柴油机微粒捕集器及其再生技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柴油机微粒排放严重地污染环境并危害人类健康,其净化技术一直是人们研究的热点。微粒捕集器DPF(Diesel Particulate Filter)是控制柴油机微粒排放最有效的后处理设备,随着排放法规的日益严格,其应用将越来越广泛。为推进微粒捕集器实用化和产业化进程,本研究采用理论分析、数值计算和试验研究相结合的方式对DPF的捕集特性、阻力特性以及再生规律进行了研究。
     为了实现利用计算机仿真计算进行DPF结构设计与优化以及DPF性能预测,在Matlab计算平台上建立DPF捕集模型和压降模型,为高捕集效率低流动阻力DPF的开发提供技术支持。基于填充床捕集理论,布朗扩散和直接拦截捕集机理建立壁流式微粒捕集器捕集模型。理论分析壁流式微粒捕集器的捕集过程,建立空载和负载DPF压降模型。通过发动机台架试验对模型进行校验和修正。利用模型的计算程序研究排气参数对DPF捕集特性和压降特性的影响,预测空载和负载DPF的压力降,确定滤饼捕集阶段DPF压降及其构成比例随DPF碳载量的变化。
     为了有效控制DPF再生过程,保证其再生的安全性和完全性,在总结现有各种再生方法优缺点的基础上,提出了基于缸内次后喷LPI(Late Post Injection)喷油量控制的DPF主动再生方法,并就DPF再生进怠速DTI(Drop to Idle)不可控再生,DPF再生时机的确定方法,LPI喷油助燃主动再生控制策略进行研究。该研究结果表明:
     (1) LPI是在缸内远离上止点后的时刻喷入燃油,大部分燃油在缸内基本未燃,而成为HC排放源,增加发动机排气中的HC浓度,利用DPF上游氧化催化转化器DOC(Diesel Oxidation Catalyst)对HC的氧化放热提高排气温度,使得DPF入口温度达到微粒的起燃温度,实现DPF主动再生。结果显示,本试验条件下,DOC有效工作的入口温度要高于250℃;LPI喷油时刻对发动机性能以及DOC升温特性的影响不大;喷油时刻一定,随着LPI后喷油量的增加,发动机转矩不变,燃油消耗率有所增加,DOC入口温度不变,DOC入口HC排放显著增多,DOC出口即DPF入口温度增加,低速工况DOC升温效果更显著。经发动机台架试验验证,采用LPI可以实现DPF安全彻底的再生,有效再生时间约为200s。再生过程中,DPF压降先升高再急剧下降直至达到相对稳定;沿着排气流动方向,径向位置相同轴向在同一条直线上各点的温度依次升高,DPF内部最高峰值温度为出现在靠近DPF出口的中心轴线处;径向温度梯度较轴向温度梯度明显增大,其峰值出现在再生初期,靠近过滤体边缘。
     (2) DTI不可控再生发生在DPF正常再生过程中,发动机突然进入怠速。DTI不可控再生过程中,DPF内部温度分布规律与正常再生相同。但是,由于怠速工况下排气流速低、排气氧含量高,峰值温度和温度梯度均显著提高;利用废气再循环EGR(Exhaust Gas Recirculation)、进气节流、提高怠速转速等措施可有效地降低DTI再生中DPF最大峰值温度和温度梯度,避免DPF损坏。
     (3)分析了根据排气背压、行驶时间、碳烟排放、数学模型判断再生时机的方法,提出了根据压降判断碳载量进而确定再生时机的方法。论述了基于DPF的再生进怠速试验确定过滤体安全碳载量限值SML(Soot Mass Limit)的方法。基于碳载量判断再生时机和LPI喷油助燃DPF主动再生方法,提出DPF主动再生控制策略,分析LPI燃油喷射量最优值的确定方法。
     为更好的进行微粒排放控制,针对具有不同理化特性的燃料,进行微粒数量排放及其粒度分布的测量,分析DPF对不同燃料的排气微粒数浓度捕集效率和分级捕集效率。该研究结果表明:
     (1)柴油、生物柴油BTL、天然气合成油GTL和添加有铁基燃油添加剂(Fe-FBC)的低硫柴油(以FBC表征)的微粒排放绝大部分都在200nm以下,微粒粒度分布均呈单峰对数分布。与转速变化相比,负荷变化对微粒粒度分布的影响较大。随着负荷增加,柴油、BTL和FBC的微粒粒度分布趋于核化,即峰值粒径向小粒径偏移,而GTL的峰值粒径则向大粒径偏移,核态微粒排放降低。
     (2) BTL热值低、含氧量高,其燃烧和排放与柴油有所差异。主要表现为燃烧燃始点提前,滞燃期缩短,燃油消耗率升高;CO_2、CO、HC排放降低,NOx排放增多,尤其在中高负荷表现更为突出。BTL总微粒数量浓度较其它燃料高,核态微粒排放显著增多,降低其核态微粒数量排放是一个亟待解决的问题。
     (3) GTL具有高十六烷值、低芳烃的特点,与柴油相比,其燃烧着火提前,滞燃期短,预混合燃烧比例减小,燃烧完全,能够有效降低CO_2、CO、HC、NOx气体排放,以及降低核态微粒和积聚态微粒数量浓度。
     (4) FBC的微粒粒度分布、核态微粒数比例和总微粒数浓度随负荷或转速的变化规律与柴油相似。铁基添加剂的使用能够优化燃烧,减少大粒径颗粒生成,但由于金属氧化物在燃烧室内的生成,与柴油相比,FBC具有较高的总微粒数和核态微粒数排放,核态微粒的比例均在90%以上。
     (5)柴油机燃用不同理化特性的燃料同一工况下会产生不同的排气参数和微粒粒度分布,从而影响DPF的捕集效率。DPF对试验燃料的数量浓度捕集效率NE(Number Efficiency)和分级捕集效率FE(fractional efficiency)随转速或负荷的变化并没有明显的规律。DPF应用于BTL、GTL和FBC燃料时,DPF的数量浓度捕集效率有所下降。大多数工况下,DPF对柴油的数浓度捕集效率均在90%以上,远远高于DPF对BTL、GTL、FBC的捕集效率。在排气主要粒径范围内,DPF对柴油燃料的分级捕集效率始终较高,其分级捕集效率随粒径变化满足捕集理论分析,在150nm附近达到波谷值,穿透窗口在积聚态粒径区间。对BTL、GTL和FBC燃料,在排气主要粒径区间,DPF分级捕集效率均有所下降,其分级捕集效率变化趋势不能用捕集理论分析,在核态和积聚态粒径区域DPF都出现穿透窗口。据此,在应用替代燃料时,应针对具体燃料的排气状态设计专用的DPF,使其充分发挥其净化功效。
Diesel particulate matter (PM) can cause serious environmental pollution and beharmful to human health, its emission control technology has been a focus. DieselParticulate Filters (DPFs) are the most effective aftertreantment device for removingPM from diesel engine exhaust. To comply with tightening emission regulations,DPFs are increasingly applied. In order to promote the practical and industrializationprocess of diesel particulate filter, the filtration, preesure drop and regenerationcharacteristics of a DPF were studied with theoretical analysis, numerical calculationand experimental research in this study.
