用户名: 密码: 验证码:
锂离子电池正负极纳米材料的合成和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界性环境和能源问题日益严峻,锂离子电池以高效、清洁、高能量密度等优点备受瞩目。研究高能量密度、高功率、高安全性、长寿命和低成本的锂离子电池正负极材料,是锂离子电池发展和应用的关键问题。多种新型正负极纳米材料,如钛酸锂、氧化铁、锡基化合物、三元材料以及锰酸锂,具有高倍率、安全稳定、低成本等特点,有望发展为下一代锂离子电池电极材料。本论文以上述正负极材料为研究对象,以优化其电化学性能为目的,探索了多种纳米材料制备方法,实现了材料电化学性能的提升。
     发展了钛酸锂纳米晶的低温固相合成方法。选择介稳的立方相钛酸锂的纳米晶为前驱体,研究了其Li+-H+交换过程、热稳定性以及转化温度,实现了钛酸锂纳米晶的低温固相合成。因其大比表面和小尺寸,钛酸锂纳米晶显示出优异的倍率性能,5C下容量达162mAh/g。
     研究了氧化铁纳米片的溶剂热合成方法。通过调控反应条件,使材料沿ab平面生长最终生成纳米片,且生长过程符合Ostwald熟化机制。因其小尺寸,氧化铁纳米片具有优异的电化学活性,循环稳定性和倍率特性,600mA/g循环150圈容量保持540mAh/g,2400mA/g容量280mAh/g。
     发展了硫化亚锡纳米带的水热合成方法。通过调控反应条件,使SnS按Ostwald熟化机制沿[020]方向生长成纳米带。SnS纳米带具有良好的柔韧性和电化学活性。尤其值得关注的是,在电池循环之后,SnS纳米带因其一维结构对应力和体积变化的良好承受能力,很好地保持了一维纳米结构。
     构建了表面富Li_2TiO_3的三元材料纳米带制备方法。调控合成多元金属草酸盐纳米带,利用其受热失水性质设计包覆方法,并通过高温固相反应,获得表面富Li_2TiO_3的三元材料纳米带。因钛酸锂在a-b平面和c轴方向上有锂离子通道,减小了表面锂离子迁移的阻抗,且性质稳定,故包覆纳米带体现出非常优异的常高温倍率和循环性质。
     发展了包覆-掺杂改性的锰酸锂纳米棒材料的合成方法。以MnOOH纳米棒为前驱体,利用其受热失水性质设计包覆方法,获得了Li_2SiO_3包覆,和Li-Ti-Mn-O包覆且Ti4+掺杂的锰酸锂纳米棒。因包覆层抑制副反应促进界面电荷转移,Ti4+掺杂提高结构稳定性,改性的锰酸锂纳米棒具有优异的常高温倍率和循环性能。
Lithium ion batteries have attracted intensive attention for their merits includingclean, high efficiency and energy density, with the increasing urgency of the globalenvironmental and energy crisis. The research and development of electrode materialswith high energy density, high power capability, good safety, long durability and lowcost are the key challenges towards the development and application of lithium ionbatteries. Several electrode nanomaterials including Li4Ti5O12, Fe2O3, Sn-based alloys,LiMO2and LiMn2O4have been regarded as candidates for the electrode materials ofnext-generation lithium ion batteries, for their advantages of high rate, high safety andlow cost. In this dissertation, several synthetic methods have been established forabove-mentioned nanomaterials to improve the comprehensive performances.
     A low-temperature solid state method has been developed forLi4Ti5O12nanocrystals. A metastable nanocrystals cubic Li_2TiO_3has been chosen as theprecursor. By investigating the Li+-H+exchange reaction, stability to heat as well asconversion temperature of cubic Li_2TiO_3, Li4Ti5O12nanocrystals has been prepared bysolid state reaction under relative low temperature. Li4Ti5O12nanocrystal has showninspiring high rate capability with162mAh/g under5C, due to its large surface areaandsmall size.
