基于周期性畴反转铁电晶体的慢光研究及应用探索
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
慢光,即减慢光的传播速度,使其以远低于真空中光速的群速度传输。因其在全光信号处理、信息存储、非线性效应增强、探测灵敏度增强、量子信息操作、相控阵雷达波束控制等方面的应用前景而受到越来越多的关注。出于实用的目的,对于室温固体中的慢光的研究更是其中的重点。本文基于周期性畴反转铁电晶体特有的光学特性,通过不同的结构设计,对几种光波耦合过程中产生的慢光现象进行了理论和实验两方面的研究。主要内容有:
     周期性畴反转铁电晶体的光学特性,尤其是其二阶非线性光学效应是本课题的理论基础。本文介绍了典型的周期性畴反转铁电晶体――周期性极化铌酸锂晶体及其波导结构。从基于该人工晶体实现的准位相匹配技术出发,推导了在该非线性晶体中的二阶非线性耦合波方程。阐述了铌酸锂晶体的线性电光效应,并详细讨论了不同外加电场配置下晶体的光学响应。
     观察到了二阶级联非线性过程中的群速度调制现象。推导出了描述该过程的耦合波方程。数值模拟结果显示,对于超短脉冲而言,在基频脉冲与倍频脉冲群速度失配条件下,基频脉冲会被倍频光所“拉拽”,从而影响其群速度。通过分析群速度失配量、位相失配量、入射脉宽、入射光强度等参数对群速度的影响,我们提出了通过引入外加光场或电场的方式改变晶体内原有的光波能量耦合过程,得到了远超入射脉宽的延迟量及超宽的可延迟波长带宽,从而实现可控的超短脉冲孤子态的快慢光传输。
     介绍了光子晶体对于光子的操控作用,以及电磁波在周期性层状介质中的耦合模理论。在此基础上,利用周期性畴反转晶体铁电畴电光系数的周期性反转特性及其线性电光效应,提出了一种电光光子晶体的设计方案。根据理论分析及实验结果,证实了可以通过改变施加在该晶体上的横向电压,有效地控制不同波长入射光的群速度。介绍了慢光在各个领域尤其是在提高非线性相互作用方面的应用。提出了利用上述电光光子晶体慢光方案使入射光在空间上压缩,增大其能量密度,从而实现非线性频率转换效率的增强与实时控制的实验方案,并对其进行了理论分析和实验研究。同时,提出了基于钛扩散波导结构以及其他人工光子晶体结构的慢光实验提案,并作了简单的展望。
Slow light, that is, to produce a very small value of the groupvelocity, has attracted significant interest recently for its promisingapplications such as all-optical signal processing, information stor-age, nonlinear optical effects and detection sensitivity enhancement,quantum information processing, phased array radar beam steeringand so on. Perhaps even more significant, from an applications pointof view, is the realization of slow light in a solid that can oper-ate at room temperature. In this thesis, based on the unique physi-cal properties of the periodically domain inverted ferroelectric crys-tal, I investigate numerically and experimentally the slow light phe-nomenons in different schemes which can be listed as follows,
     The optical properties, especially the quadratic nonlinear opti-cal effect, of periodically domain inverted ferroelectric crystal is thefoundation of our researches. I describe the structure of the typi-cal ferroelectric crystal, lithium niobate, and its waveguide structure.From the quasi-phase-match theory based on this kind of artificialcrystal, I deduce the quadratic nonlinear optical coupling process in-side of it. I also introduce the linear electro-optics effect of lithiumniobate crystal and discuss its optical response to different applied external electric field configuration.
     I deduce the equations that govern the quadratic cascading in-teraction and investigate the group velocity modulation process ofultrafast pulses. Group velocity control of an ultrashort fundamen-tal frequency (FF) pulse can be achieved, owing to dragging by thegroup velocity mismatched second harmonic (SH) during the phasemismatched SH generation. I describe how different optical or otherphysical parameters determine the performance of the slow and fastlight. Group velocity of input signal over a wide wavelength rangecan be efficiently controlled by introducing the external optical orelectrical field and large fractional time delay can be obtained.
