用户名: 密码: 验证码:
夏季湖光岩玛珥湖浮游细菌和浮游活性菌遗传多样性的比较
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
浮游细菌是水生生态系统中多样性最高的微生物类群。其分布广泛,数量庞大,参与水生生态系统的物质代谢与能量代谢因而具有极为重要的功能与生态地位。湖光岩玛珥湖是特殊的火山口湖且完全封闭;地质年代久远,保存了一些原有的土著物种;其形成与火山活动密切相关,较其他湖泊湖光岩玛珥湖湖水化学组成成分会存在一些差异,此种环境下的微生物多样性也会与其他普通湖泊不同,因此研究和开发湖光岩玛珥湖的微生物资源具有相当高的价值。本论文通过构建玛珥湖的七类常见湖泊微生物类群的克隆文库,比较研究了玛珥湖(湖光岩)浮游总菌、浮游活性菌的遗传多样性,同时通过纯培养的方法研究了弧菌的多样性。
     本论文选取了湖光岩水体的一个最深位点,分别采集1m(表层)、5m(中间层)和10m(近底层)的水样进行分析。提取浮游总菌的总DNA和RNA,利用通用引物扩增16S rDNA,转化实验后挑选阳性克隆测序分析。经RDP分析,获得的414(浮游总菌210条,浮游活性菌204条克隆序列)条克隆序列分属15个门类,共有32目,52科。414条克隆序列中将近一半的克隆序列(204条)属于Proteobacteria,主要有α-、β-、δ-、γ-Proteobacteria四类。其中,Alphaproteobacteria获得140条克隆序列占变形菌门的半数以上,是优势类群;得到99个克隆的Verrucomicrobia为湖光岩玛珥湖浮游细菌的次级优势类群;湖光岩的第三大优势类群为Bacteroidetes,共获得50个克隆。湖光岩玛珥湖浮游总菌和浮游活性菌的多样性因深度的不同而有差异:总体来说表层(1米)浮游细菌的多样性要略高于近地层(10米)水层的浮游细菌;表层浮游总菌的多样性略高于浮游活性菌的多样性;近地层浮游活性菌的多样性明显高于浮游总菌的多样性。本研究获得各一克隆的OD1,Spirochaetes序列,为国内外湖泊多样性研究中首例报道。
     为进一步分析细菌多样性在亚类群上的差异,我们使用7对通用引物对同批次的环境样品进行16S rDNA的扩增,构建了1m和10m 2个水层的湖光岩玛珥湖浮游总菌和浮游活性菌的浮霉菌门、α-变形菌亚门、β-变形菌亚门、γ-变形菌亚门、拟杆菌门、厚壁菌门和放线菌门等7个湖泊常见类群的克隆文库。不同水层各文库浮游总菌和浮游活性菌的多样性有差异。
     最后,用纯培养的方式分离玛珥湖(湖光岩)的弧菌,并同邻近的湛江港水域分离的弧菌的多样性进行了对比。从湖光岩共分离出21株形态颜色大小不相同的疑似弧菌菌株,随机选出21株分离自湛江港的疑似弧菌菌株进行实验。扩增的ITS序列通过与核酸序列库中的序列进行比对,从湛江港获得的序列中1条(N24)属于希瓦氏菌属,其他均为弧菌属细菌。而从湖光岩玛珥湖分离到的疑似弧菌均不是弧菌科的细菌。使用弧菌科细菌特异性引物扩增的rpoB基因扩增序列通过序列进行比对,从湛江港获得的18条序列均为弧菌属细菌,未扩增出分离自湖光岩的疑似弧菌菌株的rpoB基因序列。使用ITS和rpoB这2个基因作为分子标记对分离到的弧菌分类鉴定得到的结果在属的分类水平上基本一致,但是在种水平的分类鉴定上存在显著的差异。
Planktonic bacteria are the most abundant microbes and widely distributed in aquatic ecosystem. They participate in material and energy metabolism and thus play a significant role in aquatic ecosystem. Hu Guangyan Maar Lake is a special kind of Crater Lake with old geological ages that makes it different from other lakes. Therefore it is valuable to research and develop microbial resources in Maar Lake. We investigated the genetic diversity of planktonic bacterial and active planktonic bacterial through constructing seven clone libraries of common lake microbial groups. Meanwhile, we used culture-depend method to study the genetic diversity of Vibrio.