     A solvothermal method for Fe2O3nanodiscs has been investigated. By tuningsynthetic conditions, the growth direction of Fe2O3has been confined in a-b plane andeventually grown to nanodiscs, following Ostwald ripening mechanism. NanosizedFe2O3nanodiscs exhibit high electrochemical reactivity as well as outstandingcyclingand rate capabilities, delivering540mAh/g after150cycles under600mA/g and280mAh/g under2400mA/g.
     A hydrothermal method has been proposed for SnS nanobelts. SnS nanobelts haveformed via growing along [020] direction under well controlled condition, observingOstwald ripening mechanism. SnS nanobelts have shown sound flexibility andelectrochemical properties, and the one-dimensional structure has been well preservedafter cycles of volumetric expansion due to Li+insertion due to the flexibility ofnanobels for strains.
     Approach for surface-Li_2TiO_3-rich LiMO2nanobelts has been established. A series of mixed metal oxalate nanobelts has been prepared as precursor, and coating methodhas been designed based on the thermal decomposition property of the precursor; viasolid state reaction surface treated LiMO2nanobelts have been obtained.Surface-Li_2TiO_3-rich LiMO2nanobelts have exhibited excellent rate and cyclingcapabilities, because the coating materials Li_2TiO_3is stable with electrolyte and has athree-dimensional Li+diffusion path which help to reduce the surface charge transferand reduce the surface side reaction.
     Approach for constructing LiMn2O4nanorods combined with coating and dopingtreatment has been proposed. Li_2SiO_3coated nanorods and Li-Ti-Mn-O coated nanorodswith Ti4+doping have been prepared applying MnOOH as the precursor. The coatingmethod is also based on the thermal decomposition reaction of MnOOH. ModifiedLiMn2O4nanorods have inspiring electrochemical performance, due to the reducedsurface charge-transfer resistance by Li_2SiO_3and Li-Ti-Mn-O, and increased structuralstability by Ti4+doping.
引文
[1] Nazri G. A.,Pistoia G., Lithium batteries: Science and technology. Springer,2009.
    [2] Whittingham M. S., Lithium batteries and cathode materials. Chemical Reviews,2004,104(10),4271-4301.
    [3] Winter M.,Brodd R. J., What are batteries, fuel cells, and supercapacitors? ChemicalReviews,2004,104(10),4245-4269.
    [4] Tarascon J. M.,Armand M., Issues and challenges facing rechargeable lithium batteries.Nature,2001,414(6861),359-367.
    [5] Zhong Q. M., Bonakdarpour A., Zhang M. J., et al., Synthesis and electrochemistry ofLiNixMn2-xO4. Journal of the Electrochemical Society,1997,144(1),205-213.
    [6] Tarascon J. M., Wang E., Shokoohi F. K., et al., The spinel phase of LiMn2O4as a cathodein secondary lithium cells. Journal of the Electrochemical Society,1991,138(10),2859-2864.
    [7] Liu Z., Yu A.,Lee J. Y., Synthesis and characterization of LiNi1x yCoxMnyO2as thecathode materials of secondary lithium batteries. Journal of Power Sources,1999,81–82(0),416-419.
    [8] Arico A. S., Bruce P., Scrosati B., et al., Nanostructured materials for advanced energyconversion and storage devices. Nature Materials,2005,4(5),366-377.
    [9] Bruce P. G., Scrosati B.,Tarascon J.-M., Nanomaterials for rechargeable lithium batteries.Angewandte Chemie International Edition,2008,47(16),2930-2946.
    [10] Poizot P., Laruelle S., Grugeon S., et al., Nano-sized transition-metal oxides asnegative-electrode materials for lithium-ion batteries. Nature,2000,407(6803),496-499.
    [11] Ferg E., Gummow R. J., Dekock A., et al., Spinelanodes for lithium-ion batteries. Journalof the Electrochemical Society,1994,141(11), L147-L150.
    [12] Thackeray M. M., Structural considerations of layered and spinel lithiated oxides forlithium ion batteries. Journal of the Electrochemical Society,1995,142(8),2558-2563.
