超高分子量聚乙烯的表面改性及其耐磨性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人工关节置换是治疗严重骨关节疾病最终最有效的方法。目前由UHMWPE制成的人工关节臼配合金属或陶瓷制成的关节头已成为临床最普遍使用的人工关节摩擦副。然而在人工关节的长期活动中,UHMWPE人工关节臼,会因磨损产生磨屑,而磨屑会刺激人体内的生物反应,引起组织发炎,发生无菌松动,并最终导致人工关节的远期失效及其它并发症。
     在现有的技术和医疗水平下,UHMWPE的使用还将持续一段相当长的时间,因此通过物理或化学的手段对UHMWPE进行各种改性,提高其表面硬度和耐磨损性能是解决人工关节无菌松动与远期失效的一种有效手段。本文对UHMWPE的表面改性正是为了提高其耐磨性能,达到延缓和减少UHMWPE磨屑之目的。
     本文对UHMWPE的表面改性,包含“低温等离子体活化/强化预处理”和“DLC薄膜沉积”的双重改性,低温等离子体处理和DLC薄膜沉积均采用微波ECR等离子体技术。全文首先研究了微波ECR等离子体处理对UHMWPE表面成分与结构、表面形貌、表面能、表面力学性能及表面摩擦学性能的影响;然后通过正交实验详细研究了微波ECR等离子过程参数对沉积DLC结构的影响;在此基础上最后通过ECR-PECVD方法在UHMWPE表面沉积DLC薄膜,并对DLC的结构、力学性能及摩擦学性能进行了研究。为了降低DLC与UHMWPE基体间弹性模量的不匹配程度以及UHMWPE在等离子成膜时的电荷累积效应,本文还研究了金属过渡层(Ti)对沉积DLC结构和性能的影响。全文主要结果如下:
     (1)经等离子体处理,UHMWPE表面生成了含氧基团和反式乙烯基基团,同时UHMWPE的表面交联度和结晶度也都得到了提高。活性基团的引入改善了UHMWPE的表面能(润湿性能),特别是氧等离子体处理,对UHMWPE表面能的改善最为显著;而交联度和结晶度的变化则提高了UHMWPE的表面力学性能。经等离子体处理,UHMWPE表面硬度、抗塑性变形能力都不同程度得到提高,其中经O或N等离子体处理其表面综合力学性能提高最大(适宜的硬度和韧性等)。
     (2)经等离子体处理,UHMWPE表面形貌产生了明显变化。其中经O、H、Ar等离子体处理,UHMWPE表面粗糙度都增加,但差别不明显;经N等离子体处理UHMWPE其表面粗糙度略有降低。
     (3)经等离子体处理,UHMWPE的摩擦学性能产生明显变化。经等离子体处理后,UHMWPE的摩擦系数都有所增大,但其体积磨损率却不同程度的有所下降。特别是经N或O等离子体处理,UHMWPE磨损率最低。在等离子体的表面改性效果中,对UHMWPE磨损率影响最大的因素是UHMWPE的表面力学性能和表面能(润湿性)。UHMWPE的磨损率随着UHMWPE表面力学性能(硬度、抗形变能力)和表面能的增加而降低。
     (4)采用ECR-PECVD技术制备DLC薄膜时,不同过程参数对沉积DLC中sp3/sp2键比例影响的重要性次序为:微波功率>气体流量比>基底偏压>沉积室压强。其中sp3/sp2随着微波功率的增大而减少;随着C2H2/Ar中Ar分量的增大而增大;随着基底偏压的增加而略为增加;随着沉积室压强的增加而略为降低。
     ECR-PECVD技术中不同过程参数对沉积DLC中氢含量影响的重要性次序为:基底偏压>气体流量比>沉积室压强>微波功率。其中氢含量随微波功率增大而增大;随着真空室压强的增大而增大;随着C2H2/Ar中Ar分量的增大而增大;但是随着基底偏压的增加,DLC中氢含量逐渐减少。
     (5)利用ECR-PECVD技术在等离子体活化后的UHMWPE表面成功制备出一种含氢DLC薄膜。UHMWPE经等离子体活化提高了其表面能和表面粗糙度,增强了与DLC间的膜基结合强度。DLC薄膜的沉积,进一步提高了UHMWPE的表面硬度、表面抗擦伤能力和耐磨损能力。
     (6) UHMWPE表面金属过渡层的引入,提高了DLC薄膜的沉积速率和薄膜中sp3键的含量,进一步提高了UHMWPE的耐磨损性能
     概况起来,本文采用的“低温等离子体活化/强化预处理+DLC薄膜沉积”的双重表面改性技术对提高UHMWPE的耐磨性来说将起到双重保障作用。将该技术应用于UHMWPE人工关节臼的表面改性具有潜在的重要应用价值。
Ultra-high molecular weight polyethylene (UHMWPE) paired with a metal or ceramic are the most common combination of materials used in artificial joint replacement. However, the polymeric nature of UHMWPE makes it susceptible to wearing, releasing micro particles into the joint capsule, causing chronic inflammation and osteolysis which leads to aseptic loosening and eventual failure of the implant. Therefore, many efforts are being carried out to reduce the wear rate of UHMWPE by physical or chemical methodes. In this paper, UHMWPE was modified by plasma pretreating and DLC coating. Plasma was generated by microwave electron cyclotron resonance (ECR), and the DLC films was prepared with the method of microwave electron cyclotron resonance plasma chemical vapor deposition (ECR-PECVD).
