浅海水声信道抗多途跳频通信系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
浅海水声信道是迄今为止最为复杂的无线通信信道之一。它固有的时-空-频变以及窄带、高噪、强多途干扰、长传输时延、大随机起伏等特征,使得浅海水声通信系统在有效性和可靠性等通信性能的提高上面临着巨大挑战。由于浅海域具有特殊的经济和军事战略地位,涉及到国家的利益与发展,使得浅海水声通信技术成为当今海洋研究的热点。跳频通信是扩展频谱通信的一种重要方式,其具有的抗干扰能力强,特别是抗窄带干扰、抗噪声、抗多途;以及保密性和易于实现码分多址等特点使得跳频通信在复杂浅海水声通信中受到广泛重视。
     论文基于NI CompactRIO嵌入式模块,利用其具有高速数字信号处理能力和易于编程等优点,针对浅海复杂水声信道特点,构建了抗多途水声跳频通信系统。系统在厦门港浅海域进行了多次海上现场实验,取得了较好的实验结果。
     论文的主要工作如下:
     1.系统和全面地介绍了国内外在水声通信技术领域的研究概况,分析了浅海水声信道的特点及其对水声通信性能的影响;
     2.开展了浅海水声信道传输特性的仿真研究。采用BELLHOP射线模型和快速声场模型分别对台湾海峡水声信道传递函数和浅海脉冲传播多途时延特性进行仿真研究,分析了浅海水声信道中梳状滤波器特性及信道环境参数对水声传输性能的影响;
     3.基于降低通信系统误码率的需求,进行了信道纠错编码-Turbo码在浅海水声信道中的性能仿真研究;
     4.针对浅海水声跳频通信中最为关键的同步问题,提出了一种新的基于软件数字信号处理方法的时频编码同步方案,并采用短时傅立叶变换方法实现该方案;
     5.对于浅海水声通信中面临的信号大幅度起伏和尖脉冲干扰,在数字信号处理方法上采用Hilbert变换及相关算法实现幅度的自动均衡,用小波变换去除突发尖峰噪声,较好的实现了信号调理;
     6.在上述工作基础上,论文基于NI CompactRIO嵌入式模块,设计并实现了一套浅海水声信道抗多途跳频通信系统。系统在实验室水池和厦门港浅海域进行了多次现场实验。实验结果表明,在距离为6km,水深15m左右,传输速率500bit/s时,传输误码率为10~(-2)-10~(-3)。结合Turbo码技术后,可使通信系统的误码率降至10~(-4)以下,表明系统具有较强的抗干扰能力,能够实现较为稳健的通信性能。
     本文具有以下创新点:
     1.提出了基于短时傅立叶变换的一种新的时频联合分析的同步方案;
     2.采用Hilbert变换和小波变换的软件数字信号处理方法在水声通信接收端中实现幅度自动均衡和去除冲击噪声干扰;
     3.基于美国NI公司最新开发的CompactRIO嵌入式模块,设计并实现了一套水声跳频通信系统,经厦门港海上实验验证系统具有较高的稳健性。
Shallow water acoustic channel is one of the most complex wireless communication channels. The inherent characteristics, such as space-time-frequency varying, narrow-band, high-noise, strong multipath interference, long transmission delay, large fluctuation, etc., making effectiveness and reliability performance of shallow water acoustic communication face enormous challenges. On the other hand, owing to the special economic and military-strategic position of shallow water, which involved the national interest and development, shallow water acoustic communication technique become a hot research area in recent years. Frequency-hopping communication as a major method of Spread-spectrum communication has many advantages, for example, anti-jamming ability, in particular the ability to narrow-band interference, anti-noise, anti-multipath, confidential and easy to implement Code Division Multiple Access (CDMA) technique. Consequently, shallow water acoustic frequency-hopping communication deserved extensive attention.
     With NI CompactRIO embedded module, an anti-multi-path frequency-hopping acoustic communication system was constructed, benefiting from its high-speed digital signal processing capability and the advantages of easy programming. A number of field test were carried out in Xiamen Harbor, and good results were achieved.