    [13] Zhu G. N., Wang Y. G.,Xia Y. Y., Ti-based compounds as anode materials for Li-ionbatteries. Energy&Environmental Science,2012,5(5),6652-6667.
    [14] Lim J., Choi E., Mathew V., et al., Enhanced high-rate performance of Li4Ti5O12nanoparticles for rechargeable Li-ion batteries. Journal of the Electrochemical Society,2011,158(3).
    [15] Jiang C., Hosono E., Ichihara M., et al., Synthesis of nanocrystalline Li4Ti5O12bychemical lithiation of anatase nanocrystals and postannealing. Journal of theElectrochemical Society,2008,155(8), A553-A556.
    [16] Kavan L.,Gratzel M., Facile synthesis of nanocrystalline Li4Ti5O12(spinel) exhibiting fastLi insertion. Electrochemical and Solid State Letters,2002,5(2), A39-A42.
    [17] Wang Y. Q., Gu L., Guo Y.G., et al., Rutile-TiO2nanocoating for a high-rateLi4Ti5O12anode of a lithium-ion battery. Journal of the American Chemical Society,2012,134(18),7874-7879.
    [18] Shen L., Uchaker E., Zhang X., et al., Hydrogenated Li4Ti5O12nanowire arrays for highrate lithium ion batteries. Advanced Materials,2012,24(48),6502-6506.
    [19] Tang Y., Yang L., Qiu Z., et al., Template-free synthesis of mesoporous spinel lithiumtitanate microspheres and their application in high-rate lithium ion batteries. Journal ofMaterials Chemistry,2009,19(33),5980-5984.
    [20]郭玉国,王忠丽,吴兴隆, et al.,锂离子电池纳微结构电极材料系列研究.电化学,2010,62(02),119-124.
    [21] Huggins R. A., Advanced batteries: Materials science aspects. Springer London, Limited,2009.
    [22] Wu X. L., Guo Y. G., Wan L. J., et al., α-Fe2O3nanostructures: Inorganic salt-controlledsynthesis and their electrochemical performance toward lithium storage. The Journal ofPhysical Chemistry C,2008,112(43),16824-16829.
    [23] Reddy M. V., Yu T., Sow C. H., et al., α-Fe2O3nanoflakes as an anode material for Li-ionbatteries. Advanced Functional Materials,2007,17(15),2792-2799.
    [24] Chen J., Xu L., Li W., et al., α-Fe2O3nanotubes in gas sensor and lithium-ion batteryapplications. Advanced Materials,2005,17(5),582-586.
    [25] Tartaj P., Morales M. P., Gonzalez-Carreno T., et al., The iron oxides strike back: Frombiomedical applications to energy storage devices and photoelectrochemical water splitting.Advanced Materials,2011,23(44),5243-5249.
    [26] Kim H. S., Piao Y., Kang S. H., et al., Uniform hematite nanocapsules based on an anodematerial for lithium ion batteries. Electrochemistry Communications,2010,12(3),382-385.
    [27] Xiao Z., Xia Y., Ren Z., et al., Facile synthesis of single-crystalline mesoporous α-Fe2O3and Fe3O4nanorods as anode materials for lithium-ion batteries. Journal of MaterialsChemistry,2012,22(38),20566-20573.
    [28] Lin Y. M., Abel P. R., Heller A., et al., α-Fe2O3nanorods as anode material for lithium ionbatteries. The Journal of Physical Chemistry Letters,2011,2(22),2885-2891.
    [29] Brezesinski K., Haetge J., Wang J., et al., Ordered mesoporous alpha-Fe2O3(Hematite)thin-film electrodes for application in high rate rechargeable lithium batteries. Small,2011,7(3),407-414.
    [30] Yang H. C., Mao X. B., Guo Y. J., et al., Porous alpha-Fe2O3nanostructures with branchedtopology: growth, formation mechanism, and properties. CrystEngComm,2010,12(6),1842-1849.
    [31] Chen J. S., Zhu T., Yang X. H., et al., Top-down fabrication of α-Fe2O3single-crystalnanodiscs and microparticles with tunable porosity for largely improved lithium storageproperties. Journal of the American Chemical Society,2010,132(38),13162-13164.