     In order to achieve DPF structure design and optimization as well as DPFperformance prediction using computer simulation, DPF Filtration and pressure dropmodels were developed in Matlab computing platform, which could provide technicalsupport for the development of the DPF with high filtration efficiency and low flowresistance. Based on packed bed filtration theory, Brownian diffusion and interceptioncapture mechanisms, filtration model of the wall-flow particulate filter was built.Capture process of DPF was analyzed theoretical and pressure drop models of cleanand loaded filters were built. Experimental data were used to calibrate and validatingthe models. The models can predicte the pressure drop of a clean andparticulate-loaded DPF, and be used to analyse the effect of parameters of filterstructure and engine exhaust on the filtration and pressure drop performance. Thetrends of pressure drop and its components vs PM loading during cake filtrationregime were determined.
     For effective control of DPF regeneration process to ensure safe and completeregeneration, on the basis of summarizing the advantages and disadvantages ofvarious regeneration methods, a DPF active regeneration method with In-cylinderLate Post Injection (LPI) was pointed out, and DPF drop to idle (DTI) uncontrolledregeneration, and the methods of setting regeneration timing, and control strategy ofDPF active regeneration with LPI were studied. The study results show that:
     (1) LPI takes place far after the Top Dead Center (TDC), large amont of the injected fuel does not combust completely in cylinder and produces Hydrocarbon (HC)emission, HC undergoes exothermic oxidation on the DOC to increase DPF inlettemperature for DPF active regeneratiom. Test results show that the effective inlettemperature of DOC is above250℃. The influence of LPI injection timing on engineperformance and DOC temperature rise characteristics is little. At the same injectintiming, with the increase of LPI amount, engine torque keep constant while fuelconsumption increases, DOC inlet temperature does not change dramatically, HCemissions at DOC inlet exhaust increase significantly, DPF inlet temperature increase.DOC temperature rise characteristics are obvious under low speed conditions. LPIcould achive safe and complete DPF regeneration with effective regeneration time ofabout200s through the experimental validation. During the regeneration process, DPFpressure drop increased firstly and then decline sharply until it reaches relativelystable. The temperature of each point on the same axis line with same radial positionsuccessively higher along the flow direction of exhaust gas, DPF internal peaktemperature is near DPF outlet at the central axis. The radial temperature gradient islarger than the axial temperature gradient, its peak value appears early in theregeneration, and is near the filter skin.
     (2) For DTI uncontrolled regeneration, the engine goes to idle during the normalDPF regeneration process. The study results show that: during DTI uncontrolledregeneration, DPF internal temperature distribution regulation is the same as DPFnormal regeneration. At idle condtions, low exhaust flowrate ang high oxygenconcentration cause dramatical increase in peak temperature and peak temperaturegradient. Through EGR control, intake throttling and rising idle speed could reducethe maximum peak temperature to avoid DPF damage.