     I review the function of the photonic crystal for controlling andmanipulating the ?ow of light as well as the coupled-mode theorythat describe the electromagnetic propagation in periodic stratifiedmedia. On that basis, I propose a novel electro-optic photonic crystalutilizing the electro-optics effect of the periodically domain invertedcrystal. I am able to numerically and experimentally demonstratethat the group velocity of a light near the band gap can be delayedvia changes in electric field strength or wavelength.
     I review the slow light applications in various fields especiallyon spatial compression of optical energy and the enhancement ofnonlinear optical effects. I extend the electro-optic photonic crystalwork to numerically and experimentally study the modulation andenhancement of nonlinear frequency conversion efficiency. Mean-while, I propose and outlook some slow light experiment proposals based on Ti in-diffusion waveguide and artificial photonic crystal.
引文
[1] HARRIS S, YIN G, JAIN M, et al. Nonlinear optics at maximum coherence[J].Philosophical Transactions: Mathematical, Physical and Engineering Sciences,1997, 355(1733):2291–2304.
    [2] HAU L, HARRIS S, DUTTON Z, et al. Light speed reduction to 17 metres persecond in an ultracold atomic gas[J]. Nature, 1999, 397(6720):594–598.
    [3] KASH M, SAUTENKOV V, ZIBROV A, et al. Ultraslow group velocity and en-hanced nonlinear optical effects in a coherently driven hot atomic gas[J]. Phys-ical Review Letters, 1999, 82(26):5229–5232.
    [4] BUDKER D, KIMBALL D, ROCHESTER S, et al. Nonlinear magneto-opticsand reduced group velocity of light in atomic vapor with slow ground staterelaxation[J]. Physical Review Letters, 1999, 83(9):1767–1770.
    [5] TURUKHIN A, SUDARSHANAM V, SHAHRIAR M, et al. Observation of ul-traslow and stored light pulses in a solid[J]. Physical Review Letters, 2001,88(2):23602.
    [6] BIGELOW M, LEPESHKIN N, BOYD R. Superluminal and slow light propaga-tion in a room-temperature solid[J]. Science, 2003, 301(5630):200.
    [7] BOYD R, GAUTHIER D, GAETA A. Applications of slow light in telecommu-nications[J]. Optics and Photonics News, 2006, 17(4):18–23.
    [8] BRILLOUIN L, CHAKO N. Wave propagation and group velocity[J]. PhysicsToday, 1961, 14:62.
    [9] GARRETT C, MCCUMBER D. Propagation of a Gaussian light pulse throughan anomalous dispersion medium[J]. Physical Review A, 1970, 1(2):305–313.
    [10] GAUTHIER D, GAETA A. From Basics to Future Prospects[J]. Photonics Spec-tra, 2006.
    [11] TEWARI S, AGARWAL G. Control of phase matching and nonlinear gener-ation in dense media by resonant fields[J]. Physical Review Letters, 1986,56(17):1811–1814.
    [12] HARRIS S, FIELD J, IMAMO G?LU A. Nonlinear optical processes usingelectromagnetically induced transparency[J]. Physical Review Letters, 1990,64(10):1107–1110.
    [13] HARRIS S, FIELD J, KASAPI A. Dispersive properties of electromagneticallyinduced transparency[J]. Physical Review A, 1992, 46(1):29–32.
    [14] BENNINK R, BOYD R, STROUD JR C, et al. Enhanced self-action effects byelectromagnetically induced transparency in the two-level atom[J]. PhysicalReview A, 2001, 63(3):33804.
    [15] SCHWARZ S, TAN T. Wave Interactions in Saturable Absorbers[J]. AppliedPhysics Letters, 1967, 10:4–7.
    [16] BOYD R, RAYMER M, NARUM P, et al. Four-wave parametric interactions in astrongly driven two-level system[J]. Physical Review A, 1981, 24(1):411–423.
    [17] WILSON-GORDON A. Gain in a three-levelΛsystem driven by a singlepump[J]. Physical Review A, 1993, 48(6):4639–4647.
    [18] BIGELOW M, LEPESHKIN N, BOYD R. Ultra-slow and superluminal lightpropagation in solids at room temperature[J]. Journal of Physics: CondensedMatter, 2004, 16:R1321.
    [19] OKAWACHI Y, BIGELOW M, SHARPING J, et al. Tunable all-optical delaysvia Brillouin slow light in an optical fiber[J]. Physical Review Letters, 2005,94(15):153902.