    [32] Sun B., Horvat J., Kim H. S., et al., Synthesis of mesoporous α-Fe2O3nanostructures forhighly sensitive gas sensors and high capacity anode materials in lithium ion batteries. TheJournal of Physical Chemistry C,2010,114(44),18753-18761.
    [33] Hegde S. S., Kunjomana A. G., Chandrasekharan K. A., et al., Optical and electricalproperties of SnS semiconductor crystals grown by physical vapor deposition technique.Physica B-Condensed Matter,2011,406(5),1143-1148.
    [34] Patra C. R., Odani A., Pol V. G., et al., Microwave-assisted synthesis of tin sulfidenanoflakes and their electrochemical performance as Li-inserting materials. Journal ofSolid State Electrochemistry,2007,11(2),186-194.
    [35] Boonsalee S., Gudavarthy R. V., Bohannan E. W., et al., Epitaxial electrodeposition oftin(II) sulfide nanodisks on single-crystal Au(100). Chemistry of Materials,2008,20(18),5737-5742.
    [36] Hickey S. G., Waurisch C., Rellinghaus B., et al., Size and shape control of colloidallysynthesized IV VI nanoparticulate tin(II) sulfide. Journal of the American ChemicalSociety,2008,130(45),14978-14980.
    [37] Zhang Y. J., Lu J., Shen S. L., et al., Ultralarge single crystal SnS rectangular nanosheets.Chemical Communications,2011,47(18),5226-5228.
    [38] Xu Y., Al-Salim N., Bumby C. W., et al., Synthesis of SnS quantum dots. Journal of theAmerican Chemical Society,2009,131(44),15990-15991.
    [39] Sun Y. K., Myung S. T., Kim M. H., et al., Microscale core-shell structuredLi[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2as positive electrode material for lithium batteries.Electrochemical and Solid State Letters,2006,9(3), A171-A174.
    [40] He P., Yu H., Li D., et al., Layered lithium transition metal oxide cathodes towards highenergy lithium-ion batteries. Journal of Materials Chemistry,2012,22(9),3680-3695.
    [41] Thackeray M. M., Wolverton C.,Isaacs E. D., Electrical energy storage fortransportation-approaching the limits of, and going beyond, lithium-ion batteries. Energy&Environmental Science,2012,5,7854-7863.
    [42] Shaju K. M., Subba Rao G. V.,Chowdari B. V. R., Performance of layeredLi(Ni1/3Co1/3Mn1/3)O2as cathode for Li-ion batteries. Electrochimica Acta,2002,48(2),145-151.
    [43] Ellis B. L., Lee K. T.,Nazar L. F., Positive electrode materials for Li-ion and Li-batteries.Chemistry of Materials,2010,22(3),691-714.
    [44] Sun Y. K., Kim D. H., Yoon C. S., et al., A novel cathode material with aconcentration-gradient for high-energy and safe lithium-ion batteries. AdvancedFunctional Materials,2010,20(3),485-491.
    [45] Ohzuku T.,Makimura Y., Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2forlithium-ion batteries. Chemistry Letters,2001,30(7),642-643.
    [46] Sun Y. K., Myung S. T., Park B. C., et al., High-energy cathode material for long-life andsafe lithium batteries. Nature Materials,2009,8(4),320-324.
    [47] Lee B. R., Noh H. J., Myung S. T., et al., High-voltage performance ofLiNi0.55Co0.15Mn0.30O2positive electrode material for rechargeable Li-ion batteries. Journalof the Electrochemical Society,2011,158(2), A180-A186.
    [48] Thackeray M. M., David W. I. F., Bruce P. G., et al., Lithium insertion into manganesespinels. Materials Research Bulletin,1983,18(4),461-472.
    [49] Yonemura M., Yamada A., Kobayashi H., et al., Synthesis, structure, and phaserelationship in lithium manganese oxide spinel. Journal of Materials Chemistry,2004,14(13),1948-1958.
