frequency domain blind source separation for convolutive mixtures of speech. IEEE Trans on Speech and Audio Processing,2003,11 (2):109-116.
    [103]Cichocki A, Ehlers F. Advances in blind source separation. EURASIP Journal on Advances in Signal Processing, Vol.2007, Article ID 57314.
    [104]梅铁民。盲源信号分离时域与频域算法研究。大连:大连理工大学,博士论文,2005。
    [105]Mei T M, Yin F L, Wang J. Blind source separation based on cumulants with time and frequency non-properties. IEEE Transactions on Audio, Speech & Language Processing,2009, 17(6):1099-1108.
    [106]Mei T M, Mertins A, Yin F L, et al. Blind source separation for convolutive mixtures based on the joint diagonalization of power spectral density matrices. Signal Processing,2008, 88(8):1990-2007.
    [1]Hyvarinen A. Survey on independent component analysis. Neural Computing Surveys, 1999,2:94-128.
    [2]Hyvarinen A, Oja E. Independent component analysis:Algorithms and Applications. Neural Networks,2000,13 (4-5):411-430.
    [3]张贤达。矩阵分析与应用。北京:清华大学出版社,2004。
    [4]Stone J V. Independent component analysis:an introduction. Trends in Cognitive Sciences,2002,6 (2):59-64.
    [5]Amari S. Natural gradient works efficiently in learning. Neural Computation,1998,10 (2):251-276.
    [6]Cardoso J F. Infomax and maximum likelihood for blind, source separation. IEEE Signal Processing Letters,1997,4 (4):112-114.
    [7]——. Equivarient adaptive sources separation. IEEE Trans.on Signal Processing,1996, 44 (12):3017-3029.
    [8]Bell A J, Sejnowski T J. An information-maximization approach to blind separation and blind deconvolution. Neural computation,1995,7 (6):1004-1034.
    [9]John A. R. A. Fisher and the making of maximum likelihood 1912-1922. Statistical Science,1997,12 (3):162-176.
    [10]Myung I J. Tutorial on maximum likelihood estimation. Journal of Mathematical Psychology,2003,47 (1):90-100.
    [11]Cover T M, Thomas J A. Elements of information theory (second edition). New York: Wiley-Interscience,2006.中译本:阮吉寿,张华译。信息论基础(第2版)。北京:机械工业出版社,2008。
    [12]杨福生,洪波。独立分量分析的原理与应用。北京:清华大学出版社,2006。
    [13]Niva Das N, Routray A, Dash P K. ICA methods for blind source separation of instantaneous mixtures:a case study. Neural Information Processing - Letters and Reviews, 2007,10 (11):225-246.
    [14]Li Y, Amari A, Cichocki A. Underdetermined blind source separation based on sparse representation. IEEE Trans Signal Process,2006,54(2):423-437.
    [15]Zibulevsky M, Pearlmutter B A. Blind source separation by sparse decomposition in a signal dictionary. Neural Comput,2001,13(4):863-882.
    [16]Lee T W. Blind source separation of more sources than mixtures using overcomplete representation. IEEE Signal Processing Letter,1999,6 (4):87-90.
    [17]Bofill P, Zibulevsky M. Underdetermined source separation using sparse representations. Signal Process,2001,81:2353-2362.
    [18]Bofill P. Underdetermined blind separation of delayed sound sources in the frequency domain. Neural Comput,2003,55 (3):627-641.
    [19]Mallat S, Zhang Z. Matching pursuit in a time-frequency dictionary. IEEE Trans. Signal Processing,1993,41 (12):3397-3415.
    [20]王建英,尹忠科,张春梅。信号与图像的稀疏分解及初步应用。成都:西南交通大学出版社,2006。
    [21]Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit. SIAM J. Sci. Comput.,1998,20 (1):33-61.
    [22]Zhang Y. On theory of compressive sensing via l1'-minimization: simple derivations and extensions [EB/OL]. http://www.caam.rice.edu/~yzhang/reports/index.html,2009-3-23.