    [20] SHARPING J, OKAWACHI Y, GAETA A. Wide bandwidth slow light using aRaman fiber amplifier[J]. Optics Express, 2005, 13(16):6092–6098.
    [21] THE′VENAZ L. Slow and fast light in optical fibres[J]. Nature Photonics, 2008,2(8):474–482.
    [22] SOMMERFELD A. Ein einwand gegen die relativtheorie der elektrodynamikund seine beseitigung[J]. Physikalische Zeitschrift, 1907, 8(841):183–184.
    [23] SOMMERFELD A. U¨ber die fortp?anzung des lichtes in dispergierenden me-dien[J]. Annalen der Physik, 1914, 349(10):177–202.
    [24] BRILLOUIN L. U¨ber die fortp?anzung des lichtes in dispergierenden medien[J].Annalen der Physik, 1914, 349(10):203–240.
    [25] MAIMAN T. Stimulated optical radiation in ruby[J]. Nature, 1960,187(4736):493–494.
    [26] BASOV N, AMBARTSUMYAN R, ZUEV V, et al. Velocity of propagation ofpower pulse of light in inverse populated media[C]//Dokl. Akad. Nauk SSSR..[S.l.]: [s.n.] , 1965,165:58.
    [27] BASOV N, LETOKHOV V. Form change of light pulse at nonlinear amplifica-tion[C]//Dokl. Akad. Nauk SSSR. .[S.l.]: [s.n.] , 1966,167:73.
    [28] MCCALL S, HAHN E. Self-induced transparency by pulsed coherent light[J].Physical Review Letters, 1967, 18(21):908–911.
    [29] PALINGINIS P, CRANKSHAW S, SEDGWICK F, et al. Ultraslow light prop-agation in a semiconductor nanostructure[J]. Applied Physics Letters, 2005,87:171102.
    [30]张国权,薄方,董嵘, et al.光波位相耦合色散效应与固态介质中室温下的光速调控[J].物理, 2006, 35(10):8452851.
    [31] ZHU Z, DAWES A, GAUTHIER D, et al. Broadband SBS slow light in an opticalfiber[J]. Journal of Lightwave Technology, 2007, 25(1):201–206.
    [32] SONG K, HOTATE K. SBS slow light in optical fibers with 25-GHz-bandwidth[C]//Optical Fiber Communication Conference. .[S.l.]: [s.n.] , 2007.
    [33] TOTSUKA K, TOMITA M. Dynamics of fast and slow pulse propagationthrough a microsphere–optical-fiber system[J]. Physical Review E, 2007,75(1):016610.
    [34] ZHANG Y, QIU W, YE J, et al. Controllable ultraslow light propagation inhighly-doped erbium fiber[J]. Optics Communications, 2008, 281(9):2633–2637.
    [35] INOUE K, ODA H, IKEDA N, et al. Enhanced third-order nonlinear effects inslow-light photonic-crystal slab waveguides of line-defect[J]. Optics Express,2009, 17(9):7206–7216.
    [36] CORCORAN B, MONAT C, GRILLET C, et al. Green light emission in sili-con through slow-light enhanced third-harmonic generation in photonic-crystalwaveguides[J]. Nature Photonics, 2009, 3(4):206–210.
    [37] CHU S, WONG S. Linear pulse propagation in an absorbing medium[J]. Phys-ical Review Letters, 1982, 48(11):738–741.
    [38] SEGARD B, MACKE B. Observation of negative velocity pulse propagation[J].Physics Letters A, 1985, 109(5):213–216.
    [39] KU P, SEDGWICK F, CHANG-HASNAIN C, et al. Slow light in semiconductorquantum wells[J]. Optics Letters, 2004, 29(19):2291–2293.
    [40] CHANG S, CHUANG S, KU P, et al. Slow light using excitonic populationoscillation[J]. Physical Review B, 2004, 70(23):235333.
    [41] PALINGINIS P, SEDGWICK F, CRANKSHAW S, et al. Room temperature slowlight in a quantum-well waveguide via coherent population oscillation[J]. Op-tics Express, 2005, 13:9909–9915.
    [42] SONG K, HERR A′EZ M, THE′VENAZ L. Long optically controlled delays inoptical fibers[J]. Optics Letters, 2005, 30(14):1782–1784.