     We chose one of the deepest sites and gather samples from three water layers (1 m, 5 m, and 13 m). Then we employed universal primer to amplify 16S rDNA from total DNA and total RNA from planktonic bacteria, respectively. Positive clones were chosen for sequencing. RDP analysis showed that all 414 sequences were classified into 15 phylums, 32 orders and 52 families. Four kinds of Proteobacteria (α-、β-、δ-、γ-Proteobacteria) were found in Maar Lake. Nearly half of the sequences were affiliated with Alphaproteobacteria, which was the most abundant group followed by Verrucomicrobia and Bacteroidetes. The depth might cause diversity discrepancy of planktonic bacteria. The diversity of planktonic bacteria in surface (1 m) seemed higher than bottom (10 m). The diversity of total planktonic bacteria is slightly higher than that of active planktonic bacterial in surface. The diversity of active planktonic bacterial is obviously higer than total planktonic bacteria in 10m. We got a clone of the OD1and Spirochaetes sequence that is the first time to be reported in domestic and foreign research of lake diversity.
     Seven universal primers were used to amplify 16S rDNA from the same environmental samples in order to analyze the difference of diversity in group levels. We constructed seven clone libraries of common microbial groups of lakes: Planctomycetes, Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria. The results showed that the diversity of planktonic bacteria was different within different libraries and depths.
     Finally, we isolated vibrio. strains from Maar Lake by culture-depended method and compared them with those from Zhanjiang port nearby. By analysis of the sequences of ITS, most sequences (18 in 19) from port of Zhanjiang were affiliated to Vibrio while no sequences belonged to Vibrio. in isolates from the Maar Lake. All sequences amplified with rpoB gene suggested that the bacterial selected by TCBS from Zhanjiang port were all Vibrio. The use of ITS and rpoB gene as molecular markers for classification and identification of bacteria were basically the same in genus level but notable differences in species level.
引文
[1].车玉伶,王慧,胡洪营,梁威,郭玉凤.微生物群落结构和多样性解析技术研究进展[J].生态环境,2005,(01).
    [2].窦敏娜.环境微生物多样性研究方法进展[J].环境研究与监测, 2010,(01).
    [3].程池,扬梅,李金霞等. Biolog微生物自动分析系统—细菌鉴定操作规程的研究[[J].食品与发酵工业,2006,32 ( 5 ): 50-54.
    [4].胡洪营,童中华.微生物醌指纹法在环境微生物群体组成研究中的应用[J].微生物学通报, 2002, 29(4): 95-98.
    [5].梁小兵,万国江,黄荣贵. PCR-RFLP技术在环境地球化学研究中的应用及展望[J].地质地球化学. 2001, 29(1): 94-98.
    [6].杨朝国.扩增片段长度多态性分析及其在微生物学中的应用[J].国外医学.临床生物化学与检验学分册, 2001,(05).
    [7].王世伟,齐小辉,刘军,马玉超,周东坡. AFLP技术在微生物分类鉴定、基因标定及遗传多样性方面的应用[J].生物技术, 2003,(05).
    [8].吴少慧,张成刚,张忠泽.RAPD技术在微生物生物多样鉴定中的应用[J].微生物学杂志,2000,20(2): 44-47.
    [9].周铭涛,高洪,肖鹏,周辉. PCR-SSCP技术应用研究进展[J].动物医学进展.2009,(06).
    [10].王岩,沈锡权,吴祖芳,翁佩芳. PCR-SSCP技术在微生物群落多态性分析中的应用进展[J].生物技术.2009,(03).
    [11].郑学礼,胡孝素,陈建平,等.我国不同流行区内脏利什曼原虫分离株kDNA的PCR-SSCP分析[J].中国寄生虫学与寄生虫病杂志. 1999, 17 (6) :346.
    [12].赵阳国,任南琪,王爱杰,赵秋实,商淮湘. SSCP技术在微生物群落监测中的应用[J].中国给水排水, 2004,(11).
    [13].卫青.玛珥湖[J].大自然探索, 2003,(05).
    [14].张家荣.水面无落叶的湖光岩——中国惟一的玛珥湖[J].中外文化交流, 2002,(03).
    [15].田永元.湖光岩、大川和我[J].鸭绿江(上半月版), 2001,(04).
    [16].牟雪江.触摸湖光岩之谜[J].中国石油企业, 2009,(10).
    [17].廖乃钦.神奇的中国玛珥湖——湖光岩[J].城建档案, 2002,(02).
    [18].李承森.玛珥湖——一种特殊的火山口湖[J].大自然, 2008,(03).
    [19].刘强,顾兆炎,刘嘉麒,游海涛,吕厚远,储国强,祁向雷, J?rg F W Negendank, Jens Mingram, Georg Schettler. 62 kaBP以来湖光岩玛珥湖沉积物有机碳同位素记录及古气候环境意义[J].海洋地质与第四纪地质, 2005,(02) .
    [20].王淑云,吕厚远,刘嘉麒, J?rg F W Negendank.湖光岩玛珥湖高分辨率孢粉记录揭示的早全新世适宜期环境特征[J].科学通报, 2007,(11).