    [23]Baraniuk R. Compressive sensing. IEEE Signal Processing Magazine,2007,24 (4): 118-121.
    [24]Blumensath T, Davies M. Compressed sensing and source separation. In proceedings of LNCS 4666. Berlin: Springer,2007:341-348.
    [25]陈宝林。最优化理论与算法(第2版)。北京:清华大学出版社,2005。
    [26]Theis F J, Jung A, Puntonet C G, et al. Lang. Linear geometric ICA:fundamentals and algorithms. Neural Comput.,2003,15 (2):419-439.
    [27]Yilmaz O, Rickard S. Blind separation of speech mixtures via time-frequency masking. IEEE Trans. Signal Process.,2004,52 (7):1830-1847.
    [28]Abrard F, Deville Y. A time-frequency blind signal separation method applicable to underdetermined mixtures of dependent sources. Signal Processing,2005,85 (7) 1389-1403.
    [29]He Z S, Xie S L, Fu Y L. Sparse representation and blind source separation of ill-posed mixtures. Sci China Ser F-InfSci,2006,49(5):639-652.
    [30]He Z S and Cichocki A. K-EVD clustering and its applications to sparse component analysis. In proceedings of LNCS 3889. Berlin: Springer,2006:90-97.
    [31]Aharon M, Elad M, Bruckstein A. K-SVD:an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans.on Signal Process.,2006,54 (11): 4311-4322.
    [32]李荣华,杨祖元,赵敏,谢胜利.。基于支持向量机的欠定盲分离。电子与信息学报,2009,31(2):319-322。
    [33]Theis F J, Georgiev P, Cichocki A. Robust sparse component analysis based on a generalized Hough transform. EURASIP Journal on Applied Signal Processing,2007,2007 (1):86-86.
    [34]Georgiev P, Theis F J, A. Cichocki A. Sparse component analysis and blind source separation of underdetermined Mixtures. IEEE Trans Neural Networks,2005,16 (4):992-996.
    [35]肖明,谢胜利,傅予力。基于超平面法矢量的欠定盲信号分离算法。自动化学报,2008,34(2):142-149。
    [36]刘琨,杜利民,王劲林。基于时频域单源主导区的盲源欠定分离方法。中国科学(E辑:信息科学),2008,38(8):1284-1301。
    [37]谈华暠,刘海林。盲稀疏源信号分离算法的恢复性研究。广东工业大学学报,2007,24(3):28-31。
    [38]肖明,谢胜利,傅予力。欠定情形下语音信号盲分离的时域检索平均法。中国科学(E辑:信息科学),2007,37(12):1564-1575。
    [39]姚楚君。基于稀疏表示的欠定混叠盲信号分离算法研究。广州:广东工业大学硕士论文,2008。
    [40]Gorodnitsky I F, Rao B D. Sparse signal reconstruction from limited data using FOCUSS:are-weighted minimum norm algorithm. IEEE Trans Signal Process,1997,45(3): 600-616.
    [41]Amini A A, Babaie-Zadeh M, Jutten C. A fast method for sparse component analysis based on iterative detection projection. In. AIP Conference Proceedings 872. New York: American Institute of Physics,2006:123-130.
    [42]Mohimani H, Babaie-Zadeh M, Jutten C. A fast approach for overcomplete sparse decomposition based on (?)0 smoothed. Trans Signal Process,2009,57 (1):289-301.
    [43]Hyvarinen A, Karhunen J, Oja E. Independent component analysis. New Jersey:John Wiley & Sons Inc,2001.中译本:周宗潭,董国华,徐昕,胡德文译。独立成分分析。北京:电子工业出版社,2007。
    [44]Cichocki A, Amari S. Adaptive blind source separation and image processing. New Jersey: John Wiley & Sons Inc,2002.中译本:吴正国,唐劲松,章林柯译。自适应盲信号与图像处理。北京:电子工业出版社,2005。
    [1]Barros A K, Cichocki A. Extraction of specific signals with temporal structure. Neural Computation,2001,13 (9):1995-2003.