    [43] DAHAN D, EISENSTEIN G. Tunable all optical delay via slow and fast lightpropagation in a Raman assisted fiber optical parametric amplifier: a route toall optical buffering[J]. Optics Express, 2005, 13(16):6234–6249.
    [44] SONG K, HERR A′EZ M, THE′VENAZ L. Observation of pulse delaying andadvancement in optical fibers using stimulated Brillouin scattering[J]. OpticsExpress, 2005, 13(1):82–88.
    [45] PETROV A, EICH M. Zero dispersion at small group velocities in photoniccrystal waveguides[J]. Applied Physics Letters, 2009, 85(21):4866–4868.
    [46] FRANDSEN L, LAVRINENKO A, FAGE-PEDERSEN J, et al. Photonic crystalwaveguides with semi-slow light and tailored dispersion properties[J]. OpticsExpress, 2006, 14(20):9444–9450.
    [47] POON J, SCHEUER J, XU Y, et al. Designing coupled-resonator opticalwaveguide delay lines[J]. Journal of the Optical Society of America B, 2004,21(9):1665–1673.
    [48] HEEBNER J, BOYD R.’Slow and fast’light in resonator-coupled waveg-uides[J]. Journal of Modern Optics, 2002, 49(14/15):2629–2636.
    [49] POON J, CHAK P, CHOI J, et al. Slowing light with Fabry-Perot resonatorarrays[J]. Journal of the Optical Society of America B, 2007, 24(11):2763–2769.
    [50] MELLONI A, MORICHETTI F, MARTINELLI M. Linear and nonlinear pulsepropagation in coupled resonator slow-wave optical structures[J]. Optical andQuantum Electronics, 2003, 35(4):365–379.
    [51] XIA F, SEKARIC L, VLASOV Y. Ultracompact optical buffers on a siliconchip[J]. Nature Photonics, 2006, 1(1):65–71.
    [52] BIGELOW M, LEPESHKIN N, BOYD R. Observation of ultraslow light propa-gation in a ruby crystal at room temperature[J]. Physical Review Letters, 2003,90(11):113903.
    [53] SHARPING J, OKAWACHI Y, VAN HOWE J, et al. All-optical, wavelength andbandwidth preserving, pulse delay based on parametric wavelength conversionand dispersion[J]. Optics Express, 2005, 13(20):7872–7877.
    [54] MARANGONI M, MANZONI C, RAMPONI R, et al. Group-velocity control byquadratic nonlinear interactions[J]. Optics Letters, 2006, 31(4):534–536.
    [55] SHUMAKHER E, WILLINGER A, BLIT R, et al. Large tunable delay with lowdistortion of 10 Gbit/s data in a slow light system based on narrow band fiberparametric amplification[J]. Optics Express, 2006, 14(19):8540–8545.
    [56] YI L, HU W, SU Y, et al. Design and system demonstration of a tunable slow-light delay line based on fiber parametric process[J]. IEEE Photonics Technol-ogy Letters, 2006, 18(24):2575–2577.
    [57] ZHANG G, BO F, DONG R, et al. Phase-coupling-induced ultraslow lightpropagation in solids at room temperature[J]. Physical Review Letters, 2004,93(13):133903.
    [58] CHRISTODOULIDES D, JOSEPH R. Slow Bragg solitons in nonlinear periodicstructures[J]. Physical Review Letters, 1989, 62(15):1746–1749.
    [59] VLASOV Y, O’BOYLE M, HAMANN H, et al. Active control of slow light on achip with photonic crystal waveguides[J]. Nature, 2005, 438(7064):65–69.
    [60] BABA T. Slow light in photonic crystals[J]. Nature Photonics, 2008, 2(8):465–473.
    [61] WANG S, ERLIG H, FETTERMAN H, et al. Group velocity dispersion cancel-lation and additive group delays by cascaded fiber Bragg gratings in transmis-sion[J]. IEEE Microwave and Guided Wave Letters, 2002, 8(10):327–329.
    [62] TUCKER R, KU P, CHANG-HASNAIN C. Slow-light optical buffers: capabil-ities and fundamental limitations[J]. Journal of Lightwave Technology, 2005,23(12):4046.