     Firstly, the effect of plasma treating on the UHMWPE, which includes the component and structure, surface morphology, surface energy and surface mechanical property of UHMWPE were investigated. Then, these effects on the tribological property of UHMWPE were further analysed. Secondly, the effect of the process parameters of ECR-PECVD on the structure of DLC based on an orthogonal experimental design and analysis method were studied. Lastly DLC were deposited on UHMWPE, and its structure, mechanical proptery and tribologycial proptery were characterized. The main resulsts of this paper are as follows:
     (1) Treated by plasma, oxygen containing groups and trans vinylene groups were introduced into the UHMWPE, and the surface crosslinking degree and crystallinlity degree of UHMWPE also increased. The polar groups increased the surface engergy of UHMWPE. And the increased crosslinking degree or crystallinlity degree can improve the surface mechnical propery of UHMWPE, including hardess and anti-plastic deformation. Specially treated by oxygen or nitrogy plasma, UHMWPE has best comprehensive mechanical properties (proper hardness and toughness).
     (2) The roughness of UHMWPE has been increased after it was treated by oxygen, hydrogen or argon plasma, but the deference of roughness was not clear among different plasmas. However, the roughness of UHMWPE has been little decreased after it was treated by nitrogen plasma.
     (3) The tribology propery of UHMWPE can be changed by plasma treating. The friction coefficient of UHMWPE increased, but the volume wear rate decreased after plasma treating. The sample treated by nitrogen or oxygen has the lowest wear rate. The main factor of improvement in wear resistance should attribute to the improved mechanical properties and increased surface engery of UHMWPE when it was modified by plasma.
     (4) When the DLC films were prepared by ECR-PECVD, the importance of each process parameter on the sp3/sp2 bonding ratio of DLC is in the following order:microwave power > C2H2/Ar gas flow ratio > substrate bias voltage > deposition pressure. The sp3/sp2 decreased with the rise of microwave power or deposition pressure, and that increased with the rise of Ar fraction in C2H2/Ar mix gas or substrate bias voltage.
     The importance of each parameter on the hydrogen content in DLC films is in the following order:substrate bias voltage > C2H2/Ar gas flow ratio > deposition pressure > microwave power. The hydrogen content in DLC films decreased with the rise of substrate bias voltage, and it increased with the rise of microwave power, operating pressure and Ar fraction in C2H2/Ar gas mixture.
     (5) Typical DLC films were deposited on UHMWPE successfully. The hardness, wear-resistance and anti-scratch of UHMWPE can be significantly improved by the DLC films coating.
     (6) With the introduction of thin metal transition films, the deposition rate, hardness and sp3/sp2 bonding ratio of DLC deposited on UHMWPE can be increased, And the wear-resistance of UHMWPE can be further improved.
