不同声刺激模式所致的下丘神经元的掩蔽效应和恢复周期变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采用自由声场刺激,在动物下丘(inferior colliculus,IC)以细胞外记录等方法,用不同声刺激模式,在哺乳动物昆明小鼠(Mus musculus Km)和回声定位蝙蝠日本伏翼蝠(Pipistrellus abramus)的下丘记录到289个神经元,测定了不同声刺激模式对IC神经元的掩蔽效应、恢复周期(recovery cycle,RC)、频率调谐(frequency tuning)等反应特性的影响,并对这些实验结果进行了分析和讨论。主要研究结果如下:
     1.所做的小鼠IC神经元的弱噪声前掩蔽研究结果表明,掩蔽声使大部分神经元FTC锐化(p<0.01,n=25),并有随掩蔽声时程的延长而锐化程度增加的趋势(p<0.05)。通过计算神经元频率调谐曲线(frequency tuning curve,FTC)的反转斜率(inverse-slope,IS),发现弱噪声前掩蔽对高频边的抑制率明显高于低频边,大部分神经元的高频边反转斜率(IS_(high))减小,且有随掩蔽声时程延长而程度增强的趋势(p<0.01);而低频边反转斜率(IS_(low))则未观察到有规律的变化。另外,还观察到掩蔽声可使IC神经元对探测声反应的最小阈值(minimum threshold,MT)升高,且其幅度随掩蔽声时程的延长而增大(p<0.001,n=31)。
     2.为了探讨弱噪声前掩蔽对神经元频率调谐的作用机制,在记录过程中,向受噪声抑制的神经元电泳导入γ-氨基丁酸(γ-aminobutyric acid,GABA)能受体拮抗剂荷包牡丹碱(bicuculline,BIC),发现神经元FTC拓宽,再加入弱噪声后锐化的程度下降或弱噪声所致的前掩蔽效应完全被取消,在给40 ms弱噪声前掩蔽声刺激时,Q_(10)%(percent Q_(10) value,Q_(10)%)由导入BIC前的26.15±18.52%降至13.21±8.85%,Q_(30)%从39.85±24.27%降至17.89±13.78%;给80 ms弱噪声前掩蔽声刺激时,Q_(10)%从导入BIC前33.57±16.24%降至15.62±7.51%,Q_(30)%从52.64±23.61%降至26.98±12.77%。可见去GABA能抑制可部分或完全解除弱噪声引起的前掩蔽效应。
     3.蝙蝠作为一种主动生物声纳动物,借助听自己发声信号的回声来感知周围环境,其听中枢内的神经元必须具备处理脉冲-回声对(pulse-echo pair,P-E pair)的能力。对蝙蝠IC神经元做不同脉冲-回声对刺激模式下的恢复周期(recovery cycle,RC)测定时,发现在等频率和等强度条件下,神经元的RC随声刺激时程延长而延长(one-way ANOVA,p<0.05);当模拟发声脉冲强度大于模拟回声强度10 dB(即强度差为10 dB)时,神经元的RC也随声刺激时程延长而延长,且趋势更加明显(one-way ANOVA,p<0.01);强度差为20 dB时,IC神经元的RC不再随声刺激时程延长而变化(one-way ANOVA,p>0.05)。可见声刺激时程和强度的改变可影响IC神经元的RC,且声刺激强度和时程之间存在相互关联,由此推测,声刺激时程和强度的同时改变可能对听中枢神经元处理P-E信息的有重要影响。
     4.声刺激时程既是声信号的基本参数,也是听中枢神经元所要提取的声信息之一。为进一步分析声刺激时程与强度对神经元RC的影响,在最佳时程下匹配P-E之间的强度差,发现最佳时程在1-2 ms的时程选择性神经元,在强度差为10 dB时,对1.5 ms声刺激RC最短;最佳时程在4-6 ms的神经元,在强度差分别为10 dB和20 dB时,对4 ms声刺激RC较短;最佳时程在8-20 ms的神经元,在强度差为20dB时,对10 ms声刺激RC最短。这些结果提示,不同IC神经元具有不同最佳反应时程的特性,适应了蝙蝠在不同捕食时相接受不同重复率回声和不同时程回声的需要,并通过时相整合和神经调制来更好地处理回声信息,对靶物进行精确地定位。
Using the excellular recording method under free field stimulation condition,we studied the response property of 289 inferior colliculus neurons of mouse(Mus musculus Km)、and bats(Pipistrellus abramus) to different sound stimulus pattern.We measured the forward masking,recovery cycle,frequency tuning of IC neurons.The obtained results are summarized as following:
     1.The forward masking induced by weak noise(masker) could sharpen frequency tuning curves(FTC) of most IC neurons(P<0.01,n=25) in mouse and this effect increased with masker duration increasing(P<0.05).By calculating the inverse-slope(IS) of both limbs on FTC,we found the inhibitory rate caused by forward masking to high limb of FTC was notably higher than low limb of FTC.Most IShigh of FTC was decreased with masker duration increasing(P<0.01),however,there was no a regular change in IS_(low) of FTC.The masker could also increase the minimum threshold(MT) of response to probe sound in IC neurons(P<0.001,n=31) and this threshold up-shift was elevated with masker duration increasing.