     The main work of this dissertation is as follows:
     1. Former researches in the field of underwater acoustic communication were introduced objectively. shallow water acoustic channel features and the impact on the underwater acoustic communication were analyzed;
     2. The transmission characteristics of the shallow water acoustic channel are studied in simulation. Transfer function and multi-path delay spread in the Taiwan Strait acoustic channel were simulated by BELLHOP ray model and fast field program respectively. The comb filter characteristics of shallow water channel and the impact on sound transmission performance were researched;
     3. Performance of error correcting coding-Turbo Code in shallow water acoustic channel was studied by simulation for reduce bit error rate;
     4. For the most critical issues of shallow water acoustic frequency-hopping communication - synchronization, Short-time Fourier Transform was used to fulfill a new software-based digital signal processing method time-frequency coding synchronization programme;
     5. Hilbert transform with related algorithms and wavelet transform were used to amplitude equilibrium and removing peak noise for the signal large fluctuations and peak pulse interference which will obstruct shallow water acoustic communication. Satisfactory signal conditioning was accomplished;
     6. An anti-multipath frequency-hopping communication system in shallow water acoustic channel was designed and implemented based on NI CompactRIO embedded module. A number of field experiments had done in the laboratory pond and Xiamen Harbor. Experimental results show that the bit error rate on the order of 10~(-2)~10~(-3), by using Turbo Code, the bit error rate reduce to on the order of 10~(-4) on the channel of distance of 6 km, average water depth of 15m, at data rate of 500 bit/s. The system has strong anti-interference capability, achieved a stable communication.
     The originalities of this dissertation are as follows:
     1. Proposed a new software-based digital signal processing programme to fulfill a time-frequency coding synchronization;
     2. Hilbert transform and wavelet transform were used to carry out amplitude equilibrium and removing peak noise ;
     3. Based on NI CompactRIO embedded module, an anti-multipath frequency-hopping shallow water acoustic communication system was designed and performed in field test in Xiamen Harbor
引文
[1]Milica Stojanovic,Underwater acoustic communication,[C]Inter.Proe.Oceans' 95.San Diego,CA,Oct,1995,pp435-440.
    [2]Milica Stojanovic,Recent Advances in High-Speed Underwater Acoustic Communications,[J]IEEE J.Oceanic Eng.,Vol.21(2):125-136,1996.
    [3]David P.Brady and Josko A.Catipovic,Adaptive multi-user detection for underwater acoustical channels,[J]IEEE J.Oceanic Eng.,vol.19(2):158-165,1994.
    [4]A.Bessios,Compound compensation strategies for wireless data communications over the multimode acoustic ocean waveguide,[J]IEEE J.Oceanic.Eng.,vol.21(2):167-180,1996.
    [5]Z.zvonar and D.Brady,An adaptive multiuser receiver for deep water acoustic local area network,[C]in Proc ICAASP'94,Adelaide Australia,apr.1994.pp:389-392.
    [6]J.Talavage,T.Thiel,and D.Brady,An efficient store-and-forward protocol for a shallow water acoustic local area network,[C]In proc.Oceans'94.Brest,France,Sept..1994.
    [7]N.Falmouth,E-mail from submarine,[J]Ocean space,vol.244,June,2000.
    [8]Ian F.Akyildiz,Dario Pompili,Tommaso Melodia,Underwater acoustic sensor networks research ehallenges,[J]Ad Hoc Networks,3:257-279,2005
    [9]Jim Partana,b,Jim Kurosea,and Brian Neil Levinea,A survey of practical issues in underwater networks.[J]Mobile Computing and Communications Review,Volume 11,Number 4:23-33,2006
    [10]Zheng Peng,Jun-Hong Cui,Bing Wang,An underwater network testbed design,implementation and measurement.International Conference on Mobile Computing and Networking,[C]65-72,Canada,2007
    [11]Mandar Chitre Shiraz Shahabudeen,Stojanovic,Underwater Acoustic Communications and Networking-Recent Advances and Future Challenges.[J]Marine Technology Society Journal,Volume 42,Number 1:103-114,2008
    [12]Daniel B.Kilfoyle and Arthur B.Baggeroer,The State of the Art in Underwater Acoustic Telemetry,[J]IEEE J.Oceanic.Eng,vol.25(1):4-24,2000.
    [13]Arthur B.Baggeror,Acoustic Telemetry-an Overview,[J]IEEE J.Oceanic.Eng., vol.9(4):229-235,1984.
    [14]Milica Stojanovic,Recent Advances in High-Speed Underwater Acoustic Communications,[J]IEEE J.Oceanic Eng.,vol.21(2):125-136,1996.
    [15]艾字惠,水声数字通信研究,[D]哈尔滨工业大学博士论文,1997.
    [16]J.A.Catipovic,Performance limitation in underwater acoustic telemetry,[J]IEEE J.Oceanic.Eng.,vol.15(3):205-216,1990.