     (3) The methods of setting regeneration timing involved according back pressure,according driving time, according soot emissions, according mathematical models, aswell as according soot loading were analyzed respectively. The method of setingregeneration timing according soot loading obtained from pressure drop washighlighted, the SML determination of the filter through DTI was discussed. Based onjudging regeneration timing according soot loading and DPF active regeneration withLPI, DPF active regeneration control strategy was proposed, the method fordetermining the optimal value of LPI amount was analyzed.
     For better particle emsission control, particle number emission and particle sizedistribution of different fuels with different physical and chemical characteristics.weremearsured, and DPF number efficiency (NE) and fractional efficiency (FE) wereanalyzed. The study results show that:
     (1) For diesel, BTL, GTL and FBC, exhaust particle number size distributionsare unimodal, the sizes of the particles are typically less than200nm during all thetest modes. Compared with engine speed, the engine load greatly influences particlesize distributions. As the engine load increases, the particle size distributions fordiesel, BTL and FBC turn to nucleating. The peak diameters become smaller, whereasfor GTL, this value becomes larger and the emissions of the nucleation mode particledecrease.
     (2) BTL has lower calorific value and higher oxygen content, it has differentcombustion and emission characteristics with diesel. When fueled with BTL, theignition timing advances, and theignition delay period are shortened, the engine has ahigher BSFC. The CO_2, HC and CO emissions decrease as NOx increases,particularly at higher load conditions. BTL has the highest total particle andnanoparticle number concentrations. How to reduce its nanoparticle emissions is achallenge.
     (3) GTL has higher cetane number and less aromatic hydrocarbons than the otherfuels. GTL results in the advancement of the beginning of ignition, a shorter ignitiondelay period, a shorter pre-mixed combustion period and complete combustion. Whenfueled with GTL, the CO_2, HC, CO and NOx emissions all decrease, particle numberemissions of nucleation mode and accumulation mode decrease.
     (4) For FBC, the change of particle size distribution、 the percentage ofnanoparticle and particle number concentration with engine load or engine speed aresimilar with diesel. The use of Fe-based additive could premote combustion andreduces the emissions of larger size particle. Due to the generation of metal oxide incombustion chamber, FBC has highest total particle number and nanoparticleemissions, the percentage of nanoparticle is above90%.
     (5) Diesel engine fueled with fuels of different physical and chemicalcharacteristics will produce different exhaust gas parameters and particle sizedistributions, thus influencing the filtration performance of the DPF. The change of NE and FE of the DPF with engine load and speed is not regular. For BTL, GTL andFBC, the NE of the filter reduces. Under most conditions, DPF number efficiency fordiesel is above90%, which is far higher than that for BTL, GTL and FBC. Over themain size range of exhaust, DPF fractional efficiency for diesel is sufficiently high,and behaves as predicted by filtration theory. The Greenfield Gap locates in theaccumulation size range and near150nm. For BTL, GTL and FBC, the FE decreasesduring the main size range compared with that for diesel, the filter has an extraGreenfield Gap located in the nanometer size range, which is disagree with filtrationtheory. Overall, when the diesel engine is fueled with alternative fuels, to avoidjeopardizing the potential emission benefits of alternative fuels and to maximize theDPF system efficiency, it is necessary to improve the filtration performance of thefilter or to choose the appropriate filters for the application according to the particleemission characteristics of alternative fuels.
引文
[1] Chang D Y, Wu C Z, Yuan Z H, et al. A review on the energy production, consumption,and prospect of renewable energy in China[J]. Renewable&Sustainable Energy Reviews,2003,7(5):453-468.
    [2]李勤.现代内燃机排气污染物的测量与控制[M].北京:机械工业出版社,1998:89-90.
    [3]周龙保.内燃机学[M].北京:机械工业出版社,2005:235-252.
    [4] Burtscher, H. Physical characterization of particulate emissions from dieselengines: areview[J]. Journal of Aerosol Science,2005,36:896–932.
    [5] Lee, J. W., Jeong, Y. I., Jung, M. W., et al. Experimental investigation and comparison ofnanoparticle emission characteristics in light-duty vehicles fortwo different fuels[J]. Int. J.Automotive Technology,2008,9(4),397407.
    [6] Imad, A.K., David, B.K., Fred, B. Nanoparticle growth during dilution and cooling ofdieselexhaust: experimental investigation andtheoretical assessment[C]. SAE Paper2000-01-0515,2000.
    [7] Schneider, J., Hock, N., Weimer, S., et al. Nucleation particles in diesel exhaust: compositioninferred fromin situ mass spectrometric analysis[J]. Environmental Science Technology,2005,39:6153-6161.
    [8] Jorn, D.H., William, H.R., Alberto, A. Investigation of ultrafine particle numbermeasurements from a clean diesel truck using the European PMP protocol[C]. SAE Paper2007-01-1114,2007.