    [50] Lee S., Cho Y., Song H. K., et al., Carbon-coated single-crystal LiMn2O4nanoparticleclusters as cathode material for high-energy and high-power lithium-ion batteries.Angewandte Chemie International Edition,2012,51(35),8748-8752.
    [51] Kim D. K., Muralidharan P., Lee H. W., et al., Spinel LiMn2O4nanorods as lithium ionbattery cathodes. Nano Letters,2008,8(11),3948-3952.
    [52] Ding Y. L., Xie J. A., Cao G. S., et al., Single-crystalline LiMn2O4nanotubes synthesizedvia template-engaged reaction as cathodes for high-power lithium ion batteries. AdvancedFunctional Materials,2011,21(2),348-355.
    [53] Lee H. W., Muralidharan P., Ruffo R., et al., Ultrathin spinel LiMn2O4nanowires as highpower cathode materials for Li-ion batteries. Nano Letters,2010,10(10),3852-3856.
    [54] Alivisatos A. P., Semiconductor clusters, nanocrystals, and quantum dots. Science,1996,271(5251),933-937.
    [55] Haruta M.,Daté M., Advances in the catalysis of Au nanoparticles. Applied Catalysis A:General,2001,222(1–2),427-437.
    [56] Guo Y. G., Hu J. S.,Wan L. J., Nanostructured materials for electrochemical energyconversion and storage devices. Advanced Materials,2008,20(15),2878-2887.
    [57] Song H. K., Lee K. T., Kim M. G., et al., Recent progress in nanostructured cathodematerials for lithium secondary batteries. Advanced Functional Materials,2010,20(22),3818-3834.
    [58] Wang Y.,Cao G. Z., Developments in nanostructured cathode materials forhigh-performance lithium-ion batteries. Advanced Materials,2008,20(12),2251-2269.
    [59] Wang Y. G., Li H. Q., He P., et al., Nano active materials for lithium-ion batteries.Nanoscale,2010,2(8),1294-1305.
    [60] Li H., Wang Z. X., Chen L. Q., et al., Research on advanced materials for Li-ion batteries.Advanced Materials,2009,21(45),4593-4607.
    [61] Li X. X., Cheng F. Y., Guo B., et al., Template-synthesized LiCoO2, LiMn2O4, andLiNi0.8Co0.2O2nanotubes as the cathode materials of lithium ion batteries. Journal ofPhysical Chemistry B,2005,109(29),14017-14024.
    [62] Kang B.,Ceder G., Battery materials for ultrafast charging and discharging. Nature,2009,458(7235),190-193.
    [63] Feng J. J., Chen J. T., Geng B. S., et al., Two-dimensional hexagonal SnS2nanoflakes:fabrication, characterization, and growth mechanism. Applied Physics a-Materials Science&Processing,2011,103(2),413-419.
    [64] Zhou L., Zhao D.,Lou X., LiNi0.5Mn1.5O4hollow structures as high-performance cathodesfor lithium-ion batteries. Angewandte Chemie International Edition,2011, n/a-n/a.
    [65] Jiang J. A., Li Y. Y., Liu J. P., et al., Building one-dimensional oxide nanostructure arrayson conductive metal substrates for lithium-ion battery anodes. Nanoscale,2011,3(1),45-58.
    [66] Liu J.,Xue D. F., Hollow nanostructured anode materials for Li-ion batteries. NanoscaleResearch Letters,2010,5(10),1525-1534.
    [67] Chen H., Wu L., Zhang L., et al., LiCoO2concaved cuboctahedrons fromsymmetry-controlled topological reactions. Journal of the American Chemical Society,2010,133(2),262-270.
    [68] Jiao F., Shaju K. M.,Bruce P. G., Synthesis of nanowire and mesoporous low-temperatureLiCoO2by a post-templating reaction. Angewandte Chemie-International Edition,2005,44(40),6550-6553.
    [69] Hosono E., Wang Y., Kida N., et al., Synthesis of triaxial LiFePO4nanowire with a VGCFcore column and a carbon shell through the electrospinning method. ACS AppliedMaterials&Interfaces,2009,2(1),212-218.