    [63] BOYD R, GAUTHIER D, GAETA A, et al. Maximum time delay achievableon propagation through a slow-light medium[J]. Physical Review A, 2005,71(2):23801.
    [64] MACKE B, SE′GARD B. Propagation of light-pulses at a negative group-velocity[J]. The European Physical Journal D, 2003, 23(1):125–141.
    [65] WANG L, KUZMICH A, DOGARIU A. Gain-assisted superluminal light propa-gation[J]. Nature, 2000, 406(6793):277–279.
    [66] PHILLIPS D, FLEISCHHAUER A, MAIR A, et al. Storage of light in atomicvapor[J]. Physical Review Letters, 2001, 86(5):783–786.
    [67] RYBIN A, VADEIKO I, BISHOP A. Slow-light solitons[J]. Journal of PhysicsA: Mathematical and Theoretical, 2007, 40:F135.
    [68] MOK J, DE STERKE C, LITTLER I, et al. Dispersionless slow light using gapsolitons[J]. Nature Physics, 2006, 2(11):775–780.
    [69] SOLJACˇIC′M, JOHNSON S, FAN S, et al. Photonic-crystal slow-light enhance-ment of nonlinear phase sensitivity[J]. Journal of the Optical Society of Amer-ica B, 2002, 19(9):2052–2059.
    [70] FRANKEN P, HILL A, PETERS C, et al. Generation of optical harmonics[J].Physical Review Letters, 1961, 7(4):118–119.
    [71] ARMSTRONG J, BLOEMBERGEN N, DUCUING J, et al. Interactions betweenlight waves in a nonlinear dielectric[J]. Physical Review, 1962, 127(6):1918–1939.
    [72] TANZILLI S, TITTEL W, DE RIEDMATTEN H, et al. PPLN waveguide for quan-tum communication[J]. The European Physical Journal D, 2002, 18(2):155–160.
    [73] MYERS L, MILLER G, ECKARDT R, et al. Quasi-phase-matched 1.064-mm-pumped optical parametric oscillator in bulk periodically poled LiNbO3[J]. Op-tics Letters, 1995, 20(1):52–54.
    [74] LU Y, WAN Z, WANG Q, et al. Electro-optic effect of periodically poled opti-cal superlattice LiNbO and its applications[J]. Applied Physics Letters, 2000,77:3719.
    [75] WEIS R, GAYLORD T. Lithium niobate: summary of physical properties andcrystal structure[J]. Applied Physics A: Materials Science & Processing, 1985,37(4):191–203.
    [76] YAMADA M, SAITOH M. Fabrication of a periodically poled laminar domainstructure with a pitch of a few micrometers by applying an external electricfield[J]. Journal of Applied Physics, 2009, 84(4):2199–2206.
    [77] M U¨LLER M, SOERGEL E, BUSE K. In?uence of ultraviolet illumination on thepoling characteristics of lithium niobate crystals[J]. Applied Physics Letters,2003, 83:1824.
    [78]方俊鑫,曹庄琪,杨傅子.光波导技术物理基础[M].[S.l.]:上海交通大学出版社, 1987.
    [79] SHEN Y. The principles of nonlinear optics[J]. 1984.
    [80] BOYD R. Nonlinear Optics[M].[S.l.]: Academic Pr, 2003.
    [81] CHOU M, BRENER I, FEJER M, et al. 1.5-μm-band wavelength conversionbased on cascaded second-order nonlinearity in LiNbO3 waveguides[J]. IEEEPhotonics Technology Letters, 1999, 11(6):653–655.
    [82] YARIV A, YEH P. Optical waves in crystal propagation and control of laserradiation[J]. 1983.
    [83] TORNER L, MAZILU D, MIHALACHE D. Walking solitons in quadratic non-linear media[J]. Physical Review Letters, 1996, 77(12):2455–2458.
    [84] AGRAVAL G. Nonlinear fiber optics[J]. Academic, San Diego, Calif, 1995:376.
    [85] ZELMON D, SMALL D, JUNDT D. Infrared corrected Sellmeier coeffi-cients for congruently grown lithium niobate and 5 mol.% magnesium oxide–doped lithium niobate[J]. Journal of the Optical Society of America B, 1997,14(12):3319–3322.