引文
[1]张亚平,高家诚,王勇.人工关节材料的研究与展望.世界科技研究与发展.2000年,22卷(1期):47-51
    [2]戴振东.人工关节摩擦学的研究.生物工程医学杂志.2006年,23卷(3):669-673
    [3]盖学周,饶平根,赵光岩等.人工关节材料的研究进展.材料导报.2006年,20卷:47-49
    [4]Charnley. An artificeial bearing in the hip joint:implicateons on biological lubricateon. Federation Proceedings.1961,25(3):1079-81
    [5]黄孝龙,葛世荣.人工关节置换材料—超高摩尔质量聚乙烯改性研究的进展.塑料工业,2006年,34卷(11):1-3
    [6]McKellop H A, Campbell P, Park S H, et al. The origin of submicron polyethylene wear debris in hip total hip arthroplasty. Clinical Orthopaedics and Related Research. 1995,311:3-20
    [7]Jasty M, Bragdon C, Burke D et al. In vivo skeletal responses to porous-surfaced implants subjected to small induced motions. The Journal of Bone Joint and Surgery, 1997,79(5):707-714
    [8]Phil H K, Youn C N. The effect of y-irradiation on ultra-high molecular weight polyethylene recrystallized under different cooling conditions. Radiation Physics and Chemistry.2001,60:79-87
    [9]Rodriguez R J, Garcia J A. Modification of surface mechanical properties of polycarbonate by ion implantation. Surface and Coatiings Technology.2002,158: 636-642
    [10]陈战,王家序,秦大同.填料对超高分子量聚乙烯摩擦磨损性能的影响研究.润滑与密封.2001年,4卷:34-35
    [11]李敬材,何玉定,胡社军等.类金刚石薄膜的应用.新材料产业.2004年,124卷(3期):39-42
    [12]Lanno N J, Dillon R O, Ali A. Deposition of diamond-like carbon on a titanium biomedical alloy. Thin Solid Films.1995,270:275-278
    [13]Chandra L, Allen M, R.Butter. The effect of biological fluids on the adhesion of diamond-like carbon films to metallic substrates. Diamond and Related Materials, 1995,4:852-856
    [14]Brandau A. Introduction to Coatings Technology. Philadelphia:Federation of Societies for Coatings Technology,1987
    [15]孟江燕,李伟东,王云英.低温等离子体表面改性高分子材料研究进展.表面技术.2009年,38卷(5期)
    [16]陈战,王家序,秦大同.超高分子量聚乙烯工程塑料的摩擦磨损性能研究.农业机械学报.2002年,33卷(1期):103—105
    [17]熊党生,何春霞.炭纤维增强人工关节软骨材料-超高分子量聚乙烯的摩擦学特性.摩擦学学报.2002年,22卷(6期):454-457
    [18]张绪平,周华茂,康学勤.纳米CuO填充UHMWPE基复合材料摩擦学性能的研究.塑料.2003年,32卷(5期):15-17
    [19]何春霞.超高分子量聚乙烯及其纳米A1203填充复合材料摩擦磨损性能研究.摩擦学学报.2002年,22卷(1期):32—35
    [20]Meng D, Shalaby W. Properties of self-reinforced ultra-high-molecular-weight polyethylene composites. Biomaterials.1997,18(9):645-655.