    [21].韩玉林,谈晓冬,陈忠,向荣,张兰兰.湖光岩玛珥湖表层沉积物磁性粒度特征及其来源[J].科学通报, 2010,(03).
    [22].熊正烨,唐强,陈劲民,梁学敏,马卫江.湖光岩砂石的释光剂量研究[A].第二届全国核技术及应用研究学术研讨会大会论文摘要集[C], 2009.
    [23].吕厚远,刘嘉麒,储国强,顾兆炎, Negendank J, Schettler G, Mingram J.末次冰期以来湛江湖光岩玛珥湖孢粉记录及古环境变化[J].古生物学报, 2003,(02).
    [24].郭正府,刘嘉麒,储国强,J.F.W.Negendank.湖光岩玛珥湖火山灰的成分及其来源[J].第四纪研究, 2002,(03).
    [25].刘嘉麒,吕厚远, J. Negendank, J. Mingram,骆祥君,王文远,储国强.湖光岩玛珥湖全新世气候波动的周期性[J].科学通报, 2000,(11).
    [26].王文远,刘嘉麒,刘东生,彭平安,J.Negendank.末次冰消期热带湖光岩玛珥湖古季风变化记录[J].地学前缘, 2000,(S2) :532.
    [27].郭潇,雷晓凌.湖光岩水域细菌的纤维素降解活性及抑菌活性的研究[J].现代食品科技, 2009,(10) .
    [28].刘颖,陈倩娜.湛江湖光岩土壤放线菌分离与抗菌活性测定[J].热带农业工程, 2009,(01) .
    [29].郭潇.湖光岩水域细菌的群落结构与功能的研究[D].广东海洋大学,2010.
    [30].丁燏,简纪常,吴灶和,柏莉莉,刘剑峰,林丹,余军.湖光岩拮抗菌的研究[J].海洋与湖沼, 2009,(03) .
    [31].郭潇,等.湖光岩水体与泥层中真菌的分离鉴定及抗菌活性研究[J].现代食品科技.2010(2):145-148.
    [32].张才学,孙省利,谢少英,谢伟良,詹冬玲等.湖光岩玛珥湖的浮游植物[J].水生生物学报,2008(5):620-620.
    [33].纪建达.湖光岩玛珥湖浮游细菌与古菌多样性的研究[D].广东海洋大学,2010.
    [34].吴兰.鄱阳湖水体细菌物种多样性研究[D].南昌大学,2009.
    [35].孙鑫鑫,刘惠荣,冯福应,孟建宇,李蘅,玛丽娜.乌梁素海富营养化湖区浮游细菌多样性及系统发育分析[J].生物多样性.2009(5).
    [36].柴丽红,崔晓龙,彭谦,徐丽华,姜成林,王涛,李文均,段若玲.青海两盐湖细菌多样性研究[J].微生物学报. 2004,(03) .
    [37].吴根福,吴雪昌,吴洁,宣晓冬.杭州西湖水域微生物的生态调查[J].水生生物学报. 2000,(06) .
    [38].王国惠.东湖细菌生理类群的分布与主要环境因素的相关性[J].华北水利水电学院学报. 1996(4).
    [39].吴鑫,奚万艳,杨虹.太湖梅梁湾冬季浮游细菌的多样性[J].生态学杂志. 2006,(10).
    [40].冯胜,高光,秦伯强,陈默.太湖北部湖区水体中浮游细菌的动态变化[J].湖泊科学. 2006,(06).
    [41].范玉贞.衡水湖微生物菌群分布的研究[J].衡水学院学报. 2009,(04) .
    [42].陈皓文.桑沟湾细菌的研究[J].海岸工程, 2001,(01) .
    [43].范华鹏,薛燕芬,曾艳,周培瑾,马延和.西藏扎布耶茶卡盐碱湖古菌多样性的非培养技术分析[J].微生物学报, 2003,(04).
    [44].邢鹏,孔繁翔,高光.太湖浮游细菌种群基因多样性及其季节变化规律[J].湖泊科学, 2007,(04).
    [45].陆婷,梁小兵,曾佳,张伟.贵州高原湖泊细菌和病毒分布特征及影响因素.生态学杂志2009(10):1996-2001.
    [46].万欢,吴根福.京杭大运河杭州段水体中微生物生理群生态分布研究[J].农业环境科学学报, 2006,(06) .
    [47].柴晓娟.镇江内江水体功能微生物菌群生态调查及应用研究[D].江苏大学, 2007 .
    [48].胡俊.用不依赖培养的方法研究西湖水域微生物的多样性[D].浙江大学, 2007 .
    [49].孙超.新疆地区若干盐湖基于16S rDNA的原核微生物多样性研究[D].浙江大学, 2007.
    [50].陈琳.苏州河微生物生态学初步研究[D].上海师范大学, 2003.
