DPSK信号的波长转换研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全光波长转换是未来高速大容量光通信系统中的关键技术之一。差分相移键控(DPSK)调制格式在传输时具有优越的性能,对其进行波长转换研究具有重要的意义。由于基于周期极化铌酸锂(PPLN)光波导的全光波长转换技术具有对信号比特率和调制形式完全透明、极低的噪声指数等独特优点,本论文围绕PPLN光波导的二阶级联非线性效应对DPSK信号的波长转换性能开展了理论和实验研究,主要内容有:
     (1)阐述了全光波长转换以及DPSK信号在未来光通信系统中的重要地位与作用,介绍了实现DPSK信号波长转换的方法和国内外研究现状。
     (2)从级联倍频与差频(cSHG/DFG)和级联和频与差频(cSFG/DFG)效应的非线性理论出发,分成四种组合方案阐明了DPSK信号波长转换的物理机制和原理。根据修正的耦合波方程组,从光谱、光功率和相位时域波形以及解调波形与眼图等,对四种方案的DPSK信号波长转换过程进行了数值计算、分析和比较,研究了波导长度、走离效应对波长转换性能的影响。
     (3)实验研究了基于PPLN光波导cSHG/DFG和cSFG/DFG的40Gbit/s DPSK信号的波长转换,并利用40G光纤延时干涉仪进行了解调。测试和分析了闲频光光谱、解调前后的信号光和闲频光时域波形,验证了理论和数值模拟的结论。
     (4)高调制速率下DPSK信号光谱较宽与信号光带宽较窄的矛盾,导致闲频光光谱压缩脉冲展宽和闲频光相位噪声,针对此问题,提出与论证了一种简单有效的使用啁啾波导结构的方法来提高信号光带宽和调谐曲线平坦性,改善闲频光光谱性能和相位噪声。
All-optical wavelength conversion (AOWC) is a key technology in future high-speed and large-capacity optical communication networks. As a kind of modulated format with excellent transmission performance, studying the wavelength conversion of DPSK signals is significant. The all-optical wavelength conversion using periodically poled lithium niobate(PPLN) waveguides has distinct advantages such as transparency to the rate and modulation format of signals, very low noise figure etc, so theoretical and experimental research on the wavelength conversion technology of DPSK signals based on cascaded second-order nonlinearities is presented in this thesis. The main contents are as follows:
     (1) The important status of all-optical wavelength conversion and DPSK signals in future optical communication systems are addressed. The several usual types of AOWC for DPSK signals principles and the latest research progresses are introduced.
     (2) The basic nonlinear theories of cSHG/DFG and cSFG/DFG in PPLN dividing into four sets are discussed, based on which, the physical mechanisms and principles of wavelength conversion for DPSK signals are demonstrated. in accordance with the amendmented coupled-wave equations, the wavelength conversion processes and performances of DPSK signals in four sets are numerically simulated, by spectrum, the time-domain waveform of optical power and phase, as well as time-domain waveform and eye diagram before and after demodulation. Furthermore, the relationships of the wavelength conversion performances with the waveguide length and the walk-off effect introduced by group velocity mismatch etc are numerically calculated and analyzed.
     (3) The wavelength conversion of 40Gbit/s DPSK signals based on cSHG/DFG and cSFG/DFG in a periodically poled LiNbO3 (PPLN) waveguide is experimentally researched, and a 40G fiber delay interferometer is used to demodulate signal and idle waves. The spectrum of wavelength conversion and the time-domain waveforms before and after demodulation are measured and analyzed as well, which verify the theoretical and numerical simulation conclusions.
     (4) To solve the problems of phase noise and spectrum compression leading to pulse spread, which due to the contradictions between wide spectrum of DPSK signals in the high modulation rate and narrow bandwidth of signals, a simple and effective method is proposed and demonstrated in detail to enhance the signals bandwidth and flat the tunable curve by introducing chirped waveguide structure , improving the spectrum performance and phase noise of idle wave.