    [86] BORN M, WOLF E. Principles of Optics, 7-th ed[J]. Cambridge U. Press,Cambridge, UK, 1999.
    [87] MENYUK C, SCHIEK R, TORNER L. Solitary waves due toχ?(2):χ?(2) cascad-ing[J]. Journal of the Optical Society of America B, 1994, 11(12):2434–2443.
    [88] TORRES J, TORNER L. Self-splitting of beams into spatial solitons in planarwaveguides made of quadratic nonlinear media[J]. Optical and Quantum Elec-tronics, 1997, 29(7):757–776.
    [89] BARONIO F, DE ANGELIS C, MARANGONI M, et al. Spectral shift of fem-tosecond pulses in nonlinear quadratic PPSLT Crystals[J]. Optics Express,2006, 14(11):4774–4779.
    [90] WANG Y, FONSECA-CAMPOS J, XU C, et al. Picosecond-pulse wave-length conversion based on cascaded second-harmonic generation-differencefrequency generation in a periodically poled lithium niobate waveguide[J]. Ap-plied Optics, 2006, 45(21):5391–5403.
    [91] ASHIHARA S, SHIMURA T, KURODA K, et al. Optical pulse compressionusing cascaded quadratic nonlinearities in periodically poled lithium niobate[J].Applied Physics Letters, 2004, 84:1055.
    [92] WISE F, QIAN L, LIU X. Applications of cascaded quadratic nonlinearitiesto femtosecond pulse generation[J]. Journal of Nonlinear Optical Physics andMaterials, 2002, 11(3):317.
    [93] CARRASCO S, TORRES J, TORNER L, et al. Walk-off acceptance for quadraticsoliton generation[J]. Optics Communications, 2001, 191(3-6):363–370.
    [94] MENYUK C. Soliton robustness in optical fibers[J]. Journal of the OpticalSociety of America B, 1993, 10(9):1585–1591.
    [95] O’BRIEN N, MISSEY M, POWERS P, et al. Electro-optic spectral tuning in acontinuous-wave, asymmetric-duty-cycle, periodically poled LiNbO 3 opticalparametric oscillator[J]. Optics Letters, 1999, 24(23):1750–1752.
    [96] LEE Y, NOH Y, KEE C, et al. Bandwidth control of a Ti: PPLN Sˇolcfilter by a temperature-gradient-control technique[J]. Optics Express, 2008,16(18):13699–13706.
    [97] YABLONOVITCH E. Inhibited spontaneous emission in solid-state physics andelectronics[J]. Physical Review Letters, 1987, 58(20):2059–2062.
    [98] JOHN S. Strong localization of photons in certain disordered dielectric super-lattices[J]. Physical Review Letters, 1987, 58(23):2486–2489.
    [99] BABA T. Remember the light[J]. Nature, 2007, 1(1):11–12.
    [100] BABA T, KAWAASKI T, SASAKI H, et al. Large delay-bandwidth product andtuning of slow light pulse in photonic crystal coupled waveguide[J]. OpticsExpress, 2008, 16(12):9245–9253.
    [101] KUBO S, MORI D, BABA T. Low-group-velocity and low-dispersion slow lightin photonic crystal waveguides[J]. Optics Letters, 2007, 32(20):2981–2983.
    [102] LIN S, HSU K, YEH P. Experimental observation of the slowdown of opti-cal beams by a volume-index grating in a photorefractive LiNbO 3 crystal[J].Optics Letters, 2000, 25(21):1582–1584.
    [103] E. HEEBNER J, BOYD R, PARK Q. Slow light, induced dispersion, enhancednonlinearity, and optical solitons in a resonator-array waveguide[J]. PhysicalReview E, 2002, 65(3):36619.
    [104] BHAT N, SIPE J. Optical pulse propagation in nonlinear photonic crystals[J].Physical Review E, 2001, 64(5):56604.
    [105] MCMILLAN J, YANG X, PANOIU N, et al. Enhanced stimulated Ramanscattering in slow-light photonic crystal waveguides[J]. Optics Letters, 2006,31(9):1235–1237.
    [106] HAMILTON S, ROBINSON B, MURPHY T, et al. 100 Gb/s optical time-division multiplexed networks[J]. Journal of Lightwave Technology, 2003,20(12):2086–2100.