    [2]Li Y X, Zhang Y. An algorithm for extracting fetal electrocardiogram. Neurocomputing, 2008,71 (7-9):1538-1542.
    [3]Cichocki A, Amari S. Adaptive blind source separation and image processing. New Jersey:John Wiley & Sons Inc,2002.中译本:吴正国,唐劲松,章林柯译。自适应盲信号与图像处理。北京:电子工业出版社,2005。
    [4]Tsalaile T, Sameni R, Saeid S, et al. Sequential blind source extraction for quasi-periodic signals with time-varying period. IEEE Transactions on Biomedical Engineering,2009,56 (3):646-655.
    [5]Mandic D P, Cichocki A. An online algorithm for blind extraction of sources with different dynamical structures. In proceedings of ICA2003, pp:645-650.
    [6]Cichocki A, Rutkowski T, Siwek K. Blind signal extraction of signals with specified frequency band. In Proc. IEEE Workshop on Neural Networks for Signal Processing,2002, pp:515-524.
    [7]Ananthanag K V K, Sahambi J S. Investigation of blind source separation methods for extraction of fetal ECG. In proceedings of IEEE CCECE Canadian Conference on Electrical and Computer Engineering,2003, vol.3, pp:2021-2024.
    [8]Cichocki A, Thawonmas R, Amari S. Sequential blind signal extractionin order specified by stochastics properties. IEE Electronics Letters,1997,33 (1):64-65.
    [9]Thato T, Syed M N, Nazarpour K, Saeid S, Jonathon C. Blind source extraction of heart sound signals from lung sound recordings exploiting periodicity of the heart sound. In proceedings of ICASSP 2008, pp:461-464.
    [10]Mitianoudis N, Stathaki T, Constantinides A G. Smooth signal extraction from instantaneous mixtures. IEEE Signal Processing Letters,2007,14 (4):271-274.
    [11]Liu W, Mandic D P. A normalised kurtosis-based algorithm for blind source extraction from noisy measurements. Signal Processing,2006,86:1580-1585.
    [12]Leong W Y, Liu W, Mandic D P. Blind source extraction:Standard approaches and extensions to noisy and post-nonlinear mixing. Neurocomputing,2008,17 (10-12): 2344-2355.
    [13]Sawada H., Araki S, Mukai R.,et al. Blind extraction of a dominant source signal from mixtures of many sources. In proceedings of ICASSP 2005, Vol 3, pp:61-64.
    [14]白志茂,黄高明,徐琴珍,杨绿溪。基于信息典型相关分析的盲源分离算法。东南大学学报(自然科学版),2009,39(6):1093-1098
    [15]Liu W, Mandic D P, Cichocki A. Analysis and online realization of the CCA approach for blind source separation. IEEE Transactions on Neural Networks,2007,18 (5):1505-1510.
    [16]Hotelling H. Relations between two sets of variates. Biometrika,1936,28(3/4):321-377.
    [17]Hardoon D R, Szedmak S, Shawe-Taylor J. Canonical correlation analysis:an overview with application to learning methods. Neural Computation,2004,16 (12):2639-2664.
    [18]Lee S H, Choi S. Two-dimensional canonical correlation analysis. IEEE Signal Processing Letters,2007,14 (10):735-738.
    [19]D.De Moor. Daisy: Database for the identification of systems. Available online at: homes. esat. kuleuven. Be/~smc/daisy/daisydata.html.
    [20]Rieta J J, Castells F, Sanchez C, et al. Atrial activity extraction for atrial fibrillation analysis using blind source separation. IEEE Transactions on Biomedical Engineering,2004, 51(7):1176-1186.
    [21]Llinares R, Salazara A, Camachoa A. Semi-blind source extraction of atrial activity by combining statistical and spectral features. Digital Signal Processing, in press. doi:10.1016/j.dsp.2010.06.005.