     2.After BIC application to 33 IC neurons by ionophoresis,the neural inhibition induced by 40-ms masker(weak noise) was decreased or compltely cancelled and the percent change of Q_(10) and Q_(30) of FTCs decreased from 26.15±18.52%to 13.21±8.85% and 39.85±24.27%to 17.89±13.78%,respectively.Under the 80-ms masker stimulation condition,BIC application caused the percent change of Q_(10) and Q_(30) decreasing from 33.57±16.24%to 15.62±7.51%and 52.64±23.61%to 26.98±12.77%,respectively.These results showed that GABAergic disinhibition by BIC application could partly or compeletly remove the masking caused by masker(weak noise).
     3.During hunting,the insectivorous bats can analyze echo of their emitted sound signal and extrac information from echo,which is used to guide their prey.Therefore,the neurons in brain of bats must have an ability to generate the response to the pulse-echo (P-E) pairs.By delivering P-E pairs at three amplitude differences and three durations, we examined the recovery cycle of bat's IC neurons under each amplitude difference and three duration conditions.Nine recovery cycles were plotted for each neuron.The recovery cycle of these IC neurons prolonged with the duration increasing at the amplitude difference of 0 dB(one-way ANOVA,p<0.05) and 10 dB(one-way ANOVA,p<0.01),but this phenomenon was not observed at the amplitude difference of 20 dB(one-way ANOVA,p>0.05).These results demonstrated that the duration of P-E pairs and amplitude difference between P-E pairs could affect the recovery cycle of IC neurons and there was a correlation between the duration and amplitude difference.
     4.The sound duration was both a basic sound parameter and one kind of the sound information to be extracted by central auditory neurons.In order to further analyze effect of sound duration and amplitude of P-E pairs on the recovery cycle of IC neurons,we examined that IC neurons having the best duration of 1-2 ms had the shortest recovery cycle at amplitude difference of 10 dB under P-E pair stimulation condition with 1.5-ms duration.The IC neurons having the best duration of 4-6 ms had the shortest recovery cycle at the amplitude differences of 10 and 20 dB under P-E pair stimulation condition with 4-ms duration.The IC neurons having the best duration of 8-20 ms had the shortest recovery cycle at the amplitude differences of 20 dB under P-E pair stimulation condition with 10-ms duration.These results suggested that the different IC neurons had the different best duration and the duration selectivity of IC neurons could modulate their recovery cycles,which fitted to accept the echo of different repetition rate and duration and process echo information through temporal integration and neural modulation.
引文
1.陈其才,Jen P.H.S.,吴飞健r-氨基丁酸能抑制可锐化大棕蝠听皮层神经元频率调谐[J].动物学报48:346-352,2002
    2.陈其才,Jen P.H.S.,吴飞健 锐化蝙蝠听皮层神经元频率调谐的柱特征[J].动物学研究 22:174-80,2001
    3.陈正侬 豚鼠听性中脑对声音时程的神经编码及可塑性变化[M].上海交通大学博士论文 21-30 2008
    4.曹剑芬等 语速特征及其变化[J]第六届全国现代语音学学术会议论文集[J].77-80,2003
    5.郭玉萍,任雪萍,王欣 声信号传导中的前掩蔽效应及其机理[J]商丘师范学院学报 22:143-146,2006
    6.罗峰,李安安,吴飞健,梁冰,张树义,陈其才 菲菊头蝠的下丘神经元基本声反应特性[J].动物学研究27:202-208,2006
    7.罗勋,朱再满,张长征,孙庆艳,梅斌,华田苗 猫下丘中央核GABA能神经元年龄相关变化[J].中国组织化学与细胞化学杂志15:101-105,2006