    [70] Jiang J., Liu W., Chen J., et al., LiFePO4nanocrystals: Liquid-phase reduction synthesisand their electrochemical performance. ACS Applied Materials&Interfaces,2012,4(6),3062-3068.
    [71] Bai Z., Fan N., Ju Z., et al., LiMn2O4nanorods synthesized by MnOOH template forlithium-ion batteries with good performance. Materials Letters,2012,76(0),124-126.
    [72] Xiao X., Liu X., Zhao H., et al., Facile shape control of Co3O4and the effect of the crystalplane on electrochemical performance. Advanced Materials,2012,24(42),5762-5766.
    [73] Wang Y., Xia H., Lu L., et al., Excellent performance in lithium-ion battery anodes:Rational synthesis of Co(CO3)0.5(OH)0.11H2O nanobelt array and its conversion intomesoporous and single-crystal Co3O4. Acs Nano,2010,4(3),1425-1432.
    [74] Cheng F., Tao Z., Liang J., et al., Template-directed materials for rechargeable lithium-ionbatteries. Chemistry of Materials,2008,20(3),667-681.
    [75] Devaraju M. K.,Honma I., Hydrothermal and solvothermal process towards developmentof LiMPO4(M=Fe, Mn) nanomaterials for lithium-ion batteries. Advanced EnergyMaterials,2012,2(3),284-297.
    [76] Tarascon J. M., Recham N., Armand M., et al., Hunting for better Li-based electrodematerials via low temperature inorganic synthesis. Chemistry of Materials,2010,22(3),724-739.
    [77] Xia Y. N., Yang P. D., Sun Y. G., et al., One-dimensional nanostructures: Synthesis,characterization, and applications. Advanced Materials,2003,15(5),353-389.
    [78] Nan C. Y., Lu J., Chen C., et al., Solvothermal synthesis of lithium iron phosphatenanoplates. Journal of Materials Chemistry,2011,21(27),9994-9996.
    [79] Wang Q., Zhang W., Yang Z., et al., Solvothermal synthesis of hierarchical LiFePO4microflowers as cathode materials for lithium ion batteries. Journal of Power Sources,2011,(0).
    [80] Xiao X. L., Wang L., Wang D. S., et al., Hydrothermal synthesis of orthorhombicLiMnO2nano-particles and LiMnO2nanorods and comparison of their electrochemicalperformances. Nano Research,2009,2(12),923-930.
    [81] Li J. M., Wan W., Zhou H. H., et al., Hydrothermal synthesis of TiO2(B) nanowires withultrahigh surface area and their fast charging and discharging properties in Li-ion batteries.Chemical Communications,2011,47(12),3439-3441.
    [82] Lim S. Y., Yoon C. S.,Cho J. P., Synthesis of nanowire and hollow LiFePO4cathodes forhigh-performance lithium batteries. Chemistry of Materials,2008,20(14),4560-4564.
    [83] Du N., Zhang H., Chen B., et al., One-pot, large-scale synthesis of SnO2nanotubes atroom temperature. Chemical Communications,2008,(26),3028-3030.
    [84] Xiao X., Liu X., Wang L., et al., LiCoO2nanoplates with exposed (001) planes and highrate capability for lithium-ion batteries. Nano Research,2012,5(6),395-401.
    [85] Xiao X., Yang L., Zhao H., et al., Facile synthesis of LiCoO2nanowires with highelectrochemical performance. Nano Research,2012,5(1),27-32.
    [86] Kim J.,Cho J., Spinel Li4Ti5O12nanowires for high-rate Li-ion intercalation electrode.Electrochemical and Solid-State Letters,2007,10(3), A81-A84.
    [87] Liu J.,Xue D. F., Sn-based nanomaterials converted from SnS nanobelts: Facile synthesis,characterizations, optical properties and energy storage performances. Electrochimica Acta,2010,56(1),243-250.