    [107] CARDAKLI M, WILLNER A. Synchronization of a network element for opticalpacket switching using optical correlators and wavelength shifting[J]. IEEEPhotonics Technology Letters, 2002, 14(9):1375–1377.
    [108] BO Z, YAN L, YANG J, et al. A single slow-light element for independent delaycontrol and synchronization on multiple Gb/s data channels[J]. IEEE PhotonicsTechnology Letters, 2007, 19(14):1081–1083.
    [109] ZHANG B, ZHANG L, YAN L, et al. Continuously-tunable, bit-rate variableOTDM using broadband SBS slow-light delay line[J]. Optics Express, 2007,15(13):8317–8322.
    [110] FAZAL I, YILMAZ O, NUCCIO S, et al. Optical data packet synchroniza-tion and multiplexing using a tunable optical delay based on wavelength con-version and inter-channel chromatic dispersion[J]. Optics Express, 2007,15(17):10492–10497.
    [111] DOERR C, CHANDRASEKHAR S, WINZER P, et al. Simple multichannel opti-cal equalizer mitigating intersymbol interference for 40-Gb/s nonreturn-to-zerosignals[J]. Journal of Lightwave Technology, 2004, 22(1):249–256.
    [112] LENZ G, EGGLETON B, MADSEN C, et al. Optical delay lines based on opticalfilters[J]. IEEE Journal of Quantum Electronics, 2002, 37(4):525–532.
    [113] SECONDINI M. Optical equalization: System modeling and performance eval-uation[J]. Journal of Lightwave Technology, 2006, 24(11):4013–4021.
    [114] GNAUCK A, DOERR C, WINZER P, et al. Optical equalization of 42.7-Gbaudbandlimited RZ-DQPSK signals[J]. IEEE Photonics Technology Letters, 2007,19(19):1442–1444.
    [115] HUNTER D, CHIA M, ANDONOVIC I. Buffering in optical packet switches[J].Journal of Lightwave Technology, 2002, 16(12):2081–2094.
    [116] CARDAKLI M, LEE S, WILLNER A, et al. Reconfigurable optical packetheader recognition and routing using time-to-wavelength mapping and tunablefiber Bragg gratings for correlation decoding[J]. IEEE Photonics TechnologyLetters, 2002, 12(5):552–554.
    [117] WILLNER A, GURKAN D, SAHIN A, et al. All-optical address recognition foroptically-assisted routing in next-generation optical networks[J]. IEEE Com-munications Magazine, 2003, 41(5):S38–S44.
    [118] MEAGHER B, CHANG G, ELLINAS G, et al. Design and implementationof ultra-low latency optical label switching for packet-switched WDM net-works[J]. Journal of Lightwave Technology, 2000, 18(12):1978.
    [119] POUSTIE A, BLOW K, KELLY A, et al. All-optical parity checker with bit-differential delay[J]. Optics Communications, 1999, 162(1-3):37–43.
    [120] KANG H, HERNANDEZ G, ZHU Y. Slow-light six-wave mixing at low lightintensities[J]. Physical Review Letters, 2004, 93(7):73601.
    [121] SOLJA&CCARON M, et al. Enhancement of nonlinear effects using photoniccrystals[J]. Nature Materials, 2004, 3(4):211–219.
    [122] KRAUSS T. Enhancement of nonlinear effects in slow light photonic crys-tal waveguides[C]//IEEE Photonics Society Summer Topical Meeting Series,2010. .[S.l.]: [s.n.] , 2010:64–65.
    [123] MONAT C, CORCORAN B, EBNALI-HEIDARI M, et al. Slow light enhance-ment of nonlinear effects in silicon engineered photonic crystal waveguides[J].Optics Express, 2009, 17(4):2944–2953.
    [124] SHI Z, BOYD R, GAUTHIER D, et al. Enhancing the spectral sensitivity ofinterferometers using slow-light media[J]. Optics Letters, 2007, 32(8):915–917.
    [125] LEONHARDT U, PIWNICKI P. Ultrahigh sensitivity of slow-light gyroscope[J].Physical Review A, 2000, 62(5):55801.
    [126] SCHEUER J, YARIV A. Sagnac effect in coupled-resonator slow-light waveg-uide structures[J]. Physical Review Letters, 2006, 96(5):53901.