    8.李安安,任雪萍 回声定位蝙蝠听觉系统在脑干水平对发声的调控作用[J].长春师范学院学报 23:60-63.2004
    9.梁之安 听觉信息的处理及分辨率的锐化[J].生物科学信息4:7-10,1989
    10.梁之安.听觉感受和辨别的神经机制[M].上海科技教育出版社 23-31,1999
    11.刘双喜,吴飞健,陈其才,Bibikov N.B.小鼠下丘神经元声刺激跟随能力与声时程及强度的关系[J].生物物理学报 22:166-170,2006
    12.栾瑞红,吴飞健,Jen P.H.S.,孙心德 后掩蔽效应对大棕蝠下丘神经元声反应的影响[J].生理学报 5:225-232,2005
    13.栾瑞红,吴飞健,Jen P.H.S.,孙心德 大棕蝠下丘神经元对双声刺激的掩蔽效应[J].科学通报 48:1530-1534,2003
    14.梅慧娴,郭玉萍,吴飞健,陈其才 不同时程弱前掩蔽声对小鼠下丘神经元声反应的选择性抑制[J].生物物理学报 21:418-42,2005
    15.沈均贤,徐智敏,沈力坚 昆明小鼠中脑下丘声反应特征的区域分布[J].科学通报47:1485-1488,2002
    16.唐佳,付子英,吴飞健,陈其才声刺激模式对CF/FM蝙蝠下丘神经元恢复周期的影响[J].生物医学物理研究 107-112.2008
    17.唐杰,陈其才,Bibikov N.G.等强和非等强双声刺激对小鼠下丘神经元反应的前掩蔽效应[J].神经生物物理(第九次全国生物物理大会学术会议论文摘要集)287.2002
    18.唐杰 掩蔽声所致的下丘神经元前掩蔽效应的时相特性[M].华中师范大学硕士学位论文20-30,2003
    19.王坚主编 听觉科学概论[M].中国科学技术出版社209-210,2005
    20.王玢左 明雪主编 人体及动物生理学[M].157-165,2001
    21.王婉莹,都发道 中国蝙蝠听觉和回声定位研究进展[J].陕西师范大学学报(自然科学版)4:122-127,2006
    22.吴飞健,陈其才 蝙蝠听觉器的“视”功能[J].生物学通报32:16-18,1997
    23.吴飞健,陈其才,Jen P.H.S,沈钧贤 频带整合对大棕蝠下丘神经元频率调谐的锐化作用[J].科学通报 49:869-873,2004
    24.吴飞健,刘双喜,陈其才,Bibikov N.G刺激呈现率影响小鼠下丘神经元声反应特性[J].华中师大学学报(自然科学皈)39:525-529,2005
    25.徐科 神经生物学纲要[M].科学出版社251-252,2000
    26.张树义,赵辉华,冯江等 编蝠回声定位与捕食对策研究[J].动物学杂志 34:47-50,1999
    27.周晓明 小脑在蝙蝠回声定位中的作用[J].生命科学 10:222-223,1998
    28.周晓明 回声定位蝙蝠听觉系统的特化[J].生命科学 9:66-67,1997
    29.Adams J.C.Ascending projections to the inferior colliculus[J].J Comp Neurol.83:519-538,1979a
    30.Admas J.C,Mugnaini E.Dorsal nucleus of the later lemi-niscus:A nucleus of GABAergic projection neurons[J].Brain Res Bul.13:585-590,1984
    31.Admas J.C.,Wenthold R.Distribution of putative amino acid transmitters choline acetyltransferase and glutamate decar-boxylase in the inferior colliculus[J].Neuroscience.4:1951-1974,1979b
    32.Arther N.P.,Richard R.F.Hearing by bats[M].Berlin Heideberg New York.1995
    33.Backoff P.M.,Shadduck P.P.,Caspary D.M.Glycinergic and GABAergic inputs affect short-term suppression in the cochlear nucleus[J].Hear Res.110:155-163,1997
    34.Barsz K.,Wilson W.W.,Walton J.P.Background noise differentially effects temporal coding by tonic units in the mouse inferior colliculus[J].Hear Res.150:149-160,2000
    35.Barclay R.M.R.Long versus short-range foraging strategies of hoary(Lasiuru scinereus) and silver-haired(Lasionycteris noctivagans) bats and the consequences for prey selection[J].Can Journal Zool.63:2507-2515,1985
    36.Barclay R.M.R.The echolocation calls of boary(lasiurus cinereus)and sliver—baired (lssionycteris noctivagans) bats as adaptation for long versus short range strategies and the consequences for prey selection[J].Can J zool.64:2700-2705,1986
    37.Berne et al.Physiology(M),5th edition,2004
    38.Calford M.B.,Semple M.N.Monaural inhibition in cat auditory cortex[J].J Neurophysiol.73:1876-1891,1995
    39.Carlyon R.P.The development and decline of forward masking[J].Hear Res.32:65-79,1988
    40.Carney L.H.,Yin TC.Responses of low-frequency cells in the inferior colliculus to interaural time differences of clicks:excitatory and inhibitory components[J].J Neurophysiol.62:144-61,1989
    41.Casseday J.H.,Ehrlich D.,Covey E.Neural tuning for sound duration:role of inhibitory mechanisms in the inferior colliculus[J].Science 264:847-850,1994.