    [17]蔡惠智,刘云涛,蔡慧,邓红超,王永丰,声纳技术及其应用专题第八讲水声通信及其研究进展[J].物理,2006.35(12):1038-1043.
    [18]M.Dale Green,Joseph A.Rice,Channel-Tolerant FH-MFSK Acoustic Signaling for Undersea Communications and Networks,[J]IEEE J.Oceanic Eng.,25(1):28-39,2000
    [19]M.Stojanovic,et al.,Adaptive multicharmel combining and equalization for underwater acoustic communications,[J]J.A.S.A.vol.94(3):1621-1631,1993.
    [20]陈庚,海洋声信道自适应匹配实验研究,[J]声学学报,Vol.21:(2):139-148,1996
    [21]Zhu Weiqing,Short range underwater acoustic communication system,[C]14 th ICA,B 10-1,Beijing,1992.
    [22]Sang Enfang and Xi Hongyan,High speed data transmission through underwater acoustic channel,[C]SWAC' 97 Beijing,579-584,1997.
    [23]刘云涛,杨莘元,蔡惠智,一种提高高速水下通信性能的基带波形结构设计[J].声学学报,2005,30(5):435-441.
    [24]刘云涛,蔡惠智,杨莘元,相位调制水声高速通信中的一种空间滤波算法[J].声学学报,2006,31(1):79-84.
    [25]赵亮,朱敏,一种用于多载波水声通信系统的频域均衡算法,[J]声学技术,2007,Vol.26No.3:472-476
    [26]殷敬伟,惠俊英,郭龙祥,点对点移动水声通信技术研究[J].物理学报,2008,57(03):1753-1758.
    [27]刘林泉,梁国龙,吴波,周志强,李宏伟.一种低能耗的水声通信编码方案的研究[J].声学技术,2007,26(1):130-133.
    [28]黄晓萍,桑恩方,一个水声扩频通信系统设计与实现[J].海洋工程,2007,25(1):127-132.
    [29]何成兵,黄建国,张群飞,申晓红.M元线性调频远程水声通信新技术[J].西北工业大学学报,2005,23(6):777-780.
    [30]李红娟,孙超,基于空时分组编码的水声MIMO通信系统仿真研究[J].系统仿真学报,2007,19(11):2539-2542.
    [31]李峰,时间反转镜的空间滤波技术研究,[D]哈尔滨工程大学硕士学位论文,2006
    [32]李超,用时间反转处理实现水中小目标探测的空--时逆滤波,[D]浙江大学信息与通信工程硕士学位论文,2006
    [33]许祥滨,抗多途径干扰的水声数字语音通信研究[D].厦门:厦门大学电子工程系博士学位论文,2003.
    [34]Bailey P.A.,Bucker H.,McDonald V.K.and Rice J.A.,Shallow-Water Acoustic Communications Channel Modeling using Three-Dimensional Gaussian Beams,[R]Space and Naval Warfare Systems Center San Diego Biennial Review 2001,2001,pp.251-262
    [35]刘伯胜,雷家煜,水声学原理[M].哈尔滨:哈尔滨工程大学出版社,1993.
    [36]R.Coates,Ming Zheng,and Liansheng Wang,Bass 300 PARACOM:A "MODEL" underwater parametric communication system,[J]IEEE J.Oceanic Eng.,,vol.21(2):225-235,1996.
    [37]Rogers,P.H.,Onboard prediction of propagation loss in shallow water.[R]Nav.Res.Lab.,Rept 8500
    [38]汪德昭,尚尔昌等.水声学[M].北京:科学出版社,1981.
    [39]R.Urick.,Principles of Underwater sound,third edition,[M]McGraw-Hill Book Company,1983.
    [40](美)艾特(Etter,P.C.)著,蔡志明等译,水声建模与仿真(第三版),[M]北京:电子工业出版社,2005.7
    [41]列.布列霍夫斯基赫等,海洋声学基础,[M]北京,海洋出版社,1985.
    [42]许肖梅.浅海水声数据传输技术研究[D].厦门:厦门大学博士学位论文,2002.
    [43]S.M弗拉泰,R.达谢,W.H蒙克等,起伏海洋中的声传播,[M]北京,海洋出版社,1985.
    [44]曾立,RAKE接收技术在水声通信中的应用,[D]西北工业大学硕士学位论文,2004
    [45]P.Etter,Underwater Acoustic Modeling:Principles,Techniques and Applicatious,[M]London:Elsvier Science Publisher Lt.D,1991.