    [51].金冬雁,黎孟枫等译.分子克隆实验指南[M].第二版.北京:科学出版社,49-55.
    [52].焦振泉,刘秀梅.16s rRNA序列同源性分析与细菌系统分类鉴定[J].国外医学.卫生学分册,1998(1).
    [53].雷正瑜.16SrDNA序列分析技术在微生物分类鉴定中的应用.湖北生态工程职业技术学院学报[J].2006(1).
    [54].吴根福.杭州西湖水域微生物结构与功能的研究[D].浙江大学,2004.
    [55].万欢.京杭大运河杭州段水体中微生物结构与功能的研究[D].浙江大学,2006.
    [56].张守印,郭学青等. 16S rRNA基因克隆文库用于菌群分析的效能研究和评价[J].第三军医大学学报. 2008(16).
    [57].陈彬,马超,周世宁,卜海涛,蒋思萍,李晖.尼珍西藏羊八井废弃地热热井的细菌多样性.微生物学报[J]. 2009(2).
    [58].郑雪松,杨虹,李道棠,韩文卿.基因间隔序列( ITS)在细菌分类鉴定和种群分析中的应用[J].应用与环境生物学报. 2003,9 (6) :678~684.
    [59].焦振泉,刘秀梅.细菌分类与鉴定的新热点: 16S-23S rDNA间区.微生物学通报[J].2001(1).
    [60].周惠,杜延平,屈良鹄.沙门氏菌rDNA ISR序列测定及特征分析.中山大学学报[J]. 1999,38(1):79-82.
    [61].李君文,晁福寰.一种新的细菌学检验与鉴定方法—PCR扩增16s~23s rRNA区间多态性分析[J].中国卫生检验杂志. 1998 ,8 (4) :252.
    [62].史秀全,李君文,晃福寰. PCR检测肠道致病菌模板的选择及其应用[J].中国卫生检验杂志. 1998,8 (3) :182.
    [63].吴兰,葛刚,李思光,万金保.环境基因组技术在微生物多样性研究中的应用[J].环境科学与技术. 2008,(12).
    [64].曹晔,秦玲.结核分枝杆菌rpoB基因的套式PCR扩增及其DNA测序[J].上海医学检验杂志, 2000,(03).
    [65]. Vigdisetal,Hostein G,FrideL.D. l990. High diversity in DNA of soil bacteria. Appl. Environ. Microbiol. 56:782~787.
    [66]. Hideyuki Tamaki, Yuji Sekiguchi, Satoshi Hanada, et al. Comparative Analysis of Bacterial Diversity in Freshwater Sediment of a Shallow Eutrophic Lack by Molecular and Improved Cultivation-Based Techniques[J]. Appl. Environ. Microbiol. 2005,71:2162-2169.
    [67]. HU H Y, LIM B R, GOTO N, et al. Analytical precision and repeatability of respiratory quinones for quantitative study of microbial community structure in environmental samples[J]. Journal of Microbiological Methods, 2001, 47:17-24.
    [68]. SAITOU K, NAGASAKI K, YAMAKAWA H, et al. Linear relation between the amount of respiratory quinones and the microbial biomass in soil[J]. Soil Science Plant Nutrition, 1999, 45: 775-778.
    [69]. GREEN C T, SCOW K M. Analysis of phospholipid fatty acids(PLFA) to characterize microbial communities in aquifers[J]. Hydrogeology Journal, 2000, 8:126-141.
    [70]. WERKER A G, BECKER J, HUITEMA C. Assessment of activated sludge microbial community analysis in full-scale biological waster-water treatment plants using patterns of fatty acid isopropyl es-ters(FAPEs) [J]. Water Research, 2003, 37(9): 2 162-2 172.
    [71]. HILL G T, MITKOWSKI N A, ALDRICH-WOLFE, et al. Methods for assessing the composition and diversity of soil microbial communities[J]. Applied Soil Ecology, 2000, 15: 25-36.
    [72]. HOLBEN W E, HARRIS D. DNA-based monitoring of total bacterial community structure in environmental samples[J]. Molecular Ecology, 1995, 4: 627-631.
    [73]. VIVES-REGO J, LEBARON P, NEBE-VON CARON G. Current and future applications of low cytometry in aquatic microbiology[J]. FEMS Microbiology Reviews, 2000, 24:429-448.
    [74]. ANNETTE M, ULFB G. Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms[J]. Journal of Microbi-ological Methods, 2000, 41: 85-112.
    [75]. MUYZER G. DGGE/TGGE: a method for identifying genes from natural ecosystems[J]. Current Opinion in Microbiology, 1999, 2:317-322.
    [76]. HEUER H, WIELAND G, SCHONFELD J, et al. Bacterial community profiling using DGGE or TGGE analysis[J]. Environmental Molecular Microbiology: Protocols and Applications, 2001, 9:177-190.