    [9] Di Yao, Diming Lou, Zhiyuan Hu, et al. Experimental investigation on particle numberandsize distribution of a common rail diesel enginefueling with alternative blended dieselfuels[C]. SAE Paper2011-01-0620,2011.
    [10] Lee, S., Cho, Y., Song, M., Kim, H., et al. Experimental study on the characteristics ofnano-particle emissions from a heavy-duty diesel engine using a urea-SCR system[J]. Int. J.Automotive Technology,2012,13(3),355363.
    [11]蒋明德,陈长佑,杨嘉林,等.高等车用内燃机原理(上册)[M].西安:西安交通大学出版社,2006:174-178.
    [12] Official Journal of the European Union, Regulation (EC)No.595/2009,July18,2009.
    [13] Johnson, V.T. Review of diesel emissions and control[C]. SAE Paper2010-01-0301,2010.
    [14]张德满. DOC辅助DPF再生方法研究[D].南京:南京航空航天大学,博士学位论文
    [15]龚金科,赖天贵,刘孟祥,等.柴油机微粒捕集器过滤材料与再生方法分析与研究[J].内燃机,2004,(3):1-4.
    [16] Adler, J. Ceramic diesel particulate filters[J]. International Journal of Applied CeramicTechnology,2005,(2),429-439.
    [17]王逢瑚,郭秀荣,马岩,等.柴油车尾气微粒捕集器技术研究现状及发展趋势[J].小型内燃机与摩托车,2012,39(1):92-96.
    [18] Ingram-Ogunwumi, R.S., Dong, Q., Murrin, T.A. Performance evaluations of aluminumtitanate diesel particulate filters[C]. SAE Paper2007-01-0656,2007.
    [19]资新运,张卫锋,徐正飞,等.柴油机微粒捕集器技术发展现状[J].环境科学与技术,2011,34(12H):143-147.
    [20] Krishna Aravelli, Achim Heibel. Improved lifetime pressure drop management for robustcordierite (RC) filters with Asymmetric Cell Technology (ACT)[C]. SAE Paper2007-01-0920,2007.
    [21] Bardon S, Bouteiller B, Bonnail N. Asymmetrical channels to increase DPF Lifetime[C].SAE Paper2004-01-0950,2004.
    [22]魏胜利,隆武强.柴油机排气后处理技术的现状与发展[J].小型内燃机与摩托车,2008,37(1):92-96.
    [23]资新运,欧阳明高,宁智.柴油车微粒捕捉器的研究现状及应用前景[C].中国国际车用柴油机技术研讨会论文集,2000.
    [24] Konstandopoulos, A. G., Kostoglou, M., Skaperdas, E., et al. Fundamental studies of dieselparticulate filters: transient loading, regeneration and aging. SAE Paper2000-01-1016,2000.
    [25]兰昌尧,郭猛超,韩国胜,等.柴油机微粒捕集器再生技术研究综述[J].内燃机与动力装置,2008,(2):36-39.
    [26]王逢瑚,郭秀荣,马岩,等.柴油车尾气微粒捕集器技术研究现状及发展趋势[J].小型内燃机与摩托车,2010,39(1):92-96.
    [27]邵玉平.柴油机微粒捕集器逆向喷气再生技术研究[D].天津:天津大学,2005.
    [28]李倩,谢云龙,钟依均,等.柴油机碳颗粒物净化技术的研究进展[J].浙江师范大学学报,2009,32(1):97-102.
    [29] Seguelong, T., Fournier, B. P. Use of diesel particulatefilters and cerium-based fuel-bornecatalyst for lowtemperature-low load applications [C]. SAE Paper2001-01-0906,2001.
    [30] Gieshoff, J., Pfeifer, M., Schafer, S. A., et al. Regeneration of catalytic diesel particulatefilters[C]. SAE Paper2001-01-0907,2001.
    [31]田径,韩永强,刘忠长,等.柴油机燃油催化微粒后处理器性能与再生[J].吉林大学学报(工学版),2011,41(1):18-24.
    [32]王天友,Eric Lim Khim Song,林漫群,等.燃油催化微粒捕集器微粒捕集与强制再生特性的研究[J].内燃机学报,2007,6(25):523-531.
    [33]王丹,刘忠长,王忠恕,等。铁基燃油添加剂对柴油机微粒排放的影响[J].吉林大学学报(工学版),2012,42(5):1173-1178.
    [34] Walker, P.A., Allansson, R., Blakeman, P.G., et al. Optimizing the low temperatureperformance and regeneration efficiency of the continuously regenerating dieselparticulatefilter system[C]. SAE Paper2002-01-0428,2002.
    [35] Suresh, A., Yezerets, A., Currier N., et al. Diesel particulate filter system-effect of criticalvariables on the regeneration strategy development and Optimization[C]. SAE Paper2008-01-0329,2008.