    [46]惠俊英.水下声信道[M].北京:国防工业出版社,1992
    [47]陈天润,胡建宇,王清池,许肖梅,陈东升台湾海峡南部声速垂直、断面分布的区域特征[J],海洋技术,2000年6月,Vol.19,No.2:18-22
    [48]陈东升,胡建宇,许肖梅,台湾海峡中、北部海区1998年2-3月声速的分布特征[J]台湾 海峡,2000年9月,Vol.19,N0.3:288-292
    [49]https://128.160.23.42/gdemv/gdemv.html,[DB/OL]
    [50]http://www.cdc.noaa.gov/cdc/data.noaa.oisst.v2.html,[DB/OL]
    [51]http://www.hlsresearch.com/oalib/Rays/,[EB/OL]
    [52]Jensen F.B.,W.A.Kuperman,M.B.Porter,H.Schmidt.Computational Ocean Acoustics[M],Springer-Verlag,New York,1992
    [53]高路,高速水声通信系统仿真研究,[J]声学学报,2003年1月,第28卷第1期,33-39
    [54]刘东华,Turbo码关键技术及Turbo原理的应用研究,[D]国防科技大学博士论文,2002
    [55]宫在晓等,浅海脉冲声传播及信道匹配实验研究,[J]声学学报,2005年3月,30卷第2期,108-114
    [56]Adam Zielinsld,Performance analysis of digital acoustic communication in a shallow water channel,[J]IEEE Journal of Oceanic Engineering,Vol.20,No.4,Oct.1995,293-299
    [57]Mandar Chitre,John Potter,Ong Sim Heng,Underwater acoustic channel characterisation for medium-range shallow water communications,[C]OCEANS '04.MTS/IEEE TECHNO-OCEAN '04,Vol.1,page(s):40-45
    [58]侯自强,李贵斌.声纳信号处理--原理与设备.[M]北京:海洋出版社,1986
    [59]M.B.Porter,Tho Timo-Marched fast-field program(FFP) for Modeling Acoustic Pulse Propagation,[J]J.Acoust.Soc.Am.87(5),May 1990,2013-2023
    [60]李中捷,孙洪,姚天任,D.Le R-uyet.Turbo码系统仿真及性能分析[J].华中科技大学学报,2001.29(3):76-78
    [61]http://www.csee.wvu.edu/~mvalenti/turbo.html,[EB/OL]
    [62]姚如贵,王永生,徐娟.Ricean信道下Turbo码性能研究[J].通信学报,2005,26(6):1-5.
    [63]阚倩,荣健,钟晓春,激光水下通信Turbo码应用研究[J].激光与光电子学进展,2005,42(11):51-53.
    [64]刘东华,Turbo码原理与应用技术[M].北京.电子工业出版社,2004.
    [65]郭淑霞,高颖,黄建国,申晓红,.级联码在水下远程通信中的应用研究[J].无线通信技术,2005,(2):14-17.
    [66]姚中华,黄建国,水声通信中级连纠错码技术研究[J].信息安全与通信保密,2006年10期,page:69-71.
    [67]郭淑霞,高颖,黄建国,远程水下通信系统纠错编码方法研究[J].测控技术,2006,25(3):30-32.
    [68]刘胜兴,许肖梅.浅海水声信道中Turbo码性能研究[J].厦门大学学报(自然科学版),2006,45(5):656-659.
    [69]罗永升,远程水声通信系统的编码技术研究[M].西安;西北工业大学水声工程专业硕士毕业论文,2007.
    [70]高春仙,Turbo码在水声数据通讯中的应用研究[M].厦门:厦门大学电子工程系硕士毕业论文,2004.
    [71]郭淑霞,刘志斌,许卫东,黄建国,基于水声信道的Turbo码性能仿真与误码率估计方法研究[J].无线通信技术,2007,(1):5-9.
    [72]刘胜兴,许肖梅,水声跳频通信中Turbo码性能仿真研究[C].上海:中国声学学会2006年全国声学学术会议论文集,2006:77-78.
    [73][美]John G.Proakis;Masoud Salehi著,李锵,关欣,杨爱萍,董健译.通信系统原理[M].北京:电子工业出版社,2006.
    [74]C.Berrou,A.Glavieux and P.Thitimajshima.Near Shannon Limit error-correcting coding and decoding:Turbo Codes.[C]In Proc.Icc'93.May 1993.
    [75]John.G Proakis,张力军,张宗橙,郑宝玉译,数字通信,[M]第三版,2001.
    [76]沈允春,扩谱技术,[M]国防工业出版社,1995.
    [77]查光明,熊贤祚,扩谱通信,[M]西安电子科技大学出版社,1999.