    [22]Tatekura Y, Yoshida N. Reference signal extraction under a noisy environment for a semi-adaptive sound reproduction system. IEICE Eletronics Express,2010,7 (9):583-588.
    [23]Phlypo R, Zarzoso V, Lemahieu I. Source extraction by maximizing the variance in the conditional distribution tails. IEEE Trans. Signal Processing,2010,58 (1):305-316.
    [1]Lu W, Rajapakse J C. ICA with reference. In Proceedings of ICA2001, Piscataway, NJ. pp.120-125.
    [2]——. Approach and applications of constrained ICA, IEEE Trans. Neural Netw.2005, 16(1):203-212.
    [3]——. ICA with reference, Neurocomputing.2006,69:2244-2257.
    [4]Ille N, Berg R, and Scherg M. Spatially constrained independent component analysis for artifact correction in EEG and MEG, Neuroimage.2001,13:S159-S159.
    [5]Lin Q H, Zheng Y R, Yin F L, et al. A fast algorithm for one-unit ICA-R, Inform. Sci. 2007,177(5):1265-1275.
    [6]Sun Z L, Shang L. An improved constrained ICA with reference based unmixing matrix initialization, Neurocomputing.2010,73(4-6):1013-1017.
    [7]Zhang Z L. Morphologically constrained ICA for extracting weak temporally correlated signals, Neurocomputing.2008,71 (7-9):1669-1679.
    [8]Huang D Sh, Mi J X. A new constrained independent component analysis method, IEEE Trans. Neural Netw.2007,18 (5):1532-1535.
    [9]D. De Moor (Ed.), Daisy:Database for the Identification of Systems, .
    [10]王佑锋。定点参考独立分量分析算法的FPGA实现。大连:大连理工大学,硕士论文,2008。
    [11]李镜,林秋华。一种应用幅值信息的一单元定点复数ICA-R算法。电子与信息学报,2008,30(11):2666-2670。
    [12]James C J, Gibson O J. Temporally constrained ICA:an application to artifact rejection in electromagnetic brain signal analysis. IEEE Transactions on Biomedical Engineering,2003, 50 (9):1108-1116.
    [13]Jafari M G, Chambers J A. Fetal electrocardiogram extraction by sequential source separation in the wavelet domain, IEEE Trans. Biomed. Eng.2005,52 (3):390-400.
    [14]Spyrou L, Jing M, Sanei S, Sumich A. Separation and localisation of P300 sources and their subcomponents using constrained blind source separation. EURASIP Journal on Advances in Signal Processing,2007, doi:10.1155/2007/82912.
    [15]Joshua L K L, Rajapakse J C. Extraction of event-related potentials from EEG signals using ICA with reference. In Proceedings IJCNN '05,2005, pp.2526-2531.
    [16]Hesse C W, James C J. The FastICA algorithm with spatial constraints. IEEE Signal Processing,2005,12 (11):792-795.
    [17]Lin Q H, Liu J Y, Zheng YR, et al. Semi-blind spatial ICA of fMRI using spatial constraints. Human Brain Mapping,2010,21 (7):1076-1088.
    [18]Rasheed T, Lee Y K, Kim T S. Constrained spatiotemporal ICA and its application for fMRI data analysis. In IFMBE Proceedings,2008, Singapore, pp.555-558.
    [19]Rasheed T, Lee Y K, Lee S Y, et al. Attenuation of artifacts in EEG signals measured inside an MRI scanner using constrained independent component analysis. Physiological Measurement,2009,30 (4):387-404.
    [20]James M H. Constrained ICA for the analysis of high stimulus rate auditory evoked potentials. Lecture Notes in Computer Science, Volume 4666/2007,2007, pp.609-616.
    [21]Peng C, Qian X, Ye D. Electrogastrogram extraction using independent component analysis with references. Neural Comput & Applic,2007,16 (6):581-587.
    [22]Rasheed T, In M H, Lee Y K, et al. Constrained ICA based ballistocardiogram and electro-oculogram artifacts removal from visual evoked potential EEG signals measured inside MRI. Lecture Notes in Computer Science, Volume 4232/2006, pp.1088-1097.