    [77]. BRUGGEMANN J, STEPHEN J R, CHANG Yun-juan, et al. Competitive PCR–DGGE analysis of bacterial mixtures an internal standard and an appraisal of template enumeration accuracy[J]. Journal of Microbiological Methods, 2000, 40: 111-123.
    [78]. FELSKE A, AKKERMANS A D L. Spatial homogeneity of abundant bacterial 16S rRNAmolecules in Grassland soils[J]. Microbial Ecology, 1998, 36:31-36.
    [79]. (?)VREAS L, TORSVIK V. Microbial diversity and community structure in two different agricultural soil communities[J]. Microbial Ecology, 1998, 36: 303-315.
    [80]. Muyzer qde Weel E C, Uittrlindern A GProfiling of complex microbial populations by denaturing gradient gelelectrophoresis analysis of polymerase chain reach on amplified genes coding for 16S rRNA [J].Appl. Environ. Microbio1. 1993, 59(3):695~700.
    [81]. Seungha Kang. Stuart E. Denman. Mark Morrison. Zhongtang Yu. Chris S. McSweeney. An Efficient RNA Extraction Method for Estimating Gut Microbial Diversity by Polymerase Chain Reaction. Curr Microbiol[J]. 2009,58:464-471.
    [82]. SMIT E, LE EFLANG P, WERMARS K. Detection of shifts in microbial community structure and diversity in soil caused by copper contamination using amplified ribosomal DNA restriction analysis[J]. FEMS Microbiology Ecology, 1997, 23(3): 249-261.
    [83]. MCCAIG A E, GLOVER L A, PROSSER J I. Molecular analysis of bacterial community structure and diversity in unimproved and improved upland grass pastures[J]. Applied Environmental Microbiology, 1999, 65: 1 721-1 730.
    [84]. Wagner R .The regulation of ribosomal RNA synthesis and bacterial cell growth. Arch Microbiol .1994(161):100–109.
    [85]. Orita M, Iwahana H, Kanazawa H, etal. Detection of polymorphisms of human DNA by gel electrophoresis as singlestrand conformation polymorphisms[J]. Proc Natl Acad Sci USA, 1989, 86(8): 2766~2770.
    [86]. Lee D- H, Zo Y G, Kim S J. Nonradioactive method to study genetic profiles of natural bacterial communities by PCR single strand conformation polymorphism [ J ]. Appl Environ Microbiol, 1996, 62:3112~3120.
    [87]. Caroli A , Chiatti F, Chessa S, et al. Characterization of the casein gene complex in West African goats and description of a new alpha ( s1)-casein polymorphism [J]. J Dairy Sci, 2007,90 (6) :2989~2996.
    [88]. Xiao L, Stevens M, Gasser R B, et al. Specific and genotypic identification of Cryptosporidium from a broad range of host species by nonisotopic SSCP analysis of nuclear ribosomal DNA[J]. Electrophoresis, 2007, 28 (16):28182~2825.
    [89]. Pirrung, M., Fischer, C., Büchel, G., Gaupp, R., Lutz, H., Neuffer, F.O., 2003. Lithofacies succession of maar crater deposits in the Eifel area (Germany). Terra Nova, 15(2), 125-132.
    [90]. Büchel, G., Pirrung, M., 1993. Tertiary Maars of the Hocheifel Volcanic Field, Germany. In: J.F.W. Negendank and B. Zolitschka (Editors), Paleolimnology of European Maarlakes. Lecture Notes in Earth Sciences. Springer-Verlag, 447-465.
    [91]. Negendank, J.F.W., Zolitschka, B., 1993. Maars and maar lakes of the Westeifel Volcanic Field.In: J.F.W. Negendank and B. Zolitschka (Editors), Paleolimnology of European Maarlakes. Lecture Notes in Earth Sciences. Springer-Verlag, 61-80.
    [92]. Lutz, H..A dynamic model for the meromictic Eckfeld Maar lake (Middle Eocene, Germany) based on biostratinomical and sedimentological data, Second International Maar Conference, Budapest, Hungary, Occasional Papers of the Geological Institut of Hungary, 2004,72.
    [93]. Ramrath, A., Zolitschka, B., Wulf, S., Negendank, J.F.W., 1999. Late Pleistocene climatic variations as recorded in two Italian maar lakes (Lago di Mezzano, Lago Grande di Monticchio). High-Resolution Records from European Lakes. Quat. Sci. Rev., Special Issue, 977-992.
    [94]. Molina Garza, R.S., B?hnel, H., Pérez, R., Escanero, A., Antretter, M., 2000, The potential of maar lakes from Valle de Santiago volcanic field, Mexico, for geomagnetic secular variation and paleoclimate studies: Preliminary results, International Maar Conference, Daun/Vulkaneifel, Germany, Terra Nostra, 144-148.