    [88] Laumann A., Fehr K. T., Wachsmann M., et al., Metastable formation of low temperaturecubic Li2TiO3under hydrothermal conditions-Its stability and structural properties. SolidState Ionics,2010,181(33-34),1525-1529.
    [89] Fattakhova D., Petrykin V., Brus J., et al., Solvothermal synthesis and electrochemicalbehavior of nanocrystalline cubic Li-Ti-O oxides with cationic disorder. Solid State Ionics,2005,176(23-24),1877-1885.
    [90] Wang C., Deng Z. X.,Li Y. D., The synthesis of nanocrystalline anatase and rutile titania inmixed organic media. Inorganic Chemistry,2001,40(20),5210-5214.
    [91] Larcher D., Masquelier C., Bonnin D., et al., Effect of Particle Size on LithiumIntercalation into α-Fe2O3. Journal of the Electrochemical Society,2003,150(1),A133-A139.
    [92] Wang Z., Luan D., Madhavi S., et al., α-Fe2O3nanotubes with superior lithium storagecapability. Chemical Communications,2011,47(28),8061-8063.
    [93] Liu J.,Liu X. W., Two-dimensional nanoarchitectures for lithium storage. AdvancedMaterials,2012,24(30),4097-4111..
    [94] Lee K. T., Jung Y. S.,Oh S. M., Synthesis of tin-encapsulated spherical hollow carbon foranode material in lithium secondary batteries. Journal of the American Chemical Society,2003,125(19),5652-5653.
    [95] Han S., Jang B., Kim T., et al., Simple synthesis of hollow tin dioxide microspheres andtheir application to lithium-ion battery anodes. Advanced Functional Materials,2005,15(11),1845-1850.
    [96] Nazri G. A.,Pistoia G., Lithium batteries: Science and technology. Springer,2004.
    [97] Panda S. K., Datta A., Dev A., et al., Surfactant-assisted synthesis of SnS nanowires grownon tin Foils. Crystal Growth&Design,2006,6(9),2177-2181.
    [98] Park M. S., Wang G. X., Kang Y. M., et al., Preparation and electrochemical properties ofSnO2nanowires for application in lithium-ion batteries. Angewandte Chemie-InternationalEdition,2007,46(5),750-753.
    [99] Seo J. W., Jang J. T., Park S. W., et al., Two-dimensional SnS2nanoplates withextraordinary high discharge capacity for lithium ion batteries. Advanced Materials,2008,20(22),4269-4273.
    [100] Cho J., Kim Y. J., Kim T. J., et al., Zero-strain intercalation cathode for rechargeable Li-ioncell. Angewandte Chemie-International Edition,2001,40(18),3367-3473.
    [101] Cho J., Kim Y.-W., Kim B., et al., A breakthrough in the safety of lithium secondarybatteries by coating the cathode material with AlPO4nanoparticles. Angewandte ChemieInternational Edition,2003,42(14),1618-1621.
    [102] Thackeray M. M., Johnson C. S., Kim J. S., et al., ZrO2-and Li2ZrO3-stabilized spinel andlayered electrodes for lithium batteries. Electrochemistry Communications,2003,5(9),752-758.
    [103] Li C., Zhang H. P., Fu L. J., et al., Cathode materials modified by surface coating forlithium ion batteries. Electrochimica Acta,2006,51(19),3872-3883.
    [104] Lim S.,Cho J., PVP-functionalized nanometre scale metal oxide coatings for cathodematerials: successful application to LiMn2O4spinel nanoparticles. ChemicalCommunications,2008,(37),4472-4474.
    [105] Li H.,Zhou H., Enhancing the performances of Li-ion batteries by carbon-coating: presentand future. Chemical Communications,2012.
    [106] Kim M. G., Jo M., Hong Y.S., et al., Template-free synthesis of Li[Ni0.25Li0.15Mn0.6]O2nanowires for high performance lithium battery cathode. Chemical Communications,2009,(2),218-220.
    [107] Kweon H. J., Park J., Seo J., et al., Effects of metal oxide coatings on the thermal stabilityand electrical performance of LiCoO2in a Li-ion cell. Journal of Power Sources,2004,126(1-2),156-162.