    [23]Wang W, Adali T. Constrained ICA and its application to Raman spectroscopy. In Proc. AP-S/URSI. Symposium 2005, Washington, pp.109-112.
    [24]Sui J, Li J, Wu L, et al. A constrained coefficient ICA algorithm for group difference enhancement. In Proc ICASSP 2008, pp.593-596.
    [25]Lu W K, Liu L. Adaptive multiple subtraction based on constrained independent component analysis. Geophysics,2009,74 (1):1-7.
    [26]韩冬,马晓红。基于ICA-R的目标运动变化检测。山西师范大学学报(自然科学版),2010,24(1):58-60。
    [27]郑永瑞。参考独立分量分析算法及应用研究。大连:大连理工大学,硕士论文,2008。
    [28]陈君瑜。复数参考独立分量分析算法及其fMRI应用研究。大连:大连理工大学,硕士论文,2008。
    [29]高岸声,罗杨宇,陈恳。约束独立分量分析及其在脑电信号伪差分离中的应用。生物医学工程学杂志,2008,25(3):497-451。
    [1]Parra L, Sajda P. Blind source separation via generalized eigenvalue decomposition. Journal of Machine Learning Research,2003,4:1261-1269.
    [2]Liu H, Cheung Y. On blind source separation using generalized eigenvalues with a new metric. Neurocomputing,2008,71 (4-6):973-982.
    [3]Cheung Y, Liu H. A new approach to blind source separation with global optimal property. In Proceedings of the IASTED International Conference of Neural Networks and Computational Intelligence,2004, pages:137-141.
    [4]Wang G, Rao N, Simon J, et al. Extraction of desired signal based on AR model with its application to atrial activity estimation in atrial fibrillation. EURASIP Journal on Advances in Signal Processing. Vol.2008 (2008), Article ID 728409.
    [5]Yang H H, Amari S. Adaptive on-line learning algorithms for blind separation: maximum entropy and minimum mutual information. Neural Computation,1997,9 (5): 1457-1482.
    [6]Cardoso J F, Laheld B H. Equivariant adaptive source separation. IEEE Trans. Signal Process.,1996,44 (12):3017-3030.
    [7]Tong L, Liu R W, Soon V C, Huang Y F. Indeterminacy and identifiability of blind identification. IEEE Trans. Circuits Syst.1991,38 (5) 499-509.
    [8]Souloumiac A. Blind source detection using second order non-stationarity. In: International Conference onAcoustic, Speech, and Signal Processing, Detroit, USA,1995, pp. 1912-1916.
    [9]Molgedey L, Schuster H. Separation of a mixture of independent signals using time delayed correlations. Phys. Rev. Lett.1994,72 (23):3634-3637.
    [10]Chang C, Ding Z, Sze F Y, Chan F H. A matrix-pencil approach to blind source separation of non-white noise. In:International Conference on Audio, Speech, and Signal Processing, vol. Ⅳ,1998, pp.2485-2488.
    [11]Chang C, Ding Z, Sze F Y, Chan F H. A matrix-pencil approach to blind source separation of colored nonstationary signals. IEEE Trans. Signal Process.,2000,48 (3): 900-907.
    [12]Tome A M. Blind source separation using a matrix pencil. In:International Joint Conference on Neural Networks, Como, Italy,2000.
    [13]Stone J V. Blind source separation using temporal predictability. Neural Comput.,2001, 13 (7):1557-1575.
    [14]Xie S L, H Z, Fu Y. A note on stone's conjecture of blind signal separation. Neural Computation,2005,17 (2):321-330.
    [15]Hundley D R, Kirby M J, Anderle M G. Blind source separation using the maximum signal fraction approach,Signal Process.82 (2002) 1505-1508.
    [16]Ma C T, Ding Z, Yau S F. A two-stage algorithm for mimo blind deconvolution of nonstationary colored signals, IEEE Trans. Signal Process.2000,48 (4):1187-1192.