引文
[1] C.A.Brackett. Dense wavelength division multiplexing networks: Principles and applications. IEEE J. Sel. Areas Commun, 1990, 8 (6): 948-964
    [2]武晓霞.基于DPSK的新型调制格式在高速光纤传输系统中的应用: [硕士学位论文].北京:北京邮电大学图书馆, 2006. 1-3
    [3] A.Gnuack. 40Gb/s RZ-diffrential Phase shitf keyed transmission. OFC2003, 2003. 1150-1152
    [4] J.Yamawaku, H.Takara, T.Ohara. Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit/s(103×10 Gbit/s)signals in PPLN waveguide. Electronics Letters, 2003, 39(15): 1144-1145
    [5]仇英辉,纪越峰,徐大熊.波长变换对光突发交换网络性能的影响.量子电子学报, 2005, 22(03): 446-448
    [6]满文庆,杨晓云.光分组交换网络中的全光器件技术.光通信技术, 2004, (01):1-2
    [7] D.Lever, A.Arie. Tunable chromatic dispersion compensator. Electrical and Electronics Engineers in Israel, 2004, (02): 244-246
    [8] M. F. C. Stephens, R. V. Penty. Low-input power wavelength conversion at 10Gbit/s using an integrated amplifer/DFB laser and subsequent transmission over 375km of fiber. IEEE Photonics Technology Letters, 1998, 10(6): 878-880
    [9] M. F. C. Stephens, R. V. Penty. All-optical regeneration and wavelength conversion in an integrated semiconductor optical amplifier/distributed-feedback laser. IEEE Photonics Technology Letters, 1999, 11(8): 979-981
    [10] A. D. Ellis, A. E. Kelly, D. Nesset, et al. Error free 100Gbit/s wavelength conversion using grating assisted cross-gain modulation in 2mm long semiconductor amplifier. Electronics Letters, 1998, 34(20): 1958-1959
    [11] A. E. Kelly, I. D. Phillips, R. J. Manning, et al. 80Gbit/s all-optical regenerative wavelength conversion using semiconductor optical amplifier based interferometer. Electronics Letters, 1999, 35(17): 1477-1478
    [12] T. Fjelde, D. Wolfson, P. B. Hansen, et al. 20Gbit/s optical wavelength conversion in all-active Mach-Zehnder interferometer. Electronics Letters, 1999, 35(11): 913-914
    [13] D. Wolfson, P. B. Hansen. All-optical 2R regeneration based on interferometric structure incorporating semiconductor optical amplifier. Electronics Letters, 1999, 35(1): 59-60
    [14] M. H. Chou, I. Brener, M. M. Fejer, et al. 1.5-μm-band wavelength conversion based on cascaded second-order nonlinear in LiNbO3 waveguides. IEEE Photon. Technol. Lett., 1999, 11(6): 653-655
    [15] C. Q. Xu, H. Okayama, M. Kawahara. 1.5μm band efficient broadband wavelength conversion by difference frequency generation in a periodically domain-inverted LiNbO3 channel waveguide. Appl. Phys. Lett., 1993, 63(26): 3559-3561
    [16] G. P. Banfi, P. K. Datta, V. Degiorgio. Wavelength shifting and amplification of optical pulses through cascaded secondorder processes in periodically poled lithium niobate. Appl. Phys. Lett., 1998, 73(2): 136-138
    [17] Wei Liu, Junqiang Sun, Jonathan Kurz. Bandwidth and tunability enhancement of wavelength conversion by quasi-phase-matching FDIfference frequency generation. Optics Communications, 2003, 216(1-3): 239-246
    [18] Junqiang Sun, Xiuhua Yuan, Deming Liu. Tunable wavelength conversion between picosecond pulses using cascaded second-order nonlinearity in LiNbO3 waveguides. Applied Physics B-Lasers and Optics, 2005, 80(6): 681-685
    [19] Y. H. Min, J. H. Lee, Y. L. Lee, et al. Tunable all-optical wavelength conversion of 5 ps pulses by cascaded sum- and difference frequency generation (cSFG/DFG) in a Ti:PPLN waveguide. Technical digest of OFC’03, 2003. 767-768
    [20] Jian Wang, Junqiang Sun. Experimental demonstration of wavelength conversion between ps-pulses based on cascaded sum- and difference frequency generation (SFG +DFG) in LiNbO3 waveguides. Optics Express, 2005, 13(19): 7405-7414
    [21] J. Yamawaku. Selective wavelength conversion using PPLN waveguide with two pump configuration. Technical digest of CLEO’03, 2003. 1135-1136
    [22] Y. Nishida, H. Miyazawa, M. Asobe, et al. 0-dB wavelength conversion using direct-bonded QPM-Zn:LiNbO3 ridge waveguide. IEEE Photon. Technol. Lett., 2005, 17(5): 1049-1051
    [23] Y. L. Lee, B. A. Yu. All-optical wavelength conversion and tuning by the cascaded sum- and difference frequency generation (cSFG/DFG) in a temperature gradientcontrolled Ti:PPLN channel waveguide. Opt. Exp., 2005, 13(8): 2988-2993