    [95]. Roberto Cioni, Massimo Guidi, Brunella Raco, Luigi Marini and Barbara Gambardella. Water chemistry of Lake Albano (Italy). Journal of Volcanology and Geothermal Research. 2003: 179-195.
    [96]. Lindstr? m E S. Investigating influential factors on bacterio Plankton community eom Position: results from a field study of five mesotrophic lakes [J].Microb. Ecol. 2001, 42:598~605.
    [97]. Casamayor E O, Schafer H, Baneras L, et al. Identification of and spatiotemporal differences between microbial assemblages from two neighboring sulfurous lakes: comparison by microscopy and denaturing gradient gel electrophoresis[J]. Appl. Environ. Microbio1.2000, 66(2): 499~508.
    [98]. Hiorns W D, Methe'B A, Nierzwicki-Bauer S A, et al. Bacterial diversity in Adirondack mountain lakes as revealed by 16S rRNA gene sequences[J]. Appl. Environ. Microbiol.1997, 63(7):2957~2960.
    [99]. Konopka A, Bercot T, Nakatsu C. Bacterioplankton community diversity in a series of thermally stratified lakes [J]. Microb. Ecol. 1999, 38:126~135.
    [100]. Yannarell A C, Kent A D, Lauster G L., et al. Temporal patternsthree temperate lakes of different trophic status in bacterial communities [J]. Microb. Ecol. 2004, 46:391~405.
    [101]. Yannarell A C, Triplett E W. Within-and between-lake variability in the composition of bacterioplankton communities: investigations using multiple spatial scales [J]. Appl. Environ. Microbiol. 2004, 70(1):214~223.
    [102]. Zwart G, Crump B C, Kamst-van Agterveld M P, et al.升pical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers [J]. Aquat Microb Ecol, 2002, 28: 141~155.
    [103]. López-García P, Kazmierczak J, Benzerara K, et al. Bacterial diversity and carbonateprecipitation in the giant microbialites from the highly alkaline Lake Van, Turkey[J]. Extremophiles. 2005, 9(4):263~274.
    [104]. Humayoun S B, Bano N, Hollibaugh J T. Depth Distribution of Microbial Diversity inMono Lake,a Meromictic Soda Lake in California [J]. Appl. Environ. Microbio1, 2003, 69(2):1030~1042.
    [105]. Wever A D, Muylaert K, Van der Gucht K, et al. Bacterial Community Composition in LakeTanganyika: Vertical and Horizontal Heterogeneity[J]. Appl. Environ. Microbiol, 2005, 71(9): 5029~5037.
    [106]. Anthony C, Yannarell A C, Triplett E. Geographic and Environmental Sources of Variation in Lake Bacterial Community Composition [J].Appl.Environ. Microbiol. 2005, 71(1):227~239.
    [107]. Hongchen Jiang, Hailiang Dong, Gengxin Zhang, Bingsong Yu, Leah R. Chapman, and Matthew W. Fields et al. Microbial Diversity in Water and Sediment of Lake Chaka, an Athalassohaline Lake in Northwestern China [J]. App(. Environ. Microbiol. 2006, 3832~3845.
    [108]. Ma Y, Zhang W, Xue Y, et al. Bacterial diversity of the Inner Mongolian Baer Soda Lake as revealed by 16S rRNA gene sequence analyses [J]. Extremophiles. 2004, 8:45~511.
    [109]. Stefan Eichler, Markus G. Weinbauer, Katja Dominik and Manfred G. H?FLE. Extraction of total RNA and DNA from bacterioplankton. Molecular Microbial Ecology Manual[M](second edition). Kluwer Academic Publishers. Printed in the Netherlands, 2004:103-120.
    [110]. Ogram A, Sayler G S, Barkey T, et al. The extraction and purification of microlbial DNA from sediments[J]. J.Microbial. 1987, 7:57-66.
    [111]. Rochelle P A, Fry J C, Parkes R J, et al, DNA extraction for 16SrRNA gene analysis todetermine genetic diversity in deep sediment communities[J]. FEMS Microbiol Lett. 1992,59-65.
    [112]. Stefan Eichler, Markus G. Weinbauer, Katja Dominik and Manfred G. H?FLE. Extraction of total RNA and DNA from bacterioplankton. Molecular Microbial Ecology Manual[M](second edition). Kluwer Academic Publishers. Printed in the Netherlands, 2004:103-120.
    [113]. Markus G. Weinbauer, Ingo Fritz, Dirk F. Wenderoth, and Manfred G. H?fle.Simultaneous Extraction from Bacterioplankton of Total RNA and DNA Suitable for Quantitative Structure and Function Analyses. Applied and Environmental Microbiology. 2002(3):1082-1087.