    [21]Silverstein M S, Breitner J. A polytetrafluoroethylene filled ultra-high molecular weight polyethylene composite:Mechanical and wear property relationships. Polymer Engineering and Science.1995,35(22):1785-1794
    [22]Gladius L. Properties of crosslinked ultra-high-molecular-weight polyethylene. Biomaterials.2001,22:371-40
    [23]解孝林.硅烷交联超高分子量聚乙烯.高分子材料科学与工程,2003年,19卷(4期):208-211
    [24]Atkinson J R, Dowling J M, Cicek R Z. Materials for internal prostheses:the present position and possible future developments. Biomaterials,1980 (Ⅰ):89-96
    [25]Wroblewski B M, Siney P D, Dowson D etal. Prospective clinical and joint simulator studies of new total hip arthroplasty using alumina ceramic heas and crosslinked polyethylene cups. The journal of Bone & joint Surgery b.1996,78:280-285
    [26]Eyerer P, Ellwanger R, Federolf H A et al. Polyethylene In concise Encyclopaedia of Medical and Dental Materials. MIT Press.1990
    [27]Li S, Howard E G. Process for Manufacturing Ultra high Molecular Weight Shaped Articles.Us Pat.1991,5037928
    [28]Chen J, Zhu F, Pan H et al. Surface modification of ion implanted UHMWPE. Nuclear Instruments and Methods in Physics research.2000,B169:26-30
    [29]Shi W, Kong H, Bell T. Wear performance of ion implanted UHMWPE. In Surface Engineering:A Joint Publication of the Institute of Metals and the Wolfson Institute for Surface Engineering,2003,19:279-283
    [30]Dong H, Shi W and Li X Y. Plasma immersion ion implantation of UHMWPE. Journal of Materials Science Letters.2000,19:1147-1149
    [31]熊党生.氧离子注入增强人工关节软骨材料UHMWPE的耐磨性.生物医学工程杂志.2003年,20卷(4期):583-585
    [32]熊党生等.氮离子注入超高分子量聚乙烯的生物摩擦学性能.中国生物医学工程学报.2001年,20卷(4期):380-385
    [33]熊党生.离子注入超高分子量聚乙烯的摩擦磨损性能研究.摩擦学学报.2004年,24卷(3期):244-248
    [34]朱福英等.离子注入对超高分子聚乙烯磨损性能的影响.核技术.1999年,22卷(9期): 518-520
    [35]Klapperich C M,Komvopoulos K, Pruitt L. Plasma surface modification of medical-grade UHMWPE for improved tribological properties. In materials Research Society Symposia Proccdings.1999,550:331-336
    [36]Widmer M R, Spencer N D. Influence of polymer surface chemistry on frictional properties under protein-lubrication condition:implication for hip-implant design. Tribology letters.2001,10:111-117
    [37]符素兰,何金谷.高分子聚合物辐射交联及其应用.核农学通报.1992年,13卷(5期):202-203
    [38]Lee E H, Lewis M B, Blau P J etal. Improved surface properties of polymer materials by multiple ion beam treatment. Journal of Materials Research.1991,6:610-628
    [39]Ramamuri B S. Loci of movement of selected points on the femoral head during normal gait. In transactions of 21rd Annual meeting of the Society for Biomaterials. 1995,347
    [40]Trieu H H, Haggard W O, Parr J E, et al. Accelerated fatigue wear of UHMWPE tibial components caused by radiation-induced oxidation. In transactions of 23rd Annual meeting of the Society for Biomaterials.1997,44
    [41]Gsell R. Improved oxidation resitance of Highly crosslinked UHMWPE for total knee arthroplasty. In transactions of 27rd Annual meeting of the Society for Biomaterials. 2001,84
    [42]Grobbelaar C J, Du Plessis T A, Marais F. The radiation improvement of polyethylene prostheses A preliminary study. Journal of Bone and Joint Surgery.1978, 60B(3):370-274.
    [43]Kurtz S M,Villarraga M L,Herr M P,et al.Thermomechanical behavior of virgin and highly crosslinked ultra-high molecular weight polyethylene used in total joint replacements. Biomaterials.2002,23(17):3681-3697.
    [44]Dowson D. Acomparative study of the perforace of metallic and ceramic femoral head components in tota replacements hip joint, wear.1995,190:171-183
    [45]Lewis G. Polyethylene wear in total hip and knee arthroplasties. Jornal of materials Research,1997(38):55-75
    [46]Dowson D. Modes of lubrication in human joints. In proceedings of the institution of mechanical Engineers,1996-67,181:45-55