    [36] Andrew P.E. York, Mehrdad, A., Timothy C.W., et al. Modeling of the catalyzedcontinuously regenerating diesel particulate filter (CCR-DPF) system: model developmentand passive regeneration studies[C]. SAE Paper2007-01-0043,2007.
    [37]安相壁,索建军,姚广涛,等.柴油机微粒捕集器燃烧器再生试验研究[J].车用发动机,2009(4):45-48.
    [38]李新,资新运,姚广涛,等.柴油机排气微粒捕集器燃烧器再生技术研究[J].内燃机学报,2008,26(6):539-542.
    [39]龚金科,吁璇,伏军,等.柴油机喷油助燃再生系统微粒捕集器油气匹配研究[J].农业机械学报,2010,41(4):1-5.
    [40]龚金科,伏军,龙罡,等.汽车尾气微粒过滤器喷油助燃再生控制策略研究[J].环境工程学报,2011,5(7):1603-1608.
    [41]李新.基于喷油助燃再生的柴油车颗粒物后处理技术研究[D].武汉:武汉理工大学,博士学位论文.2009.12
    [42] Timothy, G., Argun, Y. Evaluation of a DPF regeneration system and DOC performance usingsecondary fuel injection[C]. SAE Paper2009-01-2884,2009.
    [43] Nishit, N., Xiaolai He, Vikram, I., et al. Real time implementation of DOC-DPF models on aproduction-intent ECU for controls and diagnostics of a PM emission control system[C].SAE Paper2009-01-2904,2009.
    [44] Hisaki, T., Jinichi, M., et al. DPR developed for extremely low PM emissionsin productioncommercial vehicles[C]. SAE Paper2004-01-0824,2004.
    [45]王丹,刘忠长,王忠恕,等.柴油机微粒捕集器缸内次后喷主动再生方法的试验研究[J].吉林大学学报(工学版),2012,42(3):551-556.
    [46] Mayer, A., Kany, S., et al. Retrofitting TRU-Diesel engines with DPF-systems using FBC andintake throttling for active regeneration[C]. SAE Paper2005-01-0662,2005.
    [47] Mayer, A., Lutz, Th., et al. Engine intake throttling for active regeneration ofdiesel particlefilters[C]. SAE Paper2003-01-0381,2003.
    [48] Tim, J., Robert, C., Arndt P cher, et al. A new electrical mobility particle sizer spectrometerfor engine exhaust particle measurements[C]. SAE Paper2004-01-1341,2004.
    [49]成晓北,黄荣华,陈德良.测量条件对柴油机排放PM尺寸分布的影响[J].车用发动机,2006,161(1):53-57.
    [50]刘双喜,宁智,付娟.柴油机排气微粒冷却演变特性的实验研究[J].环境科学,2007,28(6):1193-1197.
    [51] Kim, H., Lee, S., Kim, J., et al. Measurement of size distribution of diesel particles: effect ofinstruments, dilution methods and measuring positions[J]. Int. J. Automotive Technology,2005,6(2):119-124.
    [52] Maricq, M. M., Chase, R. E., Podsiadlik, D. H., et al. Vehicle exhaust particle sizedistributions: a comparison of tailpipe and dilution tunnel measurements[C]. SAE Paper1999-01-1461,1999.
    [53] Konstandopoulos, G. A., Johnson, H. J. Wall-flow diesel particulate filters-their pressuredrop and collection efficiency[C]. SAE Paper No.890405,1989.
    [54] Opris, C.N., Johnson, J.H. A2-D computational model describing the flow and filtrationcharacteristics of a ceramic diesel particulate trap[C]. SAE Paper980545,1998.
    [55] Bisset E.J. Mathematical model of the thermal regeneration of a wall-flow monolith dieselparticulate filter[J]. Chemical Engineering Science,1984,39:1232–1244,
    [56] Konstandopoulos, A.G., Kostoglou, M.. Periodically reversed flow regeneration of dieselparticulate traps[C]. SAE Paper1999-01-0469,1999.
    [57] Konstandopoulos, A.G., Kostoglou, M. Reciprocating flow regeneration of soot filters[J].Combustion and Flame,2000,121:488–500.
    [58] Kladopoulou, E.A., Yang, S.L., Johnson J.H., et al. A study describing the performance ofdiesel particulate filters during loading and regeneration–a lumped parameter model forcontrol applications[C]. SAE Paper2003-01-0842,2003.
    [59] Singh, N., Johnson, J.H., Parker G.G. et al. Vehicle engine aftertreatment system simulation(VEASS) model: application to a controls design strategy for active regeneration of acatalyzed particulate filter.[C]. SAE Paper2005-01-0970,2005.
    [60] Huynh, C.T., Johnson, J.H., Yang, S.L., et al. A one-dimensional computational model forstudying the filtration and regeneration characteristics of a catalyzed wall-flow dieselparticulate filter[C]. SAE Paper2003-01-0841,2003.