    [17]Liu W, Mandic D P, Cichocki A. Blind source extraction based on a linear predictor. IET Signal Processing,2007,1 (1):29-34.
    [18]张贤达。矩阵分析与应用。北京:清华大学出版社,2004。
    [19]Tome A M, Teixeira A R, Lang E W. dAMUSE - A new tool for denoising and blind source separation. Digital Signal Processing,2005,15 (4):400-421.
    [1]Belouchrani A, Meraim K A, Cardoso J F, et al. A blind source separation technique using second order statistics. IEEE Trans on Signal Processing,1997,45(2):434-444.
    [2]Cardoso J F, Antoine Souloumiac A. Blind beamforming for non Gaussian signals, IEE Proceedings-F,1993,140(6):362-370.
    [3]Cardoso J F. On the performance of orthogonal source separation algorithms. In Proc. EUSIPCO,1994, pp.776-779.
    [4]Cardoso J F. High-order contrasts for independent component analysis. Neural Comput. 1999,11(1):157-92.
    [5]Fadaili E M, Thirion-Moreau N, Moreau E. Nonorthogonal joint diagonalization/zero diagonalization for source separation based on time-frequency distributions. IEEE Trans. Signal Process,2007,55 (5):1673-1687.
    [6]Li X L, Zhang X D. Nonorthogonal joint diagonalization free of degenerate solution. IEEE Trans. Signal Process,2007,55 (5):1803-1814.
    [7]Wang F, Liu C, J. Zhang J. A new joint diagonalization algorithm with application in blind. IEEE signal process letters,2006,13 (1):41-44.
    [8]Vollgraf R, Obermayer K. Quadratic optimization for simultaneous matrix diagonalization. IEEE Trans. Signal Process,2006,54 (9):3270-3278.
    [9]Yeredor A. On using exact joint diagonalization for non-iterative approximate joint diagonalization. IEEE Signal Processing Letters,2005,12 (9):645-648.
    [10]——Non-orthogonal joint diagonalization in the least-squares sense with application in blind source separation. IEEE Trans. Signal Process,2002,50 (7):1545-1553.
    [11]Serge Degerine and Elimane Kane. A comparative study of approximate joint diagonalization agorithms for blind source separation in presence of additive noise. IEEE Trans. Signal Process,2007,55 (6):3022-3031.
    [12]Zhou G, Xie S, Yang Z, Zhang J. Nonorthogonal approximate joint diagonalization with well-conditioned diagonalizers. IEEE Transactions on Neural Networks 2009,20 (11): 1810-1819.
    [13]Cardoso J F, Souloumiac A. Jacobi angles for simultaneous diagonalization. SIAM J. Matrix Anal. Appl,1996,17(1):161-164.
    [14]Ziehe A, Laskov P, Nolte G, et al. A fast algorithm for joint diagonalization with non-orthogonal transformations and its application to blind source separation. Journal of Machine Learning Research,2004,5(12):777-800.
    [15]Pham D T. Joint approximate diagonalization of positive definite Hermitian matrices.SIAM Journal on Matrix Analysis and Applications,2000,22 (4):1136-1152.
    [16]Afsari B, Charleston B, Rosca J, Eds. et al. Simple LU and QR based non-orthogonal matrix joint diagonalization. In Proc.6th Int. Conf. ICA 2006, Berlin Heidelberg, Germany, vol. LNCS 3889, pp.17-24.
    [17]Afsari B. Sensitivity analysis for the problem of matrix joint diagonalization. SIAM J. Matrix Anal. Appl.,2008,30 (3):1148-1171.
    [18]Tichavsky P, Yeredor A. Fast approximate joint diagonalization incorporating weight matrices. IEEE Transactions on Signal Processing,2009,57 (3):878-891.
    [19]Degerine S, Kane E. A new non-orthogonal approximate joint diagonalization algorithm for blind source separation
    [20]Zhou G, Yang Z, Wu Z, et al. Non-orthogonal joint diagonalization with diagonal constraints. Progress in Natural Science,2008,18 (6):735-739.