    42.Clifton R.K.,Freyman R.L.Effect of click rate and delay on breakdown of the precedence effect[J].Percept Psychophys.46:139-145,1989
    43.Covey E.Brainstem mechanisms for analyzing temporal patterns of echolocation sounds:a model for understanding early stage of speech processing[J].Speech Communication.41:151-163,2003
    44.Goldberg J.M.Functional organiation of dog superior olivary complex:An a tomical and physiological studies[J].J Neurophysiol.31:639-649,1987
    45.Casseday J.H.,Covey E.A neuro ethological theory of the operation of the inferior colliculus[J].Brain Behav Evol.47:311-336,1996
    46.Casseday J.H.,Covy E.Frequency tuning properties of neurons in the Inferior Colliculus of an FM Bat[J].J Comp Neurol.319:34-50,1992
    47.Cheatham M.A.,Dallos P.Summating potential(SP) tuning curve[J].Hear Res.16:189-200,1984
    48.Chen Q.C.,Jen P.H.S.,Wu F.J.GABAergic inhibition can sharpen frequency tuning of auditory cortical neurons in big brown bat,Eptesicus fuscus[J].Acta Zoologica Sinica.48:346-352,2002
    49.Chen Q.C.,Shen J.X.Binaurality and azimuth tuning of neurons in the auditorycortex of the big brown bat Binaurality and azimuth tun-ing of neurons in the auditorycortex of the big brown bat[J]Chinese Science Bull.12:1024-1027,2002
    50.Chen Q.C.,Sun X.D.,Jen P.H.S.Corticofugal control of central auditory sensitivity[J].4th Chinese chemistry meeting.221-222,1996
    51.Covey E.,Kauer J.A.,Casseday J.H.Whole-cell patch recording reveals subthreshold sound-evoked postsynaptic currents in the inferior colliculus of awake bats[J].J Neurosci.16:3009-3018,1996
    52.Covey E.,Casseday J.H.Timing in the auditory system of the bat[J].Annual Review of Physiol.61:457-476,1999
    53.Dallos P.The active cochlea[J].J Neurosci.12:4575-4585,1992
    54.Ehret G.S.,Christoph E.Regional variations of noise-induced changes in operating range in cat AI[J].Hear Res.141:107-116,2000
    55.Ellermerier W.,Eigenstetter M.,Zimmer K.Psychoacoustic correlates of individural noise sensitivity[J].J Acoust Soc Amer.109:1464-1473,2001
    56.Faingold C.L.,Boersma C.A.,Anderson D.M.Involvement of GABA in acoustically evoked inhibition in inferior colliculus neurons[J],Hear Res.52:201-216,1991
    60.Faingold C.L.,Gehlbach D.M.On the role of GABA as an inhibitory eurotransmitter in inferior colliculus neurons:iontophoretic studies[J].Brain Res.500:302-312,1989
    61.Faingold C.L.Role of GABA abnormalities in the inferior colliculus pathophysiogy-audiogenic seizures[J].Hear Res.168:223-237,2002
    62.Faye L.H.The neocortical projection to the inferior col-liculus in the albino rat[J].Anat Embryol.173:53-70,1985
    63.Feigenspan A.,Wassle H.,Bormann J.Pharmacology of GABA receptor cl-channels in rat retinal bipolar cells[J].Nat.361:159-161,1993
    64.Fenton M.B.The foraging behavior and ecology of animal eating bats[J].Can J Zool.68:411-422,1990
    65.Frisina R.D.,Walton J.P.,Karcich K.J.Dorsal cochlear nucleus single neurons can enhance temporal processing capabilities in background noise[J].Exp Brain Res.102:160-165,1994
    66.Fritz J.,Shamma S.,Elhilali M.,Klein D.Rapid task-related plasticity of spectrotemporal receptice fields in primary auditory cortex.Nat Neurosci.6:1216-1223,2003
    67.Fugita I.,Konishi M.The role of GABAergic inhibition in processing of interaural time difference in the owl's auditory system[J].J Neurosci.11:722-739,1991
    68.Fuzessery Z.M.,Feng A.S.Frequency selectivity in the anuran medulla:excitatory and inhibitory tuning properties of single neurons in the dorsal medullary and superior olivary nuclei.J Comp physiol.150:107-19,1983
    69.Fuzzessery Z.M.,Hall J.C.Sound duration selectivity in the pallid bat inferior colliculus[J].Hear Res 137:137-154,1999
    70.Games K.D.,Winer J.A.Layer V in rat auditory cortex:projection to the inferior colliculus and contra lateralcortex[J].Hear Res.34:1-25,1988