    [24] A. Nirmalathas, H. Sumimoto, N. Wada, et al. Tunable wavelength conversion of 40Gb/s RZ signals using cascaded SFG-DFG within PPLN waveguides. Technical digest of CLEO/Pacific Rim’05, 2005. 130-132
    [25] A. Nirmalathas, H. Furukawa, K. A. Lee, et al. Tunable wavelength conversion using PPLN at data rates up to 160 Gb/s. Technical digest of Photonics in Switching’06, 2006. 1-3
    [26] E. J. Lim, M. M. Fejer. Second-harmonic generation of green light in periodically poled planar lithium niobate waveguide. Electronics Letters, 1989, 25: 174-175
    [27] H. Furukawa, A. Nirmalathas, N. Wada, et al. Tunable all-optical wavelength conversion of 160-Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide. IEEE Photon. Technol. Lett., 2007, 19(6): 384-386
    [28] H. Furukawa, A. Nirmalathas, N. Wada, et al. All optical tunable wavelength conversion at > 160 Gb/s. Technical digest of OFC’07, 2007. 780-785
    [29] Jian Wang, Junqiang Sun, Xinliang Zhang, et al. Experimental observation of tunable wavelength down- and up-conversions of ultra-short pulses in a periodically poled LiNbO3 waveguide. Opt. Commun, 2007, 269: 179-187
    [30] T. Xue, J. Yu, T. X. Yang, et al. Theoretical analysis of the 1.5μm band all-optical wavelength converters based on cascaded second-order nonlinearity in LiNbO3 waveguide. Acta Phys. Sin., 2005, 51(1): 91-98
    [31] S. M. Gao, C. X. Yang, X. S. Xiao, et al. Performance evaluation of tunable channel-selective wavelength shift by cascaded sum- and difference-frequency generation in periodically poled lithium niobate waveguides. J. Lightw. Technol., 2007, 25(3): 710-718
    [32] Zhihong Li, Yi Dong. Cascaded Aii-optical wavelength conversion for RZ-DPSK signal based on four-wave mixing in semiconductor optical amplifier. IEEE Photonics Technol. Lett., 2004, 16: 1-3
    [33] Preetpaul Devgan. multichannel wavelength conversion of DPSK signals using four-wave mixing in highly-nonlinear fiber without cross-gain-modulation penalty. Lasers & Elctro-optics (CLEO), 2005. 1123-1125
    [34] Peter A. Andersen, Torger Tokle. wavelength conversion of a 40Gb/s RZ-DPSK signalusing four-wave mixing in a disperion-flattened highly nonlinear photonics crystal fiber. IEEE Photonics Technol. Lett., 2005, 17: 1-3
    [35] B. Sartorius, C. Bornholdt. All-optical DPSK wavelength converter based on MZI with integrated SOAs and phase shifters. proc.of OFC OWS6(2006), 2006. 625-630
    [36] B. Hüttl, A. G. Coca, H. Suche, et al. 320 Gbit/s DQPSK all-optical wavelength conversion using periodically poled LiNbO3. Technical digest of CLEO/QELS’07, 2007. 1352-1356
    [37] B. Hüttl, R. Elschner, H. Suche, et al. All-optical wavelength converter concepts for high data rate D(Q)PSK transmission. Technical digest of APOC’07, 2007. 678301- 678323
    [38]董建绩.基于半导体光放大器死波混频效应的多种调制格式的波长转换实验.光学学报, 2008, 28(07): 1-6
    [39] Govind P. Agrawal著.非线性光纤光学原理及应用.贾东方,余震虹译.北京:电子工业出版社, 2002. 42-50
    [40] Y. R. Shen. The Principles of Nonlinear Optics. Wiley, New York, 1984. 101-103
    [41] Song Yu, Wanyi Gu. Wavelength Conversions in Quasi-PhaseMatched LiNbO3 Waveguide Based on D-Ouble- Pass Cadcaded X(2) SFG+DFG Interactions. Journal of Electronics, 2004, 40(11): 1548-1553
    [42]石顺祥,陈国夫,赵卫等.非线性光学. (第一版).西安:西安电子科技大学出版社, 2003. 368-379
    [43] Jian Wang, Junqiang Sun. First demonstration on the non-transparency of FWM and its application of 40 Gbit/s all-optical CSRZ-to-RZ format conversion. Oral presentation in 34th European Conference on Optical Communication (ECOC2008), 2008. 2232-2236
    [44] A. H. Gnauck , P. J . Winzer. Optical phase2shift2keyed t ransmission. J . Li ghtwave Technol, 2005, 23(1): 115-130
    [45]刘威.差频全光波长转换器.中国专利,发明专利,专利号: 03125348.2, 2003. 1-13
    [46] Zeng Xianglong, Chen Xianfeng, Wu Fei, et al. Second-harmonic generation with broadened flattop bandwidth in aperiodic domain-inverted gratings. OpticsCommunications, 2002, 204: 407-411
    [47]王振斌.高斯切趾非线性啁啾光纤光栅特性的研究.光纤与电缆及其应用技术, 2005, (03): 1-3
    [48] T.Erdogan. Fiber grating spectra. Journal of Lightwave Technology, 1997, 15(8): 1277-1294
    [49]何瑾琳.线性啁啾对布拉格光纤光栅反射谱的影响.电子器件, 2000, 23(02): 1-4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700