    [47]Skinner H B. Ceramic bearing surfaces. Clinical Orthopaedics and Related Research. 1999,1:83-91
    [48]Heisel C, Silva M, Schmalzried T P. Bearing surface options for total hip replacement in young patiednts. Instructional Course Lectures.2004,53:49-65
    [49]Annett D R, Christian S, Eberhard M. The wear resistance of diamond-like carbon coated and uncoated Co28Cr6Mo knee prostheses. Diamond and Related Materials.2004,13:823-827
    [50]Loir A S, Garrelie F, C. Donnet, et al. Mechanical and tribological characterization of tetrahedral diamond-like carbon deposited by femtosecond pulsed laser deposition on pre-treated orthopaedic biomaterials. Applied Surface Science.2005,247:225-231
    [51]Onate J I, Comin M, Braceras I, et al. Wear reduction effect on ultra high molecular weight polyethylene by application of hard coatings and ion implantation on cobalt chromium alloy, as measured in a knee wear simulation machine. Surface and Coatings Technology.2001,142-144:1056-1062
    [52]Tiainen V M. Amorphous carbon as a bio-mechanical coating-mechanical properties and biological applications Diamond and Related Materials.2001,10:153-160
    [53]Tiina A, Vesa S. Wear of prosthetic joint materials in various lubricants. Wear.1997, 211:113-119
    [54]Sheeja D, Taya B K, Nung L N, et al. Surface and Coatings Technology. 2005,190:231-237
    [55]刘功德.超高分子量聚乙烯的加工与高性能化研究.四川大学高分子研究所.博士论文.2003年
    [56]Muratoglu O K, Bradon C R, O'Connor D O, et al. Unified wear model for highly crosslinked UHMWPE. Biomaterials.1999,20:1463-1470
    [57]Ebearhardt A W, Cole J A, Lemons J E. the effect o irradiation level and resin on fatigue crack resistance in UHMWPE. In transactions of 27th Annual meetings of the Cociety for Biomaterials,2001,480
    [58]Greer K, King R. The mechanical and physical properties of four different crosslinked UHMWPE materials. In transactions of 27th Annual meetings of the Cociety for Biomaterials,2001,85
    [59]Muratoglu O K, Bragdon C R, O'Connor D O,et al. Electron beam crosslinking of UHMWPE at room temperature, a candidate bearing material for total joint arthroplasty. Transactions of the 23rd Society of Biomaterials,1997,20:74
    [60]Costa L, Bracco P, Luda M P, et al. Trossarelli Analysis of products diffused into UHMWPE prosthetic components in vivo. Biomaterials,2001,22:307-315
    [61]Margam C, Nee L L. Effect of counterface on the tribology of UHMWPE in the presence of proteins. Wear.2001,250:237-241
    [62]谢东,冷永祥,黄楠等.聚合物面类金刚石薄膜的制备与应用.功能材料.2008年,39卷(9期):1413-1417
    [63]王国全,王秀芬.聚合物改性. 中国轻工业出版社,2006
    [64]Novikov N V, Voronkin M A, Dub S N, et al. Transition from polymer-like to diamond-like aC:H films structure and mechanical propertiesDiamond and Related Materals.1997,6:574-578
    [65]Shirakura A, Nakaya M, Koga A Y, et al. Diamond-like carbon films for PET bottles and medical applications Thin Solid Films.2006,494:84-91
    [66]Tsubone D. Fracture mechanics of diamond-like carbon (DLC) films coated on flexible polymer substrates. Surface and Coatings Technology.2007,201:6423-6430
    [67]Zhou X T, Lee S T, Bello I, et al. Deposition and properties of a-C:H films on polymethyl methacrylate by electron cyclotron resonance microwave plasma chemical vapor deposition method. Surface and Coatings Technology,2000,123: 273-277
    [68]Cuong N K, Tahara M, Yamauchi N, et al. Diamond-like carbon films deposited on polymers by plasma-enhanced chemical vapor deposition. Surface and Coatings Technology.2003,174-175:1024-1028
    [69]Amanatides E, Mataras D. Electrical and optical properties of CH4/H2 RF plasmas for diamond-like thin film deposition. Diamond and Related Materials.2005,14: 292-295