    71.Gao E.,Suga N.Experience-dependant corticofugal adjustment of midbrain frequency map in the bat auditory system[J].Proc Natl Acad Sci USA.95:12663-12670,1998
    72.Gaskell H.,Bruce G.H.Forward and backward masking with brief impulsive stimuli [J].Hear Res.129:92-100,1999
    73.George D.,Pollak.G.D.et al.Characteristics of phasic "on" neurons in the inferior colliculus of unanesthetized bats with observations relating to mechanisms for echo ranging[J].J Neurophysiol.40:926-942,1977
    74.George D.Pollak..G.D.et al.Recovery cycles of single neurons in the inferior colliculus of unanesthetized bats obtained with frequency-modulated and constant-frequency sounds[J].J Comp Physiol A.120:215-250,1997
    75.Goldberg J.M.Functional organiation of dog superior olivary complex:An a tomical and physiological studies[J].J Neurophysiol.31:639-649,1987
    76.Griffin D.R.Listening in the dark[M].Yale University Press,New Haven,Conn.77-85,1958
    77.Grinmell A.D.The neurophysiology of auditory in bat:Temporal parameters[J].J Physiol.167:67-96,1963
    78.Grinnell A.D.Hearing by bats[M].1-36,1995
    79.Heil P.Neuronal coding of interaural transient envelope disparities[J].Eur J Neurosci.10:2831-2847,1998
    80.Henson O.W.J.The activity and function of the middle ear muscle in echolocation bats[J].J Physiol(Lond).180:871-887,1965
    81.Henry K.R.Frequeney-specific enhancement of the cochlear compound action potential:influence of the forward masker.Hear Res.56:197-202,1991
    82.Herbert H.,Aschoff A.,Ostwald J.Topography of projec-tions from the auditory cortex to the inferior colliculus in the rat[J].J Comp Neurol.304:103-122,1991
    83.Hill D.R.,Bowery N.G.3H-baclofen and 3H-GABA bind to bicuculline-insensitive GABAb sites in rat brain[J].Nat.290:149-152,1981
    84.Huffman R.F.,Henson O.W.The descending auditory pathways and acoustico motor system:connections with the infe-rior colliculus[J].Brain Res Rev.15:295-323,1990
    85.Jen P.H.S.,Chen Q.C.,Sun X.D.Corticofugal control of auditory sensitivity in the bat inferior coIliculus[J].J Comp Physiol.183:683-697,1998
    86.Jen P.H.S,Chen Q.C.,Wu F.J.Interaction between excitation and inhibition affects frequency tuning curve,response size and latency of neurons in the auditory cortex of big brown bat,Eptesicus fuscus[J].Hear Res.174:281-289,1998
    87.Jen P.H.S,Chen Q.C.The effects of pulse repetition rate,pulse intensity and bicuculline on the minimum threshold and latency of bat inferior collicular neurons[J].J Comp Physiol.182:455-465,1998
    88.Jen P.H.S.,Feng R.B.Bicuculline application affects discharge pattern and pulse-duration tuning characteristics of bat inferior collicular neurons[J].J Comp Physiol A.184:185-194,1999
    89.Jen P.H.S.,Kamada T.Analysis of orientation signals emitted by the CF-FM bat,Pteronotus parnellii parnellii and the FM bat,Eptesicus fuscus during avoidance of moving and stationary obstacles[J].JComp Physiol A.148:389-398,1982
    90.Jen P.H.S.,Wu H.C.,Luan R.H.Zhou X.M.G ABAergic inhibition contributes to pulse repetition rate-dependent frequency selectivity in the inferior colliculus of the big brown bat,Eptesicus fuscus.Brain Res.948:159-164,2002
    91.Jesteadt W.,Bacon S.P.,Lehman J.R.Forward masking as a function of frequency,masker level,and signal delay[J].J Acoust Soc Am.71:950-962,1982
    92.Joch U.,Grothe B.GABAergic and glycinergic inhibition sharpens tuning for frequency modulations in the inferior col-liculus of the Big Brown Bat[J]. Neurophysiology.80:71-82,1998
    93.Kalko E.K.V.,Schnitzler H.U.Plasticity in echolocation signals of European pipistrelle bats in search flight;implication for prey detection and habitat use[J].Behav Ecol Sociobiology.33:415-428,1993
    94.Kawase T.,Ogura M.,Hidaka H.,et al.Effects of contralateral noise on measurement of psychophysical tuning curve[J].Hear Res.142:63-70,2000
    95.Kelly J.P.,Wong D.Laminar connections of the cat's auditory cortex[J].Brain Res,212:1-15,1981
