蓝细菌血红蛋白基因(CHB)在细菌、酵母及植物中的功能鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油菜作为世界范围内主要的油料作物,是食用植物油的主要来源,其饼粕是主要的饲料。近年来菜籽油作为生物能源被大量应用于化工、能源等领域,迫使人们通过不断改良油菜品质,以增加油菜产量。涝渍危害严重影响油菜正常生长发育造成减产,涝渍时间过长还会导致植物死亡从而造成绝产。因此,获得一种涝渍抗性油菜提高产量具有十分重要的意义。
     在微生物工业中供氧不足已成为提高产品产量的主要限制因素之一。运用基因工程改造微生物是解决上述问题的有效策略和手段。
     血红蛋白在动物体中的生理功能主要是结合氧并协助其运输,从而促进机体中氧的供应、呼吸链电子流量、ATP酶活力等;血红蛋白在微生物体中可以促进菌体的生长、蛋白质的合成、代谢产物的产生等。
     我们将蓝细菌血红蛋白基因(CHB)分别转入大肠杆菌、酿酒酵母、拟南芥及油菜中鉴定其功能,主要研究内容和结论如下:
     1.构建了原核表达载体pET30a-CHB,在大肠杆菌中进行了融合表达。Western blotting证明了pET30a-CHB在大肠杆菌BL21中表达的重组蛋白确实为His-CHB融合蛋白。分别在低氧和正常情况下测定转基因菌株和对照菌株的生长曲线,发现CHB基因能够促进大肠杆菌的生长,并能增加其稳定期的菌体量。
     2.构建了酵母表达载体pYES2-CHB,用RT-PCR鉴定其在酿酒酵母中的表达,测量转基因菌株和对照菌株的生长曲线,发现CHB基因能够促进酵母的生长。用气相色谱和薄层层析测定其脂肪酸含量和成份变化,结果发现转基因菌株的脂肪酸有所下降,但并没有引起磷脂的变化。
     3.构建了植物表达载体pCAMBIAl300-CaMV35S-CHB转化农杆菌GV3101,然后转化拟南芥,利用抗生素筛选转基因植株,PCR鉴定,得到了T3代纯系种子。在植株生长过程中,转基因植株生长比较旺盛,开花期提前,生长周期缩短。
     4.将植物表达载体pCAMBIA1300-CaMV35S-CHB转化农杆菌LBA4404,鉴定成功后转化甘蓝型油菜宁油16,使用抗生素浸泡种子法筛选转基因植株,RT-PCR鉴定其在油菜中的表达。CHB的表达能够使转基因植株种子提前萌发,增加耐涝力,并且能使花期提前,缩短油菜的生长周期。
Rapeseed is a worldwide main oil crop,its oil is for cook,and its cake is for feeding the animal.In recent years,the oil quality is continually refined and gradually applied in chemical industry,and bio-energy.Submergence stress as a result of flooding for days or longer often compromises plant growth and dramatically decreases the crop yields.Furthermore,a prolonged submergence treatment can lead to the death of plant.Therefore,the plant's tolerance to flooding/submergence stress is important trait for crop.
     Oxygen has become one of the major constraint factors to increase yield in the microbial industry.Using genetically engineered microorganisms is an effective strategy to solve these issues.
     Hemoglobin in animal cell can bound and transport oxygen in order to improve provision of oxygen,fluence of electrons in respiratory chain,vigor of ATPase;and hemoglobin in microbacteria can promote growth of microbacteria,synthesis of protein and production of metabolite.
     We have transformed CHB gene into Escherichia coli BL21,Saccharomyces cerevisia,Arabidopsis thaliana and Brassica napus and identified the functions.The major results are as follows:
     1.CHB gene was ligated into the prokaryotic expression vector pET30a and expressed in Escherichia coli BL21.CHB was successfully expressed in E.coli(BL21 strain) as a fusion protein.This protein was further confirmed by Western blot using anti-6 x His monoclonal antibody.The growth curve of Escherichia coli BL21 was measured in both hypoxia and enough oxygen conditions.The results showed that the CHB gene can not only enhance the growth speed of bacteria but also increase the yield of bacteria both in hypoxia and enough oxygen conditions.
     2.CHB gene was ligated into the yeast expression vector pYES2 and expressed in the protease-A-deficient(pep4) strain of Saccharomyces cerevisia.CHB expression was confirmed by reverse transcriptase-polymerase chain reaction(RT-PCR) using CHB-specific primers.The result of RT-PCR showed that the recombinant plasmid could be transcripted correctly in Saccharomyces cerevisia pep4.The growth curve of Saccharomyces cerevisia pep4 was measured.The result showed that CHB gene can enhance the growth speed of pep4.The expression of CHB decreased the yeast oil content,but did not change the yeast phospholipids.