    [78]M.Stojanovic,J.G.Proarlds,J.A.Rice,M.D.Green,Spread spoctrum underwater acoustic telemetry,[C]Oceans'98 Conference Proceedings,Volume:2:650-654,1998.
    [79]E.M.Sozer,J.G.Proakis,M.Stojanovic,J.A.Rice,A.Benson,M.Hatch,Direct sequence spread spectrum based modem for underwater acoustic communication and channel measurements,[C]Oceans'99 MTS/IEEE,Riding the Crest into the 21st Century,vol.1:228-233,1999.
    [80]Moon-Kee Jang,Jin-Soo Park,Performance analysis of DS/SS system according to the loop gain under the Nakagami-m fading channel,[C]Oceans'2000MTS/IEEE Conference and Exhibition,Vol.2:1239-1242,2000.
    [81]C.C.Tsimenidis,O.R.Hinton,B.S.Shrif,A.E.Adams,spread -spectrum based adaptive array receiver algorithms for the shallow -water acoustic channel,[C]Oceans' 2000 MTS/IEEE Conference and Exhibition,Vol.2:1233-1237,2000.
    [82]W.K.Lam,R.G.Ormondroya,A broadband UQA communication system underwater applications of image processing,[C]IEE Colloquium on,8/1-8/6,1998.
    [83]B.Solaiman,A.Glavieux,A.Hillion,Performance of a slow frequency hopping BFSK system using convolution coding in underwater acoustic media,Acoustics,Speech,and Signal processing,[C]ICASSP-88,international Conference on 1988:2721-2724 Vol 5.
    [84]G Ayela,M.Nicot,X.Lurton,New innovative multi-modulation acoustic communication system,[C]Oceans'94 Oceans Engineering for Today's Technology and Tomorrow's Preservation.Proceedings Vol.1 292-295,1994.
    [85]Gerard Loubet,Vittorio Capellano and Richard Filipiak,Underwater spread-spectrum communications,[J]IEEE J.Oceanic Eng.,574-579,1997.
    [86]M.Dale Green,Joseph A.Rice,Channel-Tolerant FH-MFSK Acoustic Signaling for Undersea Communications and Networks,[J]IEEE.J.Oceanic Eng.,25(1):28-39,2000
    [87]吴伟陵,移动通信中的关键技术,[M]北京邮电大学出版社,2000.
    [88]R C.狄克逊著,王守仁,项海格,迟惠生译,扩展频谱系统,[M]国防工业出版社,1982..
    [89]李承恕,赵荣黎,扩展频谱通信,[M]人民邮电出版社,1993.
    [90]曹志刚,钱亚生,现代通信原理,[M]清华大学出版社,1992.
    [91]樊昌信,徐炳祥等,通信系统[M],国防工业出版社,1980.
    [92]郭梯云,杨家玮,李建东,数字移动通信,[M]人民邮电出版社,2001.
    [93]童峰,许鹭芬等,水声数据传输系统中的同步信号处理,[J]厦门大学学报,40(3):694-688.2001
    [94]S.S.Samir,Synchronization issues in ocean telemetry,IEEE[J]Oceanic Eng.,vol.16(1):74-85,1991.
    [95]郑继禹,林基明,同步理论与技术[M].电子工业出版社,北京,2003.
    [96]马波,基于Hilbert变换的包络分析及其在滚动轴承故障诊断中的应用,[J]北京化工大学学报,2004 Vol.31,No.6:95-97
    [97]王大凯,彭进业 编著,小波分析及其在信号处理中的应用,[M]电子工业出版社,北京,2005
    [98]Labview技术白皮书,https://ni.com.[DB/OL]
    [99]周求湛,胡封晔 等,弱信号检测与估计[M].北京航空航天大学出版社,北京,2007.
    [100]张贤达,现代信号处理[M].清华大学出版社,北京,2002.
    [101]Ethem Mutlu S(o|¨)zer,Milica Stojanovic,Reconfigurable acoustic modem for underwater sensor networks,[C]Proceedings of the 1st ACM international workshop on Underwater networks,Los Angeles,ISBN:1-59593-484-7,Pages:101-104,2006,CA,USA
    [102]谢小娟,基于LabVIEW的软件无线电调制解调和信号识别技术研究,[D]南京理工大学通信与信号处理硕士学位论文,2006
    [103]NI CompactRIO技术白皮书,https://ni.com,[DB/OL]
    [104]周福洪,水声换能器,[M]北京 国防工业出版社,1984.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700