    [114]. Thearith Koeuth,et a1,Differential Subsequence Conservation of Interspersed Repetitive Streptococcus pneumoniae BOX Elements in Diverse Bacteria[J].Genome Research,1995(5): 408-418.
    [115]. Ward DM, Weller R, BatesonMM. 16SrRNA sequences reveal numerous uncultured microorganisms in a naturalcommunity [J]. Nature, 1990, 345:3673-3682.
    [116]. Rebecca J. Case, Yan Boucher, Ingela Dahllo¨f, Carola Holmstro¨m, W. Ford Doolittle, and Staffan Kjelleberg. Use of 16S rRNA and rpoB Genes as Molecular Markers for MicrobialEcology Studies[J]. Applied and Environmental Microbiology, 2007, 73(1):278-288.
    [117]. Melissa M. F., Jane T., et al. Captured Diversity in a Culture Collection: Case Study of the Geographic and Habitat Distributions of Environmental Isolates Held at the American Type Culture Collection Appl Environ Microbiol, 2005, 71 (6): 2813~2823.
    [118]. Casamayor E O, Schafer H, Baneras L, et al. Identification of and spatio~temporal differences between microbial assemblages from two neighboring sulfurous lakes: comparison by microscopy and denaturing gradient gel electrophoresis[J]. Appl. Environ. Microbio1.2000, 66(2): 499~508.
    [119]. Hiorns W D, Methe'B A, Nierzwicki-Bauer S A, et al. Bacterial diversity in Adirondack mountain lakes as revealed by 16S rRNA gene sequences[J]. Appl. Environ. Microbiol.1997, 63(7):2957~2960.
    [120]. Konopka A, Bercot T, Nakatsu C. Bacterioplankton community diversity in a series of thermally stratified lakes [J]. Microb. Ecol. 1999, 38:126~135.
    [121]. Yannarell A C, Kent A D, Lauster G L., et al. Temporal patternsthree temperate lakes of different trophic status[J]. Microb. Ecol.in bacterial communities in 2004, 46:391~405.
    [122]. Yannarell A C, Triplett E W. Within-and between-lake variability in the composition of bacterioplankton communities: investigations using multiple spatial scales [J]. Appl. Environ.Microbiol. 2004, 70(1):214~223.
    [123]. Tamaki H, Freshwater Sekiguchi Sediment Y, Hanada S, etal. Comparative Analysis of Bacterial Diversity in of a Shallow Eutrophic Lake CultivationBased Techniques[J]. Appl. Environ. Microbiol. by Molecular and Improved 2005, 71(4):2162~2169.
    [124]. Jiang H, Dong H, Zhang G, et al. Microbial Diversity in Water and Sediment of Lake Chaka, an Athalassohaline Lake in Northwestern China [J]. App. Environ. Microbiol. 2006, 3832~3845.
    [125]. López-García P, Kazmierczak J, Benzerara K, et al. Bacterial diversity and carbonate precipitation in the giant microbialites from the highly alkaline Lake Van, Turkey[J]. Extremophiles. 2005, 9(4):263~274.
    [126]. Ma Y, Zhang W, Xue Y, et al. Bacterial diversity of the Inner Mongolian Baer Soda Lake as revealed by 16S rRNA gene sequence analyses [J]. Extremophiles. 2004, 8:45~51.
    [127]. Humayoun S B, Bano N, Hollibaugh J T. Depth Distribution of Microbial Diversity inMono Lake, a Meromictic Soda Lake in California [J]. Appl. Environ. Microbio1, 2003, 69(2):1030~1042.
    [128]. Tamaki H, Sekiguchi Y, Hanada S, et al.Comparative Analysis of Bacterial Diversity in Freshwater Sediment of a Shallow Eutrophic Lake by Molecular and Improved CultivationBased Techniques[J]. Appl. Environ. Microbiol.2005, 71(4):2162~2169.
    [129]. Martin Allgaier and Hans-Peter Grossart .Diversity and Seasonal Dynamics of Actinobacteria Populations in Four Lakes in Northeastern Germany. Applied and Envornment Microbiology[J].2006, 72(5):3489-3497.
    [130]. Wever A D, Muylaert K, Van der Gucht K, et al. Bacterial Community Composition in LakeTanganyika: Vertical and Horizontal Heterogeneity[J]. Appl. Environ. Microbiol, 2005, 71(9): 5029~5037.
    [131]. Kenerly M E, Janc M. J Bacterio l, M E Kenerley, E A Morgan, L Post, L Lindahl, and M Nomura. Characterization of hybrid plasmids carrying individual ribosomal ribonucleic acid transcription units of Escherichia coli. 1977, 132: 931-949.