     3.The vector pCAMBIA1300-CaMV35S-CHB was transformed into Arabidopsis thaliana mediated by A.tumefactiens strain GV3101.Transgenic plants were selected by antibiotic and identified with PCR.CHB can enhance growth and shorten life span of transgenic plants.
     4.The vector pCAMBIA1300-CaMV35S-CHB was transformed into Brassica napus mediated by A.tumefactiens strain LBA4404,and transgenic plants were identified with PCR analysis.Transcription of the gene was confirmed by reverse transcriptase-polymerase chain reaction(RT-PCR) using CHB primers.Results showed that the CHB gene was integrated into the genome of the host,transcribed and translated in B.napus.Heterologous expression of CHB reduced germination time, promoted plant growth and shorten life cycle.Furthermore,transgenic plants tolerated waterlogging.
引文
[1]Mushy D J,Production of novel oils in plants.Curr Opin Biotech,1999.10(2):p.175-180.
    [2]谭小力,郭蔼光,李殿荣,油菜应用的研究进展.中国农学通报,2002.18(3):p.77-81.
    [3]朱建强,程伦国,吴立仁,刘伟,油菜持续受渍试验研究.农业工程学报,2005.21:p.63-67.
    [4]盛绍学,金陵,杨赞林,合肥地区小麦不同生态类型品种灌浆进程的气象条件研究.小麦生态研究(M).浙江科学技术出版社,1990.p.349-358.
    [5]马晓群,陈晓艺,盛绍学,安徽省冬小麦渍涝灾害损失评估模型研究.自然灾害学报,2003.12(1):p.158-162.
    [6]王全海,刘琳,生物转基因技术对人类社会发展的影响.时珍国医国药,2009.20(10):p.2652-2655.
    [7]王关林,方宏筠,植物基因工程原理与技术.北京:科学出版社,1998.
    [8]马建华,孙毅,转基因油菜研究进展.分子植物育种,2006.4(2).
    [9]徐芳,熊爱生,彭日荷,侯喜林,姚泉洪,植物遗传转化的新方法:Floral Dip.中国蔬菜,2005.3:p.29-31.
    [10]Birgh R G,Plant transformation:problems and strategies for practical app lication.Annu Rev Plant Physiol Plant Mol Biol,1997.48:p.297-326.
    [11]Bent A F,Arabidopsis in planta transformation:uses,mechanisms,and prospects for transformation of other species.Plant Physiol,2000.124:p.1540-1547.
    [12]Wang W C,Mennon G,Hansen G,Development of a novel Agrobacterium mediated transformation method to recover transgenic Brassica napus L.plants.Plant Cell Rep,2003.22:p.274-281.
    [13]徐光硕,饶永强,陈雁,用in planta方法转化甘蓝型油菜.作物学报,2004.30(1):p.1-5.
    [14]Clough S J,Bent A F,Floral dip:A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana.Plant J,1998.16:p.735-743.
    [15]Miguel M T,Veronica L B,Jose Luis C P,Luis H E,Improving Transformation Efficiency of Arabidopsis thaliana by Modifying the Floral Dip Method.Plant Mol Biol Rep,2004.22:p.63-70.
    [16]Chung M H,Chen M K,Pan S M,Floral spray transformation can efficiently generate Arabidopsis transgenic plants.Transgenic Res,2000.9:p.471-476.
    [17]付绍红,牛应泽,杨洪全,韦献雅,表面活性剂silwetL-77对floral-dip转化甘蓝型 油菜效果的影响.分子植物育种,2004.2(5):p.661-666.
    [18]俞俊棠,唐孝宣,生物工艺学(下册)第二版.上海:华东理工大学出版社,1992.
    [19]吴奕,杨胜利,透明颤菌血红蛋白的表达及对基因工程菌的影响.生物工程学报,1996.12(2):p.177-182.
    [20]Hardison R C,A brief history of hemoglobins:Plant,animal,protist,and bacteria.Proc Natl Acad Sci USA,1996.93:p.5675-5679.
    [21]Wakabayashi S,Matsubara H,Webster D A,Primary sequence of a dimeric bacterial hemoglobin from Vitreoscilla.Nature,1986.322:p.481-483.