    96.Kraus N.,Mcgee T.Electrophysiology of the human auditory system[J].In:The Mammalian Auditory Pathway:Neurophysioloy.335-404,1992
    97.Krogsgaord L.P.,Johnston GA.R.,Lodgem D.,et al.A new class of GABA agonist[J].Nat.268:53-55,1977
    98.Liang C.et al.Frequency difference limens as function of tonal duration[M].Benchmark papers in psychological Acoustics.176-181,1979
    99.Litovsky R.Y.,Colbum H.S.Yost W.A.,Guzman S.J.The precedence effect[J].J Acoust Soc Am.106:1633-1654,1999
    100.Lu Y.,Jen P.H.S.GABAergic and glycinergic neural inhibition in excitatory frequency tuning of bat inferior collicular neurons[J].Exp Brain Res.141,331-339,2001
    101.Lu Y,Jen P.H.S.Interaction of excitation and inhibition in inferior collicular neurons of the big brown bat,Eptesicus fuscus[J].Hear Res.169:140-150,2002
    102.Lu Y,Jen P.H.S.,Zheng,Q.Y GABAergic disinhibition changes the recovery cycle of bat inferior colliculus neurons[J].J.Comp.Physiol.A.181:331-341,1997
    103.Lu Y,Jen P.H.S.,Wu M.GABA ergic disinhibition affects responses of bat inferior collicular neurons to temporally patterned sound pulses[J].J Neurophysiol.79:2303-2315,1998
    104.Ma C.L.,Kelly J.B.,Wu S.H.AMPA and NMDA receptors mediate synaptic excitation in the rat's inferior colliculus[J].Hear Res.168:25-34,2002
    105.Malmierca M.S.,Hernanbdez O.,Rees A.Intercollicular commissural projections modulate neuronal responses in the inferior colliculus[J].Eur J Neuroscience.21:2701-2710,2005
    106.Malmierca M.S.,Rees A.,Lebeau F.E.N.et al.Laminar organization of frequency defined local axons within and between the inferior collicu-lus of the guinea pig[J].J CompNeurol.357:124-144,1995
    107.Manis P.B.Responses to parallel fiber stimulation in the guinea pig dorsal cochlear nucleus in vitro[J].J Neurophysiol.61:149-163,1959
    108.Metherate R.,Ashe J.H.Facilitation of an NMDA receptor-mediated EPSP by paired-pulse stimulation in rat neocortex via depression of GABAergic IPSPs[J].J physiol.481:331-348,1994.
    109.Michael B.,Christoph E.S.Time Course of Forward Masking Tuning Curves in Cat Primary Auditory Cortex[J].J Neurophysiol.77:923-943,1997
    110.Mitzdorf U.Properties of evoked potential generators:ceurrent source-density analysis of visually evoked potentials in the cat cortex.Int J Neurosci.33:33-59,1987
    111.Moller A.R.Coding of amplitude and frequency modulation in the cochlear nucleus of the rat[J].Acta Physiol Scand.86:223-238,1972
    112.Moore D.R.,Kotak V.C.,Sanes D.H.Commissural and lemniscal synaptic input to the gerbil inferior colliculus[J].J Neurophysiol.80:2229-2236,1998
    113.Moss C.F.,Sinha S.R.Neurobiology of echolocation in bats[J].Curr Opin Neurobiol.13:751-758,2003
    114.Nelson S.B.Temporal interactions in the cat visual system.Pharmacological studies of cortieal suppression suggest a presynaptic mechanism[J].J Neurosci.11:369-380,1991
    115.Neuweiler G.Foraging ecology and audition in echolocatingbats[J].Trends Ecol Evol.4:160-166,1989
    116.Obrist M.,Aldridge H.D.J.N.,Fenton M.B.Roosting and echolocation behavior of the African bat,Chalinolobus mamma l[J].70:828-833,1989
    117.Oxenham A J.Forward masking:Adaptation or integration[J]? J Acoust Soc Am.109:732-741,2001
    118.Park T.J.,Pollak G.D.GABA shapes sensitivity to interaural intensity disparities in the mustache bat's inferior colliculus:implications for encoding sound location[J].J Neurophysiol.13:2050-2 067,1993
    119.Pi J.H.,Tang J.,Wang D.Analysis of noise masking on the intensity processing of mouse inferior collicular neurons[J].J of Huaihua university.52:33-35,2004
    120.Pollak G.D.,Casseday J.H.The Neural Basis of Echoloca-tion in Bats[J].Springer Berlin.1989
    121.Pollak G.D.,Park T.J.The effects of GABAergic inhi-bition on monaural response properties of neurons in the mus-tache bat's inferior colliculus[J].Hear Res.65:99-117,1993