    [132]. Leblond-Bourget N, Philippe H, Mangin I, Decaris B. 16S rRNA and 16S to 23S internal transcribed spacer sequence analyses reveal inter - and intraspecific Bifido bacterium phylogeny. Int J S yst Bacteriol, 1996 , 46 : 102-111.
    [133]. Dmitriy V. Volokhov. Joseph George. Sue X. Liu. Pranvera Ikonomi. Christine Anderson. Vladimir Chizhikov. Sequencing of the intergenic 16S-23S rRNA spacer (ITS) region of Mollicutes species and their identification using microarray-based assay and DNA sequencing. Applied Microbiology and Biotechnology. 2008,71:680-698.
    [134]. J.F. Humbert, D. Duris-Latour, B. Le Berre, H. Giraudet and M.J. Salencon. Genetic Diversity in Microcystis Populations of a French Storage Reservoir Assessed by Sequencing of the 16S-23S rRNA Intergenic Spacer[J]. Microbial Ecology, 2005,49(2).
    [135]. Dmitriy V. Volokhov. Joseph George. Sue X. Liu .Pranvera Ikonomi. Christine Anderson .Vladimir Chizhikov. Sequencing of the intergenic 16S-23S rRNA spacer (ITS) region of Mollicutes species and their identification using microarray-based assay and DNA sequencing[J]. Appl Microbiol Biotechnol. 2006, 71(5):680-98.
    [136]. MCCAIG A E, GLOVER L A, PROSSER J I. Molecular analysis of bacterial community structure and diversity in unimproved and improved upland grass pastures[J]. Applied Environmental Microbiology, 1999, 65: 1721-1730.
    [137]. SMIT E, LEEFLANG P, WERMARS K. Detection of shifts in microbial community structure and diversity in soil caused by copper contamination using amplified ribosomal DNA restriction analysis[J]. FEMS Microbiology Ecology, 1997, 23(3): 249-261.
    [138]. Nowak A, Burkiewicz A, Kur J. PCR differentiation of seventeen genspecies of Acinetobacter [J]. F EMS Microbiol Lett, 1995, 126:181.
    [139]. Hermans PWM, Sluijter M, Hooyenboezem T, et al. Comparative study of five different DNA fingerprint techniques for molecular typing of streptococcus pneumoniae strains[J]. J ClinMicrobial, 1995, 33:1606.
    [140]. Mollet C, Drancourt M, Raoult D. rpoB sequence analysis as a novel basis for bacterial identification. Mol Microbiol, 1997, 26:1005-1011.
    [141]. Peixoto RS, da Costa Coutinho HL, Rumjanek NG, et al. Use of rpoB and 16S rRNA genes toanalyse bacterial diversity of a tropical soil using PCR and DGGE. Lett Appl Microbiol, 2002, 35:316-310.
    [142]. Jang-Seu Ki, Rui Zhang, Wen Zhang, Yi-Li Huang, Pei-Yuan Qian. Analysis of RNA Polymerase Beta Subunit (rpoB) Gene Sequences for the Discriminative Power of Marine Vibrio Species[J]. Microb Ecol. 2009, 58(4):679-91.
    [143]. Kwan Soo Ko, Hae Kyung Lee, Mi-Yeoun Park, Keun-Hwa Lee, Yeo-Jun Yun, So-Yon Woo, Hiroshi Miyamoto, and Yoon-Hoh Kook. Application of RNA Polymeraseβ-Subunit Gene (rpoB) Sequences for the Molecular Differentiation of Legionella Species[J]. Journal of Clinical Microbiology, 2002.40(7).
    [144]. Michel Drancourt, Didier Raoult. rpoB Gene Sequence-Based Identification of Staphylococcus Species[J]. J Clin Microbiol. 2002, 40(4):1333-1338.
    [145]. Cinzia Marianelli, Franco Ciuchini, Michela Tarantino,Paolo Pasquali, Rosanna Adone。Molecular characterization of the rpoB gene in Brucella species: new potential molecular markers for genotyping.Microbes Infect[J]. 2006, 8(3):860-865.
    [146]. Muyzer G,E C D Waal,A G Uitterlinden。Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA [J].Appl Environ Microbiol. 1993, 59:695-700.
    [147]. Peixoto RS, da Costa Coutinho HL, Rumjanek NG, et al. Use of rpoB and 16S rRNA genes to analyse bacterial diversity of a tropical soil using PCR and DGGE. Lett Appl Microbiol, 2002, 35:316-310.
    [148]. Jang-Seu Ki & Rui Zhang & Wen Zhang & Yi-Li Huang Pei-Yuan Qian. Analysis of RNA Polymerase Beta Subunit (rpoB) GeneSequences for the Discriminative Power of Marine Vibrio Species. Micribial Ecology[J]. 2009,58:4679-4691.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700