    [22]William R S,Thomas M S,Nelson H L,Maurice J M,John M L,Characterization of Vitreoscilla beggiatoides and Vitreoscilla filiforrnis sp.nov.,nom.rev.,and Comparison with Vitreoscilla stercoraria and Beggiatoa alba.Intern J of Systematic Bacterology,1986.36:p.302-313.
    [23]Khosla C,Bailey J E,The Vitreoscilla hemoglobin gene:molecular cloning,nucleotide sequence and genetic expression in Escherichia coli.Mol Gen Genet,1988.214(1).
    [24]Khosla C,Curtis J E,DeModena J,Expression of recombinant proteins in Escherichia coli using an oxygen-responsive promoter.Biotechnol,1990.8(9):p.849-853.
    [25]Meenal J,Shekhar M,Kanak L D,Hemoglobin Biosynthesis in Vitreoscilla stercoraria DW:Cloning,Expression,and Characterization of a New Homolog of a Bacterial Globin Gene.Appl.Environ.Microbiol,1998.64:p.2220-2228.
    [26]吴巧雯,崔洪志,郭三堆,透明颤茵血红蛋白基因的研究与应用.生物技术通报,2004.2:p.27-30.
    [27]Dikshit K L,Webster D A,Cloning,characterization and expression of the bacterial globin gene from Vitreoscilla in Escherichia coli.Gene,1988.70(2):p.377-386.
    [28]Herbers K,Sonnewald U,Manipulating metabolic partitioning in transgenic plants.Trends Biotechnol,1996.14(6):p.198-205.
    [29]Chen W,Hughes D E,Bailey J E,Intracellular expression of Vitreoscilla hemoglobin alters the aerobicmetabolism of Saccharomyces cerevisiae.Biotechnol Prog,1994.10(3):p.308-313.
    [30]Kallio P T,Kim D J,Tsai P S,Intracellular expression of Vitreoscilla hemoglobin alters Escherichia coli energy metabolism under oxygen-limited conditions.Eur J Biochem,1994.219(1-2):p.201-208.
    [31]Wilhelmson A,Kallio P T,Oksman-Caldentey K M,Nuutila A M,Expression of Vitreoscilla hemoglobin enhances growth of Hyoscyamus muticus hairy root cultures.Planta Med,2005.71(1):p.48-53.
    [32]Kallio P T,Bailey J E,Intracellular expression of Vitreoscilla hemoglobin(VHb)enhances total protein secretion and improves the production of alpha-amylase and neutral protease in Bacillus subtilis.Biotechnol Prog,1996.12(1):p.31-39.
    [33]Tsai P S,Rao G,Bailey J E,Improvement of Escherichia coli microaerobic oxygen metabolism by Vitreoscilla hemoglobin:new insights from NAD(P)H fluorescence and culture redox potential.Biotechnol Bioeng,1995.47:p.347-354.
    [34]熊爱生,彭日荷,李贤,范惠琴,姚泉洪,透明颤茵血红蛋白的研究进展.生物学杂志,2002.19(6):p.4-6.
    [35]凌永胜,杜娟,肖宇,胡晓倩,林忠平,透明颤菌血红蛋白的研究与发展前景.生物技术通报,2009.11:p.1-7.
    [36]吴奕,杨胜利,透明颤菌血红蛋白基因调控与功能的研究.生物工程学报,1997.13(1):p.1-5.
    [37]Tsai P S,Nageli M,Bailey J E,Intracellular expression of Vitreoscilla hemoglobin modifies microaerobic Escherichia coli metabolism through elevated concentration and specific activity of cychrome o.Biotechnol Bioeng,2002.79(5):p.558-567.
    [38]Tsai P S,Hatzimanikatis V,Bailey J E,Effect of Vitreoscilla hemoglobin dosage on microaerobic Escherichia coli carbon and energy metabolism.Biotechnol Bioeng,1996.49:p.139-150.
    [39]胡之璧,透明颤菌血红蛋白研究现状及其在中药中的应用展望.中西医结合学报,2005.3(5):p.337-341.
    [40]DeModena J A,Gutierrez S,Velasco J,The production of cephalosporin C by Acrenonium chrysogenum is improved by the intracellular expression of a bacterial hemoglobin.Biotechnology(N Y),1993.11(8):p.926-929.
    [41]文莹,宋渊,李季伦,透明颤菌血红蛋白在肉桂地链霉菌中的表达对其细胞生长及抗生素合成的影响.生物工程学报,2001.17(1):p.24-28.
    [42]Esteve-Nu(?)ez A,Caballero A,Ramos J L,Biological degradation of 2,4,6-trinitrotoluene.Microbiol Mol Biol R,2001.65(3):p.335-352.