    [61] Mohammed, H., Triana, A.P., Yang, S. L., et al. An Advanced1-D2-layer catalyzed dieselparticulate filter model to simulate: filtration by the Wall and particulate cake, oxidation inthe wall and particulate cake by NO2and O2, and regeneration by head addition[C]. SAEPaper2006-01-0467,2006.
    [62] Mohammed, H., Lakkireddy, V.R., Johnson J. H., et al. An experimental and modeling studyof a diesel oxidation catalyst and a catalyzed dieselparticulate filter using a1-D2-layermodel[C]. SAE Paper2006-01-0466,2006.
    [63]资新运,郭猛超,蔡强,等.柴油机后处理系统一维数值模拟[J].车用发动机,2009,180(1):20-23.
    [64]宁智,宋波,资新运,等.柴油机排气微粒壁流式陶瓷过滤体过滤机理及影响因素[J].北京交通大学学报,2005,29(4):69-73.
    [65]谭丕强,胡志远,楼狄明,等.柴油机捕集器结构参数对不同粒径微粒过滤特性的影响[J].机械工程学报,2008,44(2):175-181.
    [66]龚金科,刘云卿,龙罡,等.柴油机壁流式过滤体捕集与流阻性能影响规律[J].农业机械学报,2009,40(12):1-7.
    [67]刘云卿,龚金科,蔡隆玉,等.柴油机壁流式过滤体非稳态捕集过程的计算模型[J].内燃机学报,2009,27(2):171-178.
    [68] Liu, Z. G., Matthew, D. S., Joseph, C. L. Diesel particulate filters: trends and implications ofparticle size distribution measurement[C]. SAE Paper2003-01-0046,2003.
    [69] Miyairi, Y., Noguchi, Y., Hiramatsu, T. Diesel particulate filter (DPF) trapping efficiencyimprovement under no-soot-layer conditions obtained throughpore size distributionoptimization[C]. SAE Paper2006-01-1528,2006.
    [70] Lee, K.,Gieseke, J..Collection of aerosol particles by packed beds [J]. Enviroment ScienceTechnology,1979,13(4):466-470.
    [71] Ekathai, W., Eric, S., Christopher, K., et al. Detailed diesel exhaust particulatecharacterization and real-time DPF filtration efficiency measurements during PM fillingproce ss[C]. SAE Paper2007-01-0320,2007.
    [72] Masoudi, M., Konstandopoulos, A.G., Nikitidis M.S., et al. Validation of a model anddevelopment of a simulator for predicting the pressure drop of diesel particulate filters[C].SAE Paper2001-01-0911,2001.
    [73]张春润,邵玉平,孙海东,等.壁流式过滤体的流动阻力分析及再生效率研究[J].车用发动机,2005(5):65-67.
    [74] Konstandopoulos, A.G., Johnson, J. H., Wall-flow diesel particulate filters-their pressuredrop andcollection efficiency[C]. SAE Paper890405,1989.
    [75] Konstandopoulos, A.G., Skaperdas, E., Masoudi, M. Inertial contributions to the pressuredrop of diesel particulate filters[C]. SAE Paper2001-01-0909,2001.
    [76] Konstandopoulos, A.G., Skaperdas, E., et al. Optimized filter design and selection criteria forcontinuously regenerating diesel particulate traps[C]. SAE Paper1999-01-0468,1999.
    [77] Konstandopoulos, A.G. Flow resistance descriptors for diesel particulate filters: definitions,measurements and Testing[C]. SAE Paper2003-01-0846,2003.
    [78] Konstandopoulos G. A., Skaperdas, E., Masoudi*, M., et al. Microstructural properties ofsoot deposits in diesel particulate traps[C]. SAE Paper2002-01-1015,2002.
    [79] Houi, D., Lenormand, R. Particle deposition on a filter Medium[J]. Kinetics of Aggregationand Gelation. pp.173-176.
    [80] Tassopoulos, M., O’ Brien J.A., et al. Simulation of microstructure/mechanism relationshipsin particle deposition[J]. AIChE J.,1989,35(6):967-980.
    [81] Suresh, A., Khan, A., Johnson J.H. An experimental and modeling study of cordierite trapspressure drop and permeability of clean and particulate loaded traps[C]. SAE Paper2000-01-0476,2000.
    [82]罗涛,索建军.柴油机微粒捕集器再生时机判断方法研究[J].中国高新技术企业,2009,(21).
    [83] Rose, D., Boger, T. Different approaches to soot estimation as key requirement for DPFapplications[C]. SAE Paper2009-01-1262,2009.
    [84] Dan Wang, ZhongchangLiu, YongqiangHan, et al. Experimental studieson pressure dropperformanceand regeneration safety of diesel particulate filter[C]. ICEICE2011. Wuhan,china,2011:2175-2178.
    [85]张斌,沈志宏,柯岩.颗粒捕集器后喷油催化再生性能的研究[J].现代车用动力,2009,(2):21-24.
    [86]资新运,郭猛超,张伟,等.采用燃烧器-氧化催化器的柴油机微粒捕集器复合再生控制策略的研究[J].汽车工程,2010,(32).