    [21]Li X L, Zhang X D, Li P S. Gradient search non-orthogonal approximate joint diagonalization algorithm. Tsinghua Science & Technology,2007,12 (6):669-673.
    [22]Congedo M, Cedric Gouy-Pailler, Jutten C. On the blind source separation of human electroencephalogram by approximate joint diagonalization of second order statistics. Clinical Neurophysiology,2008,119 (12):2677-2686.
    [23]Iferroudjene R, Meraim K A, Belouchrani A. A new Jacobi-like method for joint diagonalization of arbitrary non-defective matrices. Applied Mathematics and Computation, 2009,211 (2):363-373.
    [24]Xu X F, Feng D Z, Zheng W X, et al. Convolutive blind source separation based on joint block Toeplitzation and block-inner diagonalization. Signal Processing,2010,90 (1): 119-133.
    [25]Ghennioui H, Thirion-Moreau N, Moreau E, et al. Gradient-based joint block diagonalization algorithms:Application to blind separation of FIR convolutive mixtures. Signal Processing,2010,90 (6):1836-1849.
    [26]Kawanabe M, Theis F J. Joint low-rank approximation for extracting non-Gaussian subspaces. Signal Processing,2007,87 (8):1890-1903.
    [27]张伟涛,刘宁,楼顺天。避免奇异解联合对角化的两种高效算法。西安电子科技大学学报,2009,36(5):857-861。
    [28]张伟涛,张延良,楼顺天。降低计算量的改进联合对角化算法。系统工程与电子技术,2009,31(7):1553-1555
    [29]张伟涛,楼顺天,张延良。非对称非正交快速联合对角化算法。自动化学报,2010,36(6):829-837。
    [30]张延良,楼顺天,张伟涛。非正交联合对角化盲分离算法的可辨识性研究。电子与信息学报,2010,32(5):1066-1070。
    [31]Ghennioui H, Mostafa El F, Thirion-Moreau N, et al. A nonunitary joint block diagonalization algorithm for blind separation of convolutive mixtures of sources. IEEE Signal Processing Letters,2007,14 (11):860-863.
    [32]Chabriel G, Barrere J, Thirion-Moreau N, Moreau E. Algebraic joint zero-diagonalization and blind sources separation. IEEE Transactions on Signal Processing, 2008,56 (3):980-989.
    [33]Souloumiac A. Nonorthogonal joint diagonalization by combining givens and hyperbolic rotations. IEEE Transactions on Signal Processing,2009,57 (6):2222-2231.
    [34]Feng D Z, Zheng W X, Cichocki A. Matrix-group algorithm via improved whitening process for extracting statistically independent sources from array signals, IEEE Trans.on Signal Processing,2007,55 (3):962-977.
    [35]Wang W, Sanei S, Chambers J A. Penalty function based joint diagonalization approach for convolutive blind separation of nonstationary sources. IEEE Transactions on Signal Processing,2005,53 (5):1654-1669.
    [36]Klajman M, Chambers J A. Approximate joint diagonalization based on the Cayley transform, in Mathematics in Signal Separation V. Oxford, U.K.:Oxford Univ. Press,2002.
    [37]张华,冯大政,聂卫科,徐先峰。非正交联合对角化盲源分离算法。西安电子科技大学学报,2008,35(1):27-32。
    [38]Zhang W T, Lou S T. Householder transform based joint diagonal zero diagonalization for source separation using time-frequency distributions. Multidimensional Systems and Signal Processing,2010,21(2):161-177.
    [39]Wang F, Liu C, Zhang J. Non-orthogonal joint diagonalization algorithm based on trigonometic parameterization. IEEE Transaction on Signal Processing,2007,55 (11): 5299-5308.
    [40]——. A new joint diagonalization algorithm with application in blind source separation. IEEE Transaction on Signal Processing Letters,2006,13 (1):41-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700