    [70]Donnelly K. The effect of refractive index on the friction coefficient of DLC coated polymer substrates. Diamond and Related Materials.1999,8:538-540
    [71]Fedoseev D V, Deposition of aC:H films from argon/cyclohexane plasma on polymer substrates. Diamond and Related Materials 1996,5:429-432
    [72]Abbas G A, McLaughlina A, Harkin-Jonesb. A study of ta-C, a-C:H and Si-a:C:H thin films on polymer substrates as a gas barrier Diamond and Related Materials, 2004,13:1342-1345
    [73]Ohgoe Y, Hirakuri K K, Tsuchimoto K, et al. Uniform deposition of diamond-like carbon films on polymeric materials for biomedical applications. Surface and Coatings Technology.2004,184:263-269
    [74]Nakahigashi T. Properties of flexible DLC film deposited by amplitude-modulated RF-PECVD Tribology International.2004,37:907-912
    [75]Vasquez S. Diamond and Related Materials.1997,6:551-554
    [76]Guo Y B, Hong F C N. Adhesion improvements for diamond-like carbon films on polycarbonate and polymethylmethacrylate substrates by ion plating with inductively coupled plasma. Diamond and Related Materials.2003,12:946-952
    [77]Inagawa K. Characterization of diamond-like carbon films formed by magnetically enhanced plasma chemical vapor deposition. Surface and Coatings Technology. 2003,169-170:344-347
    [78]Alanazi A, Chisato N, Noguchi T,et al. Improved blood compatibility of DLC coated polymeric material. ASAIO Journal,2000,46(4):440-443
    [79]Donnelly K, Diamond and Related Materials.1999,8:538-540
    [80]Baba K, Hatada R. Deposition of diamond-like carbon films on polymers by plasma source ion implantation. Thin Solid Films.2006,506-507:55-58
    [81]王进,潘长江,李鹏,等.涤纶材料表面类金刚石薄膜的沉积及其抗菌性能研究.功能材料,2004年35卷(5期):563—565
    [82]Igarashi A, Hayashi H, Yamanobe T, et al. Structure and morphology of diamond-like carbon coated on nylon 66/poly (phenylene ether) alloy Journal of Molecular Structure,2006,788:238-245
    [83]Tanaka T, Yoshida M, Shinohara M, et al. Journal of Vacuum Science and Technology A,2006,20:625-633
    [84]Kim B K, Grotjohn TA. Comparison of aC:H films deposited from methane-argon and acetylene-argon mixtures by electron cyclotron resonance-chemical vapor deposition discharges. Diamond and Related Materials.2000,9:37-47
    [85]Yoon S F, Tan K H1. Effect of microwave power on diamond-like carbon films deposited using electron cyclotron resonance chemical vapor deposition Diamond and Related Materials 2000.9:2024-2030
    [86]Kimura A, Kodama H, Suzuki T. Diamond-like carbon films deposited on polyethylene terephthalate substrates by radio frequency plasma chemical vapor deposition method Journal of Vacuum Science and Technology A.2003,21:515-517
    [87]许文才,曹国荣,李立东等.国外软包装材料的现状及研发方向.包装工程.2007年28卷(8期):1-5
    [88]贺压敏,黄培林,吕晓迎.几种医用材料的细胞生物相容性评价的实验研究.生物医学工程杂志,2002年25卷(2期):73-75.
    [89]马丽丽,杨喜昆,李智刚PMMA树脂义齿表面沉积类金刚石碳膜改善耐磨性的研究.口腔医学.2003年23卷(2期):67-70
    [90]张继成,唐永建,吴卫东.电子回旋共振微波等离子体技术及应用.强激光与粒子束.2002年,14卷(4期)
    [91]赵化侨.等离子化学与工艺.中国科技大学.1993年:301-303
    [92]Cook J M, Donohoe K. Etching issues at 0.35μm and below. Solid State Technol. 1991,34(4):119—124.
    [93]贾绍义,曾林久,姚克新,塑料表面粗糙化处理对其润湿性能的影响.中国塑料2001年,15卷(4期):48-50
    [94]Massines F, Decomps P, Gadri R etal. Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier. J. Appl. Phys.1993, 83:2950-2957.
    [95]王真,邱晔,洪品杰.微波等离子体诱导聚乙烯表面接枝甲基丙烯酸甲酯.高等学校化学学报.1998年,19卷:486—488
    [96]顾晋伟,杨新林.丝素蛋白膜表面的等离子体磺酸化及体外抗凝血性能高技术通报.2001年,11卷(8期):7—10
    [97]Moyd L, Neuman A W. A Refonnulation of the Equation of State for Interfaeial Tension. J Coll Interface Sci,1990,137:304-307
    [98]林子光,郭炎.表面形貌对抗擦伤能力影响的实验研究.机械设计.1999,11期
    [99]Luisetto Y, Wesslen B, Maurer F, et al. The effect of irradiation,annealing temperature and artificial aging on the oxidation,mechanical properties,and fracture mechanisms of UHMWPE. Journal of Biomedical Materials Research.2003,67A(3):908-917.