    122.Price G.M.,Wilkin GP.,Tumbull M.J.et al.Are ba-clofensensitive GABAB receptors on primary afferent lerminals of the spinal cord[J]? Nat.307:71-73,1984
    123.Qian H.,Dowling J.E.Novel GABA responses from rod-driven retinal horizontal cells[J].Nat.361:162-164,1983
    124.Raj an R.Noise priming and the effects of different cochlear centrifugal pathways on loud-sound-induced hearing loss[J].J Neurophysiol.86:1277-1288,2001
    125.Ramachandran R.,Davis K.A.,May B.J.Rate representation of tones in noise in the inferior colliculus of decerebrate cats[J].J Assoc Res Otolaryngol.1:144-160,2000
    126.Reets G,Ehret G Inputs from three brainstem sources to identified neurons of the mouse inferior colliculus slice[J].Brain Res.816:527-543,1999
    127.Rhode W.S.Some observations on two-tone interaction measured with the mossbauer effect in Psychophysics and Physiology of Hearing.Academic Press London.27-41,1977
    128.Roverud R.C.A gating mechanism for sound pattern recognition is correlated with the temporal structure of echolocation sound in the rufous horseshoe bat[J].J Comp Physiol A.166:243-249,1989
    129.Rubasamen R.et al.Audio vocal interactions during development?Vocalisation in deafened in deafened young horseshoe audition in vocalization-impaired bats[J].J Comp Physiol 167:771-784,1990
    130.Salda E.,Feliciano M.,Mugnaini E.J.Distribution of descending projections from primary auditory neocortex to inferior colliculus mimics the topography of intracollicular projections[J].Comp Neurol.371:15-40,1996
    131.Sarah M.N.W,Casseday J.H.Response properties of single neurons in Zebra Finch auditory midbrain:response patterns,frequency coding,intensity coding,and spike latencies[J].J Neurophysiol.91:136-151,2004
    132.Schnitzler H.U.,Henson O.W.Performance of airborne animal sonar system.New York Plenum press.109-181,1980
    133.Schuller G,Pollak G Disproportionate frequency representation in the inferior colliculus of doppler2compensating greater horseshoe bats:Evidence for an acoustic fovea[J].J Comp Physiol A.132:47-54,1979
    134.Serviere J.,Webater W.R.,Calford M.B.Isofrequency labeling revealed by a combined 14C-2-dexyglucose,electrophysiological,and horseradish peroxidase study of the inferior colliculus of the cat[J].J Comp Neurol.228:463-477,1984
    135.Shannon R.V.Forward masking in patients with cochlear implants[J].J Acoust Soc Am.88:741-744,1990
    136.Shen J.X.,Chen Q.C.,Jen P.H.S.Binaural and frequency representation in the primary auditory cortex of the big brown bat,Eptesicus fuscus[J].J Comp Physiol.181:591-597,1997
    137.Shore S.E.Influence of centrifugal phthways on forward masking of ventral cochlear nucleus.Neurons[J].J Acoust Soc Am.104:378-389,1998
    138.Shoham S.,Oconnor D.,Segev C.How silent is the brain:is there a "dark matter"problem[J].J Comp Physiol A.192:777-784,2006
    139.Shreiner C.E,Langner G.Laminar fine structure of frequency organization in auditory midbrain[J].Nat.388:383-386,1997
    140.Shtyrov Y,Kujala T,Ilmoniemi R.Noise affects speech - signal processing differently in the cerebral hemispheres[J].Neuroreport.10:2189-2192,1999
    141.Simmons J.A.,Fenton M.B.,OFarrell M.J.Echolocation and pursuit of prey by bats[J].Science.203:16-21,1979
    142.Smith R.L.Short-term adaptation in single auditory nerve fibers:Some poststimulatory effects[J].J Neurophysiol.49:1098-1112,1979
    143.Snyder R.L.,Schreiner C.E.Auditory neurophonic responses to amplitude-modulated tones:transfer functions and forward masking[J].Hear Res.31:79-91,1987
    144.Sobel E.C.,Tank D.W.In vivo Ca~(2+) dynamics in a cricket auditory neuron:An example of chemical computation[J].Science.263:823-826,1994
    145.Stiebler I.,Ehret G.Inferior Colliculus of the House Mouse,a quantitative study of tonotopic organization,frequency representation,and tone-threshold distribution[J].J Comp Neurol.76:65-76,1985.