    [87]龚金科,伏军,王曙辉,等.柴油机微粒捕集器背压信号采集系统动态响应特性的研究[J].内燃机学报,2008,29(5):62-66.
    [88] HuangYiqun, LuQilong. Thermal management of a four-way catalyst system with alternativecombustions for achieving future emissions standard [C]. SAE Paper2007-24-0103,2007.
    [89] Kanta Yamamoto, Keishi Takada, Jin Kusaka, et al. Influence of diesel post injection timingon HC emissions and catalytic oxidation performance[C]. SAE Paper2006-01-3442,2006.
    [90] Reggie, Z., Yiqun Huang, Magdi, K. Methodologies to control DPF uncontrolledregenerations[C]. SAE Paper2006-01-1090,2006.
    [91] Merkel, G.A., Cutler, W.A., Warren, C.J. Thermal durability of wall flow ceramic dieselparticulate filters[C]. SAE Paper2001-01-0190,2001.
    [92] Chen, K., Martirosyan, S., Luss, D.Temperature excursions during soot combustion in adiesel particulate filter(DPF)[J]. Ind. Eng. Chem. Res.2010,49(21):10358–10363.
    [93] Chen, K., Luss, D.Temperature excursions in diesel particulate filters: response to shift toidle[J]. Ind. Eng. Chem. Res.2011,50(2):832-842.
    [94] Peter, F., Uwe, Z., Willard, C. DPF regeneration-concept to avoid uncontrolled regenerationduring idle[C]. SAE Paper2004-01-2657,2004.
    [95] Koltsakis, G.C., Haralampous, O.A., Samaras, Z.C. Control strategies for peak temperaturelimitation in DPF regeneration supported by validated modeling[C]. SAE Paper2007-01-1127,2007.
    [96] Pattas, K.N., Stamatelos, A.M., Kougianos, K,N., et al. Trap protection by limiting A/F ratioduring regeneration[C].SAE paper950366.
    [97] Z. Gerald Liu, Barry M. Verdegan, Kurt M. A. Badeau., et al. Measuring the fractionalefficiency of diesel particulate filters[C]. SAE Paper2002-01-1007,2002.
    [98] Vaaraslahti, K., Virtanen, A., Ristim ki, J., et al. Nucleation mode formation in heavy dutydiesel exhaust with and without a particulate filter. Environ[J]. Sci. Tech.,2004,38:48844890.
    [99] Vaaraslahti, K., Virtanen, A., Ristim ki, J., et al. Effect of after-treatment systems on sizedistribution of heavy duty diesel exhaust aerosol[C]. SAE Paper2004-01-1980,2004.
    [100] Mayer, A., Kasper, M., Mosimann, Th., et al. Nanoparticle emission of EURO4and EURO5HDV compared to EURO3with and without DPF[C]. SAE Paper2007-01-1112,2007.
    [101]申章庆,杨青.车用发动机代用燃料的研究现状及发展趋势[J].柴油机,2006,28(2):43-48.
    [102]王丹,朱向荣.车用代用燃料研究及发展趋势[J].汽车工艺与材料,2005,(10).
    [103]钱伯章.新型汽车代用燃料的开发和应用前景[J].天然气与石油,2004,22(2):40-46.
    [104] Li Xinling, Huang Zhen, Wang Jiasong, et al. Characteristics of ultrafine particles emittedfrom a dimethyl ether (DME) engine. Chinese Science Bulletin,53(2):304-312.
    [105] M. M. M. Stephen J. Harris. Signature size distributions for diesel and gasoline engineexhaust particulate matter[J]. Aerosol Science,2001,32:749-764.
    [106] John, N., Kevin, F., Gregory, T. The effect of cetane improvers and biodiesel on dieselparticulate matter size[C]. SAE Paper2011-01-0330,2011.
    [107] Andrea, D.F., Claudio, C., Federico, M., et al. Particle number, size and mass emissions ofdifferent biodiesel blends versus ULSD from a small displacement automotive dieselengine[C]. SAE Paper2011-01-0633,2011.
    [108]胡志远,赵杰,谭丕强,等.共轨柴油机燃用天然气合成油的性能与排放特性[J].内燃机工程,2009,30(1):19-26.
    [109]谭丕强,胡志远,楼狄明,等.非直喷式增压柴油机燃用生物柴油的性能与排放特性[J].内燃机学报,2006,24(2):110-115.
    [110]袁银南,张恬,梅德清,等.柴油机燃用生物柴油燃烧与排放[J].江苏大学学报(自然科学版),2006,27(3):216-217.
    [111]葛蕴珊,信建民,吴思进,等.增压柴油机燃用生物柴油的排放特性[J].燃烧科学与技术,2004,10(2):125-129.
    [112]李新令,黄震,王嘉松,等. GTL燃料发动机排气颗粒数密度和粒径分布的试验研究。燃烧科学与技术,2007,13(5):448-454.