    [100]Hook T J, Gardella J A, Salvati L. Multitechnique surface spectroscopic studies of plasma modified polymers Ⅱ:H2O/Ar plasma-modified polymethylmethacrylate polymethacrylic acid copolymers J. Mater. Res.1987,2:11
    [101]Waner C D. Anal Chem.1972,44:1050
    [102]Park Y W, Inagak N. Surface modification of poly(vinylidene fluoride) film by remote Ar, H2, and O2 plasmas. Polymer.2003,44:1569-1575,
    [103]Ojiothe R. Quantitative surface analysis by Fourier t ransform attenuated total reflection inf rared spect roscopy. Applied Spectroscopy.1994,3:3592365
    [104]王娜.射线辐照超高分子量聚乙烯的结构和摩擦学性能研究,南京理工大学,硕士学位论文,2005年
    [105]Hengjun L, Yanan P, Dong X, et al. Surface modification of ultra-high molecular weight polyethylene (UHMWPE) by argon plasma. Applied Surface Science.2010, 256:3941-3945;
    [106]Guruvenket S, Mohan G, Komath M, et al. Plasma surface modification of polystyrene and polyethylene. Applied Surface Science.2004,236:278-284
    [107]Hollander A, Wilken R, Behnisch J, et al. Subsurface chemistry in the plasma treatment of polymers. Surface and Coatings Technology.1999,116:788-791
    [108]Costa L, Bracco P. Mechanism of crosslinking and oxidative degradation of UHMWPE. In:Kurtz S, editor. The UHMWPE handbook:ultra-high molecular weight polyethylene in total joint replacement. London:Academic Press; 2004: 235-261.
    [109]Johnson W C, Lyons B J, Rad. Phys. Chem.1995,46:829.
    [110]Kim S, Kang P H, Nho Y C, Yang O B. Effect of electron beam irradiation on physical properties of ultrahigh molecular weight polyethylene. J Appl Polym Sci.2005, 97:103-116.
    [111]Tretinnikov O N, Fujita S I, Ogata S,et al. Surface studies of ultra-high molecular weight polyethylene irradiated with high-energy pulsed electron beams in air. J Polym Sci Part B:Polym Phys.1999,37:1503-1512.
    [112]倪自丰.超高分子量聚乙烯的抗氧化处理及其生物摩擦学行为研究.中国矿大.博士学位论文.2009
    [113]Laura F, Josefina C, Marieladel G. Effect of nitrogen ion irradiation on the nano tribological and surface mechanical properties of ultra-high molecular weight polyethylene, Surface and Coatings Technology.2010,204:3887-3894
    [114]ASTM:F2381-04 Standard Test Method for Evaluating Trans Vinylene Yield in Irradiated Ultra High Molecular Weight Polyethylene Fabricated Forms Intended for Surgical Implants by Infrared Spectroscopy.2004
    [115]王章忠.材料科学基础.机械工业出版社.2005,P115
    [116]Park K, Mishra S, Lewis G.,et al. Quasi-static and dynamic nanoindentation studies on highly crosslinked ultra-high-molecular-weight polyethylene Biomaterials.2004,25: 2427.