    146.Suga N.,Schelegel.P.A.Coding and processing in the auditory systems of FM-signal produsing bat[J].Jour.Acoust.Soc.America.54:175-189,1973
    147.Suga N.,Zhang Y.F.,Yan J.Sharpening of frequency tuning by inh ibition in the thalam ic audito ry nucleus of the mustched bat[J].J Neurophysiol.77:2098-2114,1997
    148.Suga N,Jen P.H.S.Peripheral control of acoustic signals in the auditory system of echolocating bats[J].JExp Biol 62:277-311,1975
    149.Suga N.,Schlegel P.A.Neural attenuation of responses to emitted sound in echolocating bats[J].Science 177:82-84,1972
    150.Suga N.Sharpening of frequency tuning by inhibition in the central audito ry system:tribute to Yasuji Katsuk i[J].Neruo sci Res.21:287-299,1995
    151.Suga N.Biasonar and nural computation in bats[J].Sci Am.262:60-68,1990
    152.Sun X.D.,Chen Q.C.,Jen P.H.S.Corticofugal con-trol of auditory sensitivity of inferior collicular neurons of the big brown bat(Eptesicus fuscus)[J].19th ARO Annual Midwinter Res Meet Abstr.193,1996
    153.Surlykke A.,Moss C.F.Echolocation behavior of big brown bat,Eptesicus fuscus,in the field and the laboratory[J].J Acoustic Soc Am 108:2419-2429,2000
    154.Suta D.,Kvasnak E.,Popelar J.,et al.Representation of species-specific vocalizations in the inferior colliculus of the guinea pig[J].J Neurophysiol 90:3794-808,2003
    155.Szczepaniak W.S.,Moller A.R.Evidence of decreased GABAergic influence on temporal integration in the inferior colliculus following acute noise exposure:a study of evoked potentials in the rat[J].Neurosci Lett.196:77-80,1995
    156.Tan M.L.Comparision of Responses of Neurons in the Mouse Inferior Colliculus to Current Injections,Tones of Different Durations,and Sinusoidal Amplitude-Modulated Tones[J].J Neurophysiol.98:454-466,2007
    157.Tang J.,Pi J.H.,Wang D.,et al.Effect of weak noise on the Frequency tuning of mouse inferior collicular neurons[J].Zool Res.25:191-197 2004
    158.Wang J.,Caspary D.,Salvi RJ.GABA-A antagonist causes dramatic expansion of tuning in primary auditory cortex[J].Neuro Report.11:1137-1140,2000
    159.Wang J.,Wijhe R.,Chen Z.et al.Is duration tuning a transient process in the inferior colliculus of guinea pigs[J]? Brain Res.1114:63-74,2006
    160.Wang X.,Jen P.H.S.,Wu F.J.,Chen Q.C.Preceding weak noise sharpens the frequency tuning and elevates the response threshold of the mouse inferior collicular neurons through GABAergic inhibition[J].Brain Res.1167:80-91,2007
    161.Wang X.,Feng L.,Wu F.J.,Chen Q.C,Jen P.H.S.The recovery cycle of bat duration-selective collicular neurons varies with hunting phase[J].Neuroreport.19:861-865,2008.
    162.Wadswoth J.Moss C.F.Vocal control of acoustic information for sonar discriminations by the echolocating bat,Eptesicus fuscus[J].J Acoust Soc Am.107:2265-2271,2000
    163.Wagner T.Lemniscal input to identified neurons of the central nucleus of mouse inferior colliculus:an intracellular brain slice study.Eur J Neurosci.8:1231-1239.1996
    164.Westerman L.A.,Smith R.L.Rapid and short-term adaptation in auditory nerve responses[J].Hear Res.248-260.1984
    165.Whitfield I.C.Auditory cortex and the pitch of complex tones[J].J Acoust Soc Am.67:644-647,1980
    166.Wu C.H.,Jen P.H.S.Auditory frequency selectivity is better for expected than for unexpected sound duration[J].NeuroReport.19:127-131,2008
    167.Wu C.H.,Jen P.H.S.GABA-mediated echo duration selectivity of inferior collicular neurons of Eptesicus fuscus,determined with single pluses and pulse-echo pairs[J].J Comp PhysiolA.192:985-1002,2006
    168.Wu M.and Jen P.H.S.Recovery cycles of neurons in the inferior colliculus,the pontine nuclei and the auditory cortex of the big brown bat,Eptesicus Fuscus[J].Chin J Physiol.41:1-8,1998
    169.Yang L.,Pollak GD.,Resler C.GAB A ergic circuits sharpen tuning curves and modify response p roperties in themustache bat inferio r co lliculus[J].J N europhysiol.68:1760-1774,1992
    170.Fuzessery Z.M.,Hall J.C.Sound duration selectivity in the pallid bat inferior colliculus[J].Hear Res.137:137-154,1999
    171.Zeng F.G,Fu Q.J.,Morse R.Human hearing enhanced by noise[J].Brain Res.869:251-255,2000
    172.Zeng S.J.,Zhang X.W.,Peng W.M.,Zuo M.X.Immunohistochemistry and neural connectiveity of the Ov shell in the songbird and their evolutionary implications[J].J Comp Neurol.470:192-209,2004
    173.Zhou X.M.,Jen P.H.S.The effect of bicuculline application on azimuth-dependent recovery cycle of inferior collicular neurons of the big brown bat,Eptesicus Fuscus[J].Brain Res.973:131-141,2003
    174.Zhou X.M.,Jen P.H.S.The effect of sound intensity on duration-tuning characteristics of bat inferior collicular neurons[J].J Comp Physiol[A].187:63-73,2001
    175.Zhou X.M.,Jen P.H.S.The effect of bicuculline application on azimuth dependent recovery cycle of inferior collicular neurons of the big brown bat,Eptesicus fuscus[J].Brain Res.973:131-141,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700