    [127] PENG C, LI Z, XU A. Rotation sensing based on a slow-light resonating struc-ture with high group dispersion[J]. Applied Optics, 2007, 46(19):4125–4131.
    [128] PEDERSEN M, RISH?J L, STEFFENSEN H, et al. Slow-light enhanced opticaldetection in liquid-infiltrated photonic crystals[J]. Optical and Quantum Elec-tronics, 2007, 39(10):903–911.
    [129] MATSKO A, ROSTOVTSEV Y, CUMMINS H, et al. Using slow light to enhanceacousto-optical effects: application to squeezed light[J]. Physical Review Let-ters, 2000, 84(25):5752–5755.
    [130] ESPINOLA R, DADAP J, OSGOOD JR R, et al. Raman amplification inultrasmall silicon-on-insulator wire waveguides[J]. Optics Express, 2004,12(16):3713–3718.
    [131] KRAUSS T. Slow light in photonic crystal waveguides[J]. Journal of PhysicsD: Applied Physics, 2007, 40:2666.
    [132] DUTTON Z, GINSBERG N, SLOWE C, et al. The art of taming light: ultra-slowand stopped light[J]. Europhysics News, 2004, 35(2):33–39.
    [133] LUKIN M, IMAMO G?LU A. Nonlinear optics and quantum entanglement ofultraslow single photons[J]. Physical Review Letters, 2000, 84(7):1419–1422.
    [134] ZHANG J, CHEN Y, LU F, et al. Flexible wavelength conversion via cascadedsecond order nonlinearity using broadband SHG in MgO-doped PPLN[J]. Op-tics Express, 2008, 16(10):6957–6962.
    [135] YARIV A, XU Y, LEE R, et al. Coupled-resonator optical waveguide: a pro-posal and analysis[J]. Optics Letters, 1999, 24(11):711–713.
    [136] STEFANOU N, MODINOS A. Impurity bands in photonic insulators[J]. PhysicalReview B, 1998, 57(19):12127–12133.
    [137] HEEBNER J, BOYD R, PARK Q, et al. SCISSOR solitons and other novelpropagation effects in microresonator-modified waveguides[J]. Journal of theOptical Society of America B, 2002, 19(4):722–731.
    [138] CHEN Y, BLAIR S. Nonlinearity enhancement in finite coupled-resonator slow-light waveguides[J]. Optics Express, 2004, 12(15):3353–3366.
    [139] HAAS W, ADAMS J. Diffraction effects in ferro?uids[J]. Applied PhysicsLetters, 1975, 27:571.
    [140] SCHOLTEN P. The origin of magnetic birefringence and dichroism in magnetic?uids[J]. IEEE Transactions on Magnetics, 1980, 16:221–225.
    [141] DI Z, ZHANG D, CHEN X. A Monte Carlo simulation of nanoscale magneticparticle morphology and magnetization[J]. Journal of Applied Physics, 2009,104(9):093109.
    [142] PU S, CHEN X, DI Z, et al. Relaxation property of the magnetic-?uid-basedfiber-optic evanescent field modulator[J]. Journal of Applied Physics, 2007,101:053532.
    [143] PU S, CHEN X, CHEN L, et al. Tunable magnetic ?uid grating by applying amagnetic field[J]. Applied Physics Letters, 2005, 87:021901.
    [144] CHEN Q, XU D. Large-Scale, noncurling, and free-Standing crystallized TiO2nanotube arrays for dye-sensitized solar cells[J]. The Journal of Physical Chem-istry C, 2009, 113(15):6310–6314.
    [145] GHICOV A, TSUCHIYA H, MACAK J, et al. Titanium oxide nanotubes pre-pared in phosphate electrolytes[J]. Electrochemistry Communications, 2005,7(5):505–509.
    [146] LIN C, YU W, LU Y, et al. Fabrication of open-ended high aspect-ratio an-odic TiO 2 nanotube films for photocatalytic and photoelectrocatalytic applica-tions[J]. Chemical Communications, 2008, 2008(45):6031–6033.
    [147] SHANKAR K, MOR G, PRAKASAM H, et al. Highly-ordered TiO2 nanotubearrays up to 220μm in length: use in water photoelectrolysis and dye-sensitizedsolar cells[J]. Nanotechnology, 2007, 18:065707.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700