    [117]李颖.几种常用的聚合物结晶度测定方法的比较.沈阳建筑工程学院学报(自然科学版).2000年,16卷(4期)
    [118]Zerby G, Gallino G, Fanty N D, et al. polymer.1989,30:2324
    [119]Hagemann H, Snyder R G, Peacock A J, et al. Quantitative infrared methods for the measurement of crystallinity and its temperature dependence:polyethylene. Macromolecules.1989,22:3600
    [120]Shinde A, Salovey A. Irradiation of ultrahigh molecular weight polyethylene. Polym Sci. Polym. Phys.1985,23:1681
    [121]Bhateja S K, Andrews E H, Young R J, Radiation-induced crystallinity changes in polyethylene blends. Polym. Sci. Polym. Phys.1983,21:523
    [122]刘卫国,田园.等离子体抛光对表面粗糙度的影响.西安工业大学报.2001年,30卷(2期):108一111
    [123]Kostova K G, Ueda M, Tana I H, et al.Structural effect of nitrogen plasma-based ion implantation on ultra-high molecular weight polyethylene.Surface and Coatings Technology 2004,186:287-290
    [124]Norihiro I, Kazuo N, Norio T, et al. Surface characterization of plasma-modified poly(ethylene terephthalate) film surfaces. Journal of Polymer Science Part B: Polymer Physics.2004,42(20):3727-3740
    [125]黄玉东.聚合物表面与界面技术.化学工业出版社.2003年
    [126]Fasce L. Effect of nitrogen ion irradiation on the nano-tribological and surface mechanical properties of ultra-high molecular weight polyethyleneSurface and Coatings Technology.2010,204:3887-3894
    [127]Catherine M K. Mechanical,Chemical and biological Evaluation of Energetically Treated Polymer Surfaces for Biomedical Applications. Univesity of Canifornia Berkeley. Doctor dissertation.2000
    [128]Oliver W C, Pharr G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J.Mater.Res. 1992,7(6):1564-1583
    [129]蒋军.热等静压原位合成TiB2-TiCx复相陶瓷材料.西南交通大学硕士学位论文.2003年:1-46
    [130]Jinfu San, Jiajun Liu, et al. Tribological properties of ion-implanted polyphenylene oxide(PPO). Wear,251(2001):1504-1510
    [131]Pruitt L A, Proceedings of 13th International Meeting on the Deformation, Yield and Fracture of Polymers,2006
    [132]Cayer B J, Mazuyer D, Tonck A,et al. Nanoscratch and friction:An innovative approach to understand the tribological behaviour of poly (amide) fibres. Tribol. Int. 2006,39:62
    [133]Robertson J, O'Reilly P. Electronic and atomic structure of amorphous carbon. Phys. Rev B.1987,35 (6):2946-2957
    [134]Robertson J. Mechanical properties and coordinations of amorphous carbons. Phys. Rev Lett.1992,68 (2):220-223.
    [135]Robertson J. Mater. Diamond-like amorphous carbon. Sci. Eng., R Rep.2002,37:129
    [136]Prawer S, Nugent K W, Lifshitz Y, et al. Systematic variation of the Raman spectra of DLC films as a function of sp2:sp3 composition. Diamond related materials.1996, 5(3-5):433-438
    [137]Ogwu A A, Lamberton R W, Morley S, et al. Characterisation of thermally annealed diamond like Carbon and silicon modified DLC films by Raman spectroscopy. Phys.B. 1999,269(3-4):335-344
    [138]Robertson J. Amorphous carbon. Adv.Phys.1986,35:317-374
    [139]Schwan J, Ulrich S, Batori V, et al. Raman spectroscopy on amorphous carbon films. J.APP1.Phys.1996,80(1):440-447
    [140]J. Robertson. Recombination and photoluminescence mechanism in hydrogenated amorphous carbon. Physsical Review B.1996,53(24):16302-16305
    [141]Casiraghi C, Piazzaa F, Ferrari A C. Diamond Relat.Mater.2005,14:1098
    [142]Rother B. Multilayer hard coatings by coordinated substrate rotation modes in industrial PVD deposition systems. Surf. Coat. Technol.1996,85:183
    [143]Puertolas J A, Martinez N V, Martinez-Morlanes M J, Improved wear performance of ultra high molecular weight polyethylene coated with hydrogenated diamond like carbon. Wear.2010,269:458-465
    [144]覃礼钊,张旭,吴正龙.XPS表征类金刚石膜探讨.现代仪器.2005,6:18-20
    [145]Murugaiah A, Barsoum M W, Kalidindi S R,et al.Spherical nanoindentations and kink bands in Ti3SiC2. Journal of Materials Research.2004,19(4):1139-1148
    [146]Jon M, Molina A, Jens E,et al. Kink formation around indents in laminated Ti3SiC2 thin films studied in the nanoscale. Scripta Materialia.2003,49:155-160
    [147]朱嘉琦,孟松鹤,韩杰才,等.膜厚对四面体非晶碳膜机械性能的影响.功能材料.2004年,35卷:2149-2152
    [148]Ferrari A C. Determination of bonding in diamond-like carbon by Raman spectroscopy. Diamond Relat. Mater.2002,11:1053
    [149]唐伟忠,薄膜材料制备原理、技术及应用.冶金工业出版社.2003
    [150]杨苹,周红芳,冷永祥.非晶碳膜的表面润湿性对生物相容性的影响.功能材料.2004年增刊,35卷:2477-2478.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700