    [108] Fey G. T. K., Huang C. F., Muralidharan P., et al., Improved electrochemical performanceof LiCoO2surface treated with Li4Ti5O12. Journal of Power Sources,2007,174(2),1147-1151.
    [109] Cho J., Correlation between AlPO4nanoparticle coating thickness on LiCoO2cathode andthermal stability. Electrochimica Acta,2003,48(19),2807-2811.
    [110] Li G., Yang Z. X.,Yang W. S., Effect of FePO4coating on electrochemical and safetyperformance of LiCoO2as cathode material for Li-ion batteries. Journal of Power Sources,2008,183(2),741-748.
    [111] Wang Y., Wang Y., Hosono E., et al., The design of a LiFePO4/carbon nanocomposite witha core–shell structure and its synthesis by an in-situ polymerization restriction method.Angewandte Chemie International Edition,2008,47(39),7461-7465.
    [112] Wang H., Zhang W. D., Zhu L. Y., et al., Effect of LiFePO4coating on electrochemicalperformance of LiCoO2at high temperature. Solid State Ionics,2007,178(1-2),131-136.
    [113] Vijayakumar M., Kerisit S., Yang Z. G., et al., Combined Li-6,Li-7NMR and moleculardynamics study of Li diffusion in Li2TiO3. Journal of Physical Chemistry C,2009,113(46),20108-20116.
    [114] Johnson C. S., Kim J. S., Kropf A. J., et al., Structural and electrochemical evaluation of (1x)Li2TiO3·(x)LiMn0.5Ni0.5O2electrodes for lithium batteries. Journal of Power Sources,2003,119–121(0),139-144.
    [115] Wagner C. D.,Muilenberg G. E., Handbook of x-ray photoelectron spectroscopy: areference book of standard data for use in x-ray photoelectron spectroscopy. Perkin-ElmerCorp., Physical Electronics Division,1979.
    [116] Wang Y. W., Cai Y., He X. M., et al., Development of spinel LiMn2O4for positiveelectrode material of Li-ion batteries. Journal of Inorganic Materials,2004,19(1),1-8.
    [117] Park S. C., Kim Y. M., Kang Y. M., et al., Improvement of the rate capability of LiMn2O4by surface coating with LiCoO2. Journal of Power Sources,2001,103(1),86-92.
    [118] Zhang W., Yang Z., Liu Y., et al., Controlled synthesis of Mn3O4nanocrystallites andMnOOH nanorods by a solvothermal method. Journal of Crystal Growth,2004,263(1–4),394-399.
    [119] Zhou F., Zhao X., Yuan C., et al., Synthesis of γ-MnOOH nanorods and their isomorphoustransformation into β-MnO2and α-Mn2O3nanorods. Journal of Materials Science,2007,42(24),9978-9982.
    [120] Molenda J., Marzec J., wierczek K., et al., The effect of3d substitutions in themanganese sublattice on the charge transport mechanism and electrochemical properties ofmanganese spinel. Solid State Ionics,2004,171(3–4),215-227.
    [121] Treuil N., Labrugère C., Menetrier M., et al., Relationship between chemical bondingnature and electrochemical property of LiMn2O4spinel oxides with various particle sizes:“Electrochemical grafting” concept. The Journal of Physical Chemistry B,1999,103(12),2100-2106.
    [122] Xiong L. L., Xu Y. L., Zhang C., et al., Electrochemical properties of tetravalent Ti-dopedspinel LiMn2O4. Journal of Solid State Electrochemistry,2011,15(6),1263-1269.
    [123] Park M., Zhang X., Chung M., et al., A review of conduction phenomena in Li-ionbatteries. Journal of Power Sources,2010,195(24),7904-7929.
    [124] Yi T. F., Xie Y., Jiang L.J., et al., Advanced electrochemical properties of Mo-dopedLi4Ti5O12anode material for power lithium ion battery. RSC Advances,2012,2(8),3541-3547.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700