    [43]So J,Stark B C,Webster D A,Pagilla K R,Enhancement of 2,4-dinitrotoluene biodegradation by Burkholderia sp.in sand bioreactors using bacterial hemoglobin technology.Biodegradation,2004.15:p.161-171.
    [44]Wilhelmson A,Hakkinen S T,Kallio P T,Oksman-Caldentey K M,Nuutila A M,Heterologous Expression of Vitreoscilla Hemoglobin(VHb) and Cultivation Conditions Affect the Alkaloid Profile of Hyoscyamus muticus Hairy Roots.Biotechnol Prog,2006.22(2):p.350-358.
    [45]Holmberg N,Lilius G,Bailey J E,Transgenic tobacco expressing Vitreoscilla hemoglobin exhibits enhanced growth and altered metabolite production.Nat Biotechnol,1997.15(3):p.244-247.
    [46]熊爱生,彭日荷,陈建民,李贤,姚泉洪,透明颤菌血红蛋白(VHb)基因合成及原核生物中的效应.上海农业学报,2000.16(3):p.19-24.
    [47]Aronen T S,Nikkanen T O,H(a|¨)ggman H M,The production of transgenic Scots pine (Pinus sylvestris L.) via the application of transformed pollen in controlled crossings.Plant Biotechnol J,2003.1(4):p.287-300.
    [48]Zhang B Y,Su X H,Li Y L Huang Q J,Zhang X H,Zhang L,Regeneration of vgb-transgenic Poplar(Populus alba × P.glandulosa) and the primary observation of Growth.J Agr Biotechnol,2005.13(3):p.288-293.
    [49]Schlatmann J E,Vinke J L,Ten Hoopen H J G,Heijnen J J,Relation between dissolved oxygen concentration and ajmalicine production rate in high-density cultures of Catharanthus roseus.Biotechnol Bioeng,1995.45:p.435-439.
    [50]B(u|¨)low L,Holmberg N,Lilius G,Bailey J E,The metabolic effects of native and transgenic hemoglobins on plants.Trends Biotechnol,1999.17:p.21-24.
    [51]Zhang L,Li Y J,Wang Z N,Xia Y,Chen W S,Tang K X,Recent developments and future prospects of Vitreoscilla hemoglobin application in metabolic engineering.Biotechnol Adv,2007.25:p.123-136.
    [52]Li X,Peng R H,Fan H Q,Xiong A S,Yao Q H,Cheng Z M,Li Y,Vitreoscilla hemoglobin overexpression increases submergence tolerance in cabbage.Plant Cell Rep,2005.23(10-11):p.710-715.
    [53]周壮志,周永刚,何朝族,莽克强,田颖川,cry3A和vhb基因在转基因马铃薯中的表达.生物化学与生物物理进展,2004.31(8):p.741-746.
    [54]毛自朝,胡鸢雷,钟瑾,王立霞,郭俊毅,林忠平,粪透明颤菌血红蛋白基因促进转基因矮牵牛在水培条件下生长并增强其抗涝能力.植物学报,2003.45(2):p.205-210.
    [55]Bolwell G P,Role of active oxygen species and NO in plant defence responses.Curr Opin Plant Biol,1999.2:p.287-294.
    [56]Dordas C,Rivoal J,Hill R D,Plant haemoglobins,nitric oxide and hypoxic stress.Ann Bot(Lond),2003.91:p.173-178.
    [57]Delledonne M,Xia Y,Dixon R A,Lamb C,Nitric oxide functions as a signal in plant disease resistance.Nature,1998.394:p.585-588.
    [58]Hill R D,What are hemoglobins doing in plants?.Can J Bot,1998.76:p.707-712.
    [59]Frey A D,Oberle B,Farres J,Kallio P T,Expression of Vitreoscilla haemoglobin in tobacco cell cultures relieves nitrosative stress in vivo and protects from NO in vitro.Plant Biotechnol J,2004.2:p.221-231.
    [60]Liu X J,Chen F,Cell differentiation and colony alteration of an edible terrestrial Cyanobacterium Nostoc flagelliforme in liquid suspension cultures.Folia Microbiol,2003.48(5):p.619-626.
    [61]Tandeau de Marsac N,Houmard J,Adaptation of cyanobacteria to environmental stimuli:new steps towards molecular mechanisms.FEMS Microbiol Rev,1993.104:p.119-190.
    [62]郭祥学,赵晖,施定基,徐旭东,茹炳根,小鼠金属硫蛋白在聚胞藻中的金属诱导表 达与纯化.生物工程学报,1998.14(4):p.405-411.