    [113]李新令,黄震,王嘉松,等.二甲醚发动机超细颗粒排放属性实验研究[J].科学通报2007,52(14):1707-1713.
    [114]孙万臣,谭满志,陈士宝,等.燃料特性对柴油机排放微粒粒度分布的影响[J].汽车工程,2010,32(7):570-573.
    [115]梅德清,孙平,袁银南,等.柴油机燃用生物柴油的排放特性研究[J].内燃机学报,2006,24(4):331-335.
    [116] Senatore, A., Cardone, M., Rocco, V., et al. A comparative analysis of combustion processin D.I. diesel engine fueled with biodiesel and diesel fuel[C]. SAE Paper2000-01-0691,2000.
    [117]李跟宝,周龙保,蒋德明.生物柴油对直喷式柴油机燃烧和排放的影响[J].柴油机,2002(2):16-20
    [118]印崧,刘伟伟,刘微,等.生物柴油的燃烧特性及其排放标准[J].林业机械与木工设备,2008,36(4):49-51.
    [119] Teresa, L.A., Robert L.M. Fischer-tropsch diesel fuels–properties and exhaust emissions: aliterature review[C]. SAE Paper2003-01-0763,2003.
    [120]武涛,黄震,张武高.新型代用燃料天然气合成油的研究进展[J].车用发动机,2006(3):6-9.
    [121]楼狄明,马立英,周毅,等.天然气制油—柴油混合燃料对柴油轿车排放性能的研究[C].2007年中国内燃机学会油品与清洁燃料分会学术年会论文.2007:100-105.
    [122]纪常伟,何洪,马慧,等.燃油添加剂对柴油机排放影响的试验研究[J].北京工业大学学报,2004,30(4):471-473.
    [123]梁荣光,翁仪壁,简弃非,等.燃油添加剂对内燃机性能影响的试验研究[J].华南理工大学学报(自然科学版),1999,27(6):37-40.
    [124]冯明志,肖福明,刘春贵,等.利用放热规律计算研究柴油添加剂对燃烧过程的影响[J].内燃机学报,1996,14(1):19-24.
    [125]楼狄明,谢霞,胡志远,等.重型柴油机燃用不同柴油替代燃料的性能研究[J].汽车技术,2010(2):16-20.
    [126]谭满志,金文华,张淑华,等.电控高压共轨柴油机燃用生物柴油的排放特性[J].吉林大学学报(工学版),2010,40(3):619-624.
    [127]楼狄明,石健,赵杰,等.共轨柴油机燃用不同配比生物柴油的性能与排放特性[J].内燃机工程,2009,30(6):21-30.
    [128] Cheng, A., Dibble, R., Buchholz, B. The effect of oxygenates on diesel engine particulatematter. SAE Paper2002-01-1705,2002.
    [129] Pushkar, T., Achim, H., Jeanni, W., et al. Measurement and prediction of filtrationefficiency evolution of soot loaded diesel particulate filters[J]. Chem. Eng. Sci.,2010,65,4751-4760.
    [130] Kyriakides, S.C., Dent, J. C. Phenomenological diesel combustion model including smokeand NO emission. SAE paper860330.
    [131] Pontikakis, G. N., Koltsakis, G. C., Stamatelos, A. M. Dynamic filtration modelling in foamfilters for diesel exhaust[J]. Chemical Engineering Communications,2001,188,21–46.
    [132] Saathoff, H., Kamm, S., M¨ohler, O., et al. Trace gas interactions with spark generated anddiesel engine soot, A contribution to subproject CMD. EUROTRAC-2.2002.
    [133] Burtscher, H. Literature study on tail pipe particulate emission measurement for dieselengines. Particle Measurement Programme. Report of the Swiss Agency for Environment,Forests and Landscape (BUWAL). Project GRPE.2001.
    [134] Park, K., Cao, F., Kittelson, B.D., et al. Relationship between particle mass and mobility fordiesel exhaust particles[J]. Aerosol Science and Technology,2003,37:577–583.
    [135] Park, K., Kittelson, D. B., McMurry, P. H. Structural properties of diesel exhaust particlesmeasured by Transmission Electron Microscopy (TEM): relationships to particle mass andmobility[J]. Aerosol Science and Technology,2004,38:881–889.
    [136] Ristim ki, J., Virtanen, A., Marjam ki, M., et al. On-line measurement of size distributionand elective density of submicron aerosol particles[J]. Journal of Aerosol Science,2002,33:1541–1557
    [137] Virtanen, A., Ristim ki, J., Marjam ki M., et al. Effective density of diesel exhaust particlesas a function of size[C]. SAE Paper2002-01-0056,2002.
    [138] P. A. L. Ntziachristos. Real time measurements of diesel particle size distribution with anelectrical low pressure impactor. SAE Paper980410,1998.
    [139] Mag′n Lapuerta, Octavio Armas, Ar′antzazu G′omez. Diesel particle size distributionestimation from digital image analysis[J]. Aerosol Science and Technology,2003,37:369–381.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700