    [63]Wynn D D,Cyanobacteria in deserts - life at the limit.In Whitton BA and PottsM(eds)The ecology,of cyanobacteria,KluwerAcademic Publishers,Netherlands,2000.p.341-366.
    [64]Kaneko T,Tabata S,Complete genome structure of the unicellular cyanobacterium synechocystisn sp.PCC 6803.Plant Cell Physiol,1997.38(11):p.1171-1176.
    [65]Ikeuchi M,Trabata S,Synechocystis sp.PCC 6803-a useful tool in the study of the genetics of cyanobacteria.Phptosyn Res,2001.70(1):p.73-83.
    [66]Perutz M F,Regulation of oxygen affinity of hemoglobin:influence of structure of the globin on the heme iron.Ann Rev Biochem,1979.48:p.327-386.
    [67]Perutz M F,Structure and function of hemoglobin.Harvey Lect,1969.p.213-261.
    [68]Scott N L,Lecomte J T,Cloning,expression,purification and preliminary characterization of a putative hemoglobin from the cyanobacterium Synechocystis sp.PCC 6803.Protein Sci,2000.9:p.587-597.
    [69]谭小力,孔凡明,张丽丽,李娟,陈松,戚存扣,蓝细菌血红蛋白基因的克隆及其向甘蓝型油菜中的转化.作物学报,2009.35(1):p.66-70.
    [70]吴巧雯,崔洪志,郭三堆,透明颤茵血红蛋白基因的研究与应用.生物技术通报,2004.2:p.27-30.
    [71]Wang Z N,Xiao Y,Chen W S,Tang K X,Zhang L,Functional expression of Vitreoscilla hemoglobin(VHb) in Arabidopsis relieves submergence,nitrosative,photo-oxidative stress and enhances antioxidants metabolism.Plant Sci,2009.176:p.66-77.
    [72]于慧敏,沈忠耀,透明颤菌血红蛋白及其基因的研究进展.微生物学报,1999.39(5):p.478-482.
    [73]孟春,叶勤,邱荔,石贤爱,苏文金,郭养浩,透明颤菌血红蛋白基因表达对金色链霉菌生长代谢的影响.微生物学报,2002.42(4):p.418-424.
    [74]Sambrook J,Frith E F,Maniads J(金冬雁等译),分子克隆实验指南(第二版).北京:科学出版社,1993.
    [75]Hikmet G,Benjamin C S,Dale A W,Cell growth and oxygen uptake of Escherichia coli and Pseudomonas aeruginosa are differently effected by the genetically engineered Vitreoscilla hemoglobin gene.J Biotechnol,2001.85:p.57-66.
    [76]谭小力,戚存扣,张丽丽,孔凡明:陈松,伍娟,不同抗生素对油菜种子萌发的影响.江苏农业科学,2006.5:p.27-29.
    [77]谢得意,王惠萍,王付欣,冯复全,盐胁迫对棉花种子萌发及幼苗生长的影响.种子,2000.109(3):p.10-13.
    [78]Finch-Savage W E,C(?)me D,Lynn J R,Corbineau F,Sensitivity of Brassica oleracea seed germination to hypoxia:A QTL analysis.Plant Sci,2005.169:p.753-759.
    [79]赵卫东,郑文杰,刘垣,贺艳,种子萌发生测法快速检测抗草铵膦的转基因油菜.口岸卫生控制,2004.9(2):p.10-12.
    [80]Zelasco S,Reggi S,Calligari P,Balestrazzi A,Bongiorni C,Quattrini E,Delia G,Bisoffi S,Fogher C,Confalonieri M,Expression of the Vitreoscilla hemoglobin(VHb)-encoding gene in transgenic white poplar:plant growth and biomass production,biochemical characterization and cell survival under submergence,oxidative and nitrosative stress conditions.Mol.Breed,2006.17:p.201-216.
    [81]Mao Z C,Hu Y L,Zhong J,Wang L X,Guo J Y,Lin Z P,Improvement of the hydroponic growth and waterlogging tolerance of petunias by the introduction of vhb gene.Acta Bot.Sinica,2003.45:p.205-210.
    [82]王紫萱,易自力,卡那霉素在植物转基因中的应用及其抗性基因的生物安全性评价.中国生物工程杂志,2003.23(6):p.9-13.
    [83]徐茂军,转基因植物中卡那霉素抗性标记基因的生物安全性.生物学通报,2001.36(2):p.18-19.
    [84]王关林,方宏筠,植物基因工程(第二版).北京:科学出版社,2002